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On approximation properties of the binomial
power function (1 + xq)r and allied functions

Brock Erwin, Je� Ledford and Kira Pierce

Abstract. This note concerns approximation properties of scattered trans-
lates of a �xed kernel related to the binomial power function (1 + xq)r. In
particular, we show that associated alternant matrices are invertible and that
such functions are dense in C[a, b]. The techniques used may be considered
non-local since they rely on interpolation centers which are chosen outside
of the target domain.
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1. Introduction
In this paper, we consider the approximation set

S(',X) ∶=
⎧

⎨
⎩

N∑

j=1
aj'(x − xj) ∶ N ∈ ℕ, aj ∈ ℝ, xj ∈ X

⎫

⎬
⎭

,

where X is an appropriately chosen scattered sequence and ' is a function re-
lated to the binomial power function (1 + xq)r. The most popular choice of
parameters is (q, r) = (2, 1∕2), the Hardy multiquadric, which is due in part to
its implementation properties, [5]. Its approximation properties have beenwell
studied, see for instance [2, 3, 4, 9] among many others. These works may be
classi�ed as local, in the sense that the centers X are typically chosen to be in
the domain of the target function.
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Our interest in this problem stems from [8], which shows that for the Hardy
multiquadric, S(',X) is dense inC[a, b]. The argument employed there is non-
local, in that the centers are chosen to be far away from the domain of the target
functions. A similar schemewas used by the second author to extend the result
to (q, r) = (2,−1) in [6] and (q, r) = (2, k − 1∕2) in [7]. Our aim is to provide
a single approach which generalizes these results. We do this by introducing a
straightforward admissibility criterion, which allows allied functions to enjoy
the same approximation properties.

The rest of this paper is organized as follows. The next section contains var-
ious de�nitions and basic facts necessary to the sequel. The third section pro-
vides the main result and a short proof, while the fourth section provides two
basic examples including the binomial power (1 + xq)r, which subsumes pre-
vious work on this problem. The �nal section is devoted to an application that
extends the techniques presented to allied functions.

2. De�nitions and basic facts
Throughout the sequel, we denote by ℕ0 the collection of non-negative in-

tegers. We denote the space of polynomials of degree at most n by Πn and let
Π ∶= ⋃

n∈ℕ0
Πn.

De�nition 2.1. A sequence of real numbers, denotedX, is said to be �-separated
if

inf
x,y∈X
x≠y

|x − y| = � > 0

Note that a �-separated sequence must be countable. This allows us to index X
with the integers.

De�nition 2.2. A sequence (xj) ⊂ ℝ is scattered if it is �-separated for some
� > 0 and satis�es

lim
j→±∞

xj = ±∞.

Throughout the remainder of the paper we letX = (xj) be a �xed but otherwise
arbitrary scattered sequence. Of use to us will be the following notion.

De�nition 2.3. Y ⊂ ℝ is a positive (negative) doubling sequence if
(1) y1 > 0 (y1 < 0), and
(2) yj+1 ≥ 2yj (yj+1 ≤ 2yj); j ∈ ℕ.

Lemma 2.4. Every scattered sequence X contains both a positive and negative
doubling subsequence. Additionally, for anyM > 0, we can �nd a doubling sub-
sequence Y such that |y1| > M.

Proof. LetM > 0. Since lim
j→∞

xj = ∞, there exists J ∈ ℤ such that xj > M for

j ≥ J. Since X is �-separated, we can �nd the smallest such xj, this we call y1.
Nowwe can repeat this procedure forM = 2y1 to produce y2. Continuing on in
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this fashion produces a positive doubling subsequence Y ∶= (yj). A negative
doubling subsequence is produced in an analogous manner. �

Lemma 2.5. Suppose that X is a scattered sequence and that (yj) ⊂ X is a dou-
bling subsequence, then for all i ∈ ℕ

||||||||||

∏

j≠i
[1 −

yi
yj

]
−1||||||||||

≤ 4.

Proof. Since yi∕yj > 0 for both positive and negative doubling subsequences,
it is enough to consider only positive doubling subsequences. Fix i ∈ ℕ. For
1 ≤ j < i, we have |(1 − yi∕yj)−1| ≤ 1, hence

||||||||||

∏

j≠i
[1 −

yi
yj

]
−1||||||||||

≤
∞∏

j=i+1
[1 −

yi
yj

]
−1

.

To see the bound, note that for j > i:
yi
yj

≤ − ln (1 −
yi
yj

) ≤ 2 ln(2) yiyj
,

which follows from the convexity of the logarithm and the fact that yi+1 ≥ 2yi.
Hence we have

∞∏

j=1
[1 −

yi
yi+j

]
−1

= exp
⎡
⎢
⎣
−

∞∑

j=1
ln(1 − yi∕yi+j)

⎤
⎥
⎦

≤ exp
⎡
⎢
⎣
2 ln(2)

∞∑

j=1
yi∕yi+j

⎤
⎥
⎦

≤ exp
⎡
⎢
⎣
2 ln(2)

∞∑

j=1
2−j

⎤
⎥
⎦
= 4.

�

For a �xed ', X, and n ∈ ℕ we let

Sn(',X) ∶=
⎧

⎨
⎩

n∑

j=1
aj'(x − xj) ∶ aj ∈ ℝ, xj ∈ X

⎫

⎬
⎭

and set S(',X) ∶= ⋃
n∈ℕ Sn(',X). When there is no confusion, we will drop

the dependence on ' and X.
We introduce the following notion of admissibility for '.

De�nition 2.6. Suppose that translates of ' enjoy the representation

'(x − y) = F(y)
∞∑

k=0

Ak(x)
yk

, (1)
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where (Ak) ⊂ Π. We will call a function ' which has such a representation ad-
missible provided F(y) is eventually non-zero.

We will need the following results concerning alternant matrices.
The N × N Vandermonde system associated to a doubling sequence Y is

VNc = eN ∈ ℝN , where eN is the N-th standard basis vector and

VN ∶=
[
y−(i−1)j

]
1≤i,j≤N

.

The solution may be found using Cramer’s rule, namely

ci = yN−1i
∏

j≠i
[1 −

yi
yj

]
−1

. (2)

In light of Lemma 2.5, we have

ci = O(yN−1i ). (3)

For admissible ' and a doubling sequence Y, we get the related system
[
F(yj)y−i+1j

]
1≤i,j≤N

ã = eN , (4)

where F is de�ned in (1). Using Cramer’s rule, we have

ãN,i =
ci

F(yi)
, (5)

where ci is de�ned in (2).

3. Main result
We are in position to prove e�ciently our main result which allows us to

derive the density of S(',X) in C[a, b] from the density of Π in C[a, b].

Theorem 3.1. Suppose thatX is a scattered sequence and that ' is admissible. If
(Ak ∶ k ∈ ℕ0) de�ned in (1) is a basis forΠ, then for any f ∈ C[a, b] and " > 0,
there exists s ∈ S(',X) such that

‖f − s‖L∞ < ".

Proof. In light of the Stone-Weierstrass theorem, it is enough to consider f ∈
Π. Using (1), we need only �nd s̃n ∈ Sn(',X) such that s̃n(x) = An−1(x) +
O(y−11 ). For (yj) ⊂ X, we have

n∑

j=1
aj'(x − yj) =

n∑

j=1
ajF(yj)

∞∑

k=0

Ak(x)
ykj

=
n−1∑

k=0

⎛
⎜
⎝

n∑

j=1
ajF(yj)y−kj

⎞
⎟
⎠
Ak(x) +

n∑

j=1

∞∑

k=n
ajF(yj)

Ak(x)
ykj

.
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The �rst sum is a Vandermonde system, hence if (yk) ⊂ X is a doubling se-
quence and (aj) = (ãn,j) is chosen as in (5) then we have

n∑

j=1
ãn,j'(x − yj) = An−1(x) + O(y−11 ).

Since (Ak) is a basis for Π and y1 may be chosen arbitrarily large, the proof is
complete. �

Applying Hölder’s inequality yields the following.

Corollary 3.2. Let p ≥ 1 and suppose that X is a scattered sequence and that '
is admissible. If (Ak ∶ k ∈ ℕ0) is a basis for Π, then for any f ∈ C[a, b] and
" > 0, there exists s ∈ S(',X) such that

‖f − s‖Lp < ".

It may happen that (Ak ∶ k ≥ 0) fails to be a basis for Π while (Ak ∶ k ≥ K)
is a basis for Π, in this situation the proof can be amended above by splitting
the �rst K + n + 1 terms from the rest

n∑

j=1
aj'(x − yj) =

n∑

j=1
ajF(yj)

∞∑

k=0

Ak(x)
ykj

=
K+n−1∑

k=0

K+n∑

j=1
ajF(yj)y−kj Ak(x) +

n∑

j=1

∞∑

k=K+n
ajF(yj)

Ak(x)
ykj

,

now letting aj = ãK+n−1,j produces AK+n−1(x) + O(y−11 ). Since (AK+n−1 ∶ n ∈
ℕ) is a basis for Π, the conclusion of Theorem 3.1 still holds. We summarize
this in the following.

Theorem 3.3. Suppose that X is a scattered sequence and that ' is admissible.
If there exists K ∈ ℕ0 such that (Ak ∶ k ≥ K) is a basis for Π, then for any
f ∈ C[a, b] and " > 0, there exists s ∈ S(',X) such that

‖f − s‖L∞ < ".
Corollary 3.4. Let p ≥ 1 and suppose that X is a scattered sequence and that '
is admissible. If there exists K ∈ ℕ0 such that (Ak ∶ k ≥ K) is a basis for Π, then
for any f ∈ C[a, b] and " > 0, there exists s ∈ S(',X) such that

‖f − s‖Lp < ".

4. Examples
Theorems 3.1 and 3.3 require that we show the sequence of polynomials (Ak)

de�ned in (1) forms a basis forΠ. Thus the bulk of the work in examples is jus-
tifying this. Throughout this section we will make use of the general binomial
coe�cient (a

b
)
= Γ(a + 1)
Γ(b + 1)Γ(a − b + 1)
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and the �oor and ceiling functions, which we denote by ⌊⋅⌋ and ⌈⋅⌉, respectively.
We begin with the example that motivated the treatment above.

4.1. Binomial power functions. Let q ∈ ℕ and r ∈ ℝ⧵{0}, then the binomial
power function with shape parameter c > 0 is

'(x) = (c + xq)r.
For simplicity, we will often let c = 1. We begin with the special case q ∈ 2ℕ.

Lemma 4.1. Let r ∈ ℝ ⧵ {0}, q ∈ 2ℕ, and for k ∈ ℕ0 suppose Ak is de�ned by
(1). Then Ak(x) is given by

Ak(x) = (−1)k
(qr
k
)
xk + lower order terms.

Proof. For y large enough, we have

'(x − y) = (c + (x − y)q)r

=yqr (cy−q + (1 − x
y )

q
)
r

=yqr
∞∑

j=0

∞∑

k=0
(−1)k

(r
j
)(q(r − j)

k
)
cjxky−(qj+k)

=yqr
∞∑

j=0

∞∑

k=qj
(−1)k

(r
j
)(q(r − j)
k − qj

)
cjxk−qjy−k

=yqr
∞∑

k=0

⎛
⎜
⎝

⌊k∕q⌋∑

j=0
(−1)k

(r
j
)(q(r − j)
k − qj

)
cjxk−qj

⎞
⎟
⎠
y−k.

This means that

Ak(x) =
⌊k∕q⌋∑

j=0
(−1)k

(r
j
)(qr − qj
k − qj

)
cjxk−qj, (6)

which is the desired result. �

Corollary 4.2. Suppose r ∈ ℝ ⧵ {0} and q ∈ 2ℕ satisfy qr ∉ ℕ, then (Ak) is a
basis forΠ.

Proof. If qr ∉ ℕ, then the leading coe�cient in (6) cannot be 0. �

Corollary 4.3. Suppose qr ∈ ℕ. Then for Ak de�ned in (1), we have

Ak(x) =
⎧

⎨
⎩

(−1)k
(qr
k

)
xk + lower order terms, 0 ≤ k < q⌈r⌉

( r
⌈r⌉

)(qr−q⌈r⌉
k−q⌈r⌉

)
c⌈r⌉xk−q⌈r⌉ + lower order terms, k ≥ q⌈r⌉.

Hence (Ak ∶ k ≥ q⌈r⌉) is a basis forΠ.



292 BROCK ERWIN, JEFF LEDFORD AND KIRA PIERCE

Proof. The formula for 0 ≤ k < q⌈r⌉, follows from the fact that
(qr
k

)
≠ 0 for

these k. In order to see the formula for k ≥ q⌈r⌉, we note that since r ∉ ℕ0,
⌈r⌉ > r, so that the second binomial coe�cient will be 0 whenever the index is
less than r, whence (6) reduces to

Ak(x) = (−1)k
⌊k∕q⌋∑

i=⌈r⌉

(r
i
)(qr − qi
k − qi

)
cixk−qi. (7)

�

It is natural to ask what happens if q ∈ ℕ is odd. The argument given above
is invalid for a general r ∈ ℝ when q is odd. However, if q is odd and qr ∈ ℕ,
then we more or less recover (7):

Ak(x) = (−1)k+qr
⌊k∕q⌋∑

i=⌈r⌉

(r
i
)(qr − qi
k − qi

)
cixk−qi.

The di�erence is that we must use a negative doubling sequence that is con-
tained in our scattered sequence. Hence we have the following.

Lemma 4.4. Suppose r ∈ ℝ ⧵ {0} and q ∈ ℕ is odd. If qr ∈ ℕ, then (Ak ∶ k ≥
q⌈r⌉) de�ned in (1) is a basis forΠ.

We summarize these results in the following.

Proposition 4.5. Suppose that ' is a binomial power function with parameters
q ∈ ℕ and r ∈ ℝ ⧵ {0}. Then (Ak ∶ k ≥ K) de�ned in (1) is a basis forΠ if

(1) q ∈ 2ℕ and qr ∉ ℕ and K = 0, or
(2) q ∈ 2ℕ, qr ∈ ℕ and K = q⌈r⌉, or
(3) q ∈ (2ℕ − 1), qr ∈ ℕ and K = q⌈r⌉.

Note that in each of the cases above, ' is admissible with F(y) = |y|qr. We
end this section by noting that this class of examples subsumes those found in
earlier works. The Hardy multiquadric found in [8] is (q, r) = (2, 1∕2), while
the examples in [6] and [7] both have q = 2, with r = −1 and r = k − 1∕2,
respectively.

4.2. Arctangent. The examples in this section are related to the binomial power
functions by di�erentiation. We will begin with arctan(x), which satis�es

arctan(x − y) = −�2 +
∞∑

k=1

Bk(x)
yk

,

hencewewill let'(x) = arctan(x)+�∕2. Since the derivative of' is the Poisson
kernel, we can use the polynomial sequence (Ak) de�ned recursively in [6] to
calculate (Bk). In fact, Proposition 1 in [6] gives us

Ak(x) = (k + 1)xk + lower order terms,
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thus, for k ∈ ℕ we have

Bk(x) =
Ak−1(x)

k
= xk−1 + lower order terms.

We can use (6), to generate the polynomial if we need the lower order terms.
Hence ' is admissible with F(y) = y−1, we have

'(x − y) = y−1
∑

k=0

Bk+1(x)
yk

.

Hence Corollary 4.2 provides that (Bk ∶ k ≥ 1) is a basis for Π.
We can combine examples using the Cauchy product. For instance,

'(x) = (1 + xq)r
(
arctan(x) + �

2
)
, (8)

leads to the following.

Lemma 4.6. For ' in (8), q ∈ 2ℕ, r ∈ ℝ ⧵ {0}, and qr ∉ ℕ,

'(x − y) =∶ yqr−1
∞∑

k=0

Ck(x)
yk

,

we have

Ck(x) = (−1)k
(qr − 1

k
)
xk + lower order terms; k ≥ 1.

Hence ' is admissible with F(y) = yqr and (Ck ∶ k ≥ 1) is a basis forΠ.

Before proving this we need the following summation formula.

Lemma 4.7. Suppose that u ∈ ℝ ⧵ {0} and k ∈ ℕ0, then
k∑

j=0
(−1)j

(u
j
)
= (−1)k

(u − 1
k

)
, (9)

where
(u
j

)
is the general binomial coe�cient.

Proof. We �x u ∈ ℝ ⧵ {0} and induct on k ∈ ℕ0. When k = 0, there is nothing
to show since both sides are 1. Now suppose that the formula holds for some
k ≥ 0 and consider

k+1∑

j=0
(−1)j

(u
j
)
= (−1)k+1

( u
k + 1

)
+

k∑

j=0
(−1)j

(u
j
)

= (−1)k+1
( u
k + 1

)
+ (−1)k

(u − 1
k

)

= (−1)k+1
(u − 1
k + 1

)
,

which is the desired formula. �
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Proof of Lemma 4.6. All we need to do is to use the series representation for
each piece of the product. This yields

Ck(x) =
k∑

j=0
(−1)j

(qr
j
)
xk + lower order terms.

Now (9) provides the desired result. �

5. An extended example
Due to the relative simplicity of the previous example, it is natural to inves-

tigate ln(1 + x2) since is also linked to the binomial power functions via dif-
ferentiation. Unlike the previous example, however, this requires an updated
version of the system (4) in order to prove a result similar to Theorem 3.1.

Lemma 5.1. Let '(x) ∶= x−1 ln(1 + x2). Then '(x − y)may be expanded in a
series

'(x − y) = ln |y|
∞∑

j=1

Aj(x)
yj

+
∞∑

k=2

Bk(x)
yk

,

where (Aj) and (Bk) are given by the formulas

Aj(x) = −2xj−1; j ≥ 1, and

Bk(x) =
⎛
⎜
⎝

k−1∑

n=1

2
n
⎞
⎟
⎠
xk−1 + lower order terms; k ≥ 2.

Proof. The main tool here is the Cauchy product as well as the results of [6].
We have

d
dy ln(1 + (x − y)2) = −2(x − y)

1 + (x − y)2

= −2(x − y)
∞∑

j=0

Ãj(x)
yj+2

,

where Ãj are the polynomials corresponding to the Poisson kernel. We �nd
these polynomials de�ned recursively in [6], where they are called (Aj). We
note, however, that they may also be computed directly from (6). Regrouping
yields

d
dy ln(1 + (x − y)2) = 2Ã0(x)

y +
∞∑

j=2

2Ãj−1(x) − 2xÃj−2(x)
yj

= 2
y +

∞∑

j=2

Cj(x)
yj

,
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where Cj(x) = 2xj−1+ lower order terms. Now integrating yields

ln(1 + (x − y)2) = 2 ln |y| −
∞∑

j=1

Cj+1(x)
jyj

and since

(x − y)−1 = −y−1
∞∑

j=0

xj
yj
,

the Cauchy product can be employed here. This produces

'(x − y) = ln |y|
∞∑

j=1

−2xj−1
yj

+
∞∑

j,k=1

xj−1Ck+1
kyj+k

= ln |y|
∞∑

j=1

−2xj−1
yj

+
∞∑

k=2

Bk(x)
yk

,

where

Bk(x) =
⎛
⎜
⎝

k−1∑

j=1

2
n
⎞
⎟
⎠
xk−1 + lower order terms,

since it is clear above that Aj(x) = −2xj−1, the proof is complete. �

In this example, ' is not admissible with a single function F(y). Attempting
to isolate AN as in the proof of Theorem 3.1 leads us to a more general (2N −
1) × (2N − 1) alternant system

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y−21 y−22 ⋯ y−22N−1
⋮ ⋮ ⋮
y−N1 y−N2 ⋯ y−N2N−1

y−11 ln(y1) y−12 ln(y2) ⋯ y−12N−1 ln(y2N−1)
⋮ ⋮ ⋮

y−1N ln(y1) y−N2 ln(y2) ⋯ y−N2N−1 ln(y2N−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

ã1
ã2
⋮

ã2N−1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
⋮
0
1

⎤
⎥
⎥
⎥
⎦

, (10)

where N ≥ 2. We will be able to recover AN provided we can show two things.
The �rst is that this system always has a solution for a suitably chosen doubling
sequenceY = (yj). The second piece of information we need is the growth rate
of the ãi. The solution of this system is related to the rational interpolation
problem for logarithmic data samples. Solvability of the rational interpolation
problem is characterized by the invertibility of a certain Löwner matrix [1]. We
�nd it more convenient, however, to solve these problems by appealing to prop-
erties of the logarithm and its derivatives. In order to do this, we will need the
following general framework associated to alternant matrices.

Suppose we have a set of continuous functions G ∶= {g1, g2,… , gN}, where
for 1 ≤ j ≤ N, gj ∶ I → ℝ for some interval I ⊂ ℝ. De�neG ∶= span{g1,… , gN}
and for f ∈ G, let f♯ denote the number of roots that f has on I, and G♯ =
supf∈G⧵{0} f♯. Our �rst result is straightforward.
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Lemma 5.2. LetN ∈ ℕ and suppose that G satis�es G♯ < N and X = (xi ∶ 1 ≤
i ≤ N) ⊂ I consists ofN distinct points. Then the alternant matrix

A(G,X) ∶=
[
gj(xi)

]
1≤i,j≤N

is invertible.

Proof. Consider the productA(G,X)a in the variable a. This results in the vec-
tor v ∈ ℝN , whose i-th component is given by f(xi), where f ∈ G. Now sup-
pose thatA(G,X) is non-invertible. Then the homogeneous systemA(G,X)a =
0 has a non trivial solution a0, which leads to f0 ∈ G that has N roots on I.
This contradicts the fact that G♯ < N, which shows that A(G,X) must be in-
vertible. �

The following may help us calculate G♯.

Lemma 5.3. Suppose that f ∈ C1(I) and that f′ hasN distinct roots in I. Then
f has at mostN + 1 roots in I.

Proof. We partition I intoN+1 subintervals with the roots of f′ as endpoints.
Since f ∈ C1(I), f is monotone on each subinterval, so that there are at most
N + 1 roots of f. �

In light of (10), we wish to show that

G ∶= {x−2,… , x−N , x−1 ln(x),… , x−N ln(x)}
satis�es G♯ < 2N−1. In fact, we will show that the setℋ = {p(x)+q(x) ln(x) ∶
p ∈ ΠN−2, q ∈ ΠN−1} satis�esℋ♯ < 2N − 1, which implies the bound for G♯.
Wemake use of the following derivative formulas, whichmay be easily veri�ed
via induction:

Dk (xk ln(x)
)
= k! ln(x) + Ck; k ∈ ℕ (11)

for some positive constant Ck, and

Dk+1 (xk ln(x)
)
= k!x−1; k ∈ ℕ0. (12)

Lemma 5.4. LetN ≥ 2 and suppose that p ∈ ΠN−1, with

p(x) =
N−1∑

k=0
akxk.

Then

DN (p(x) ln(x)) = x−N
N−1∑

j=0
(−1)N−1+jcjajxj,

for some positive constants cj .

Proof. We induct on N ≥ 2. Two applications of the product rule yields the
base case:

((ax + b) ln(x))′′ = ax − b
x2 .
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Now we assume that the conclusion holds for all k with 2 ≤ k ≤ N. Consider
p ∈ ΠN . We have

p(x) ln(x) =
(
aNxN + q(x)

)
ln(x),

so that

DN+1 (p(x) ln(x)) = aNDN (
xN ln(x)

)
+ DN+1 (q(x) ln(x))

= aNDN+1 (xN ln(x)
)
+ D

⎛
⎜
⎝
x−N

N−1∑

j=0
(−1)N−1+jcjajxj

⎞
⎟
⎠

= N!aNx−1 +
N−1∑

j=0
(−1)N−1+jcj(j −N)ajxj−N−1

= N!aNx−1 +
N−1∑

j=0
(−1)N+jcj(N − j)ajxj−N−1

= x−N−1
⎛
⎜
⎝
N!aNxN +

N−1∑

j=0
(−1)N+jcj(N − j)ajxj−N−1

⎞
⎟
⎠

= x−N−1
N∑

j=0
(−1)N+j c̃jajxj.

We have used (12) in the third line. The result follows from the fact that cj > 0
and N − j > 0, so that c̃j > 0. �

Suppose that f(x) = p(x) + ∑N−1
j=0 ajx

j lnx ∈ ℋ. In order to count the
roots of f, we �rst count the roots of DNf, then repeatedly use Lemma 5.3. A
preliminary bound may be found by using (12) and Descartes’s rule of signs,
which shows that DNf has at mostN−1 roots onlywhen all of the coe�cients
share the same sign. Assuming this is true, Lemma 5.4 allows us to conclude
that f has at most 2N − 1 roots. In order to use Lemma 5.2, we must improve
this bound.

Lemma 5.4 suggests that overall number of roots decreases when we intro-
duce more sign changes in the coe�cients, hence to improve our preliminary
bound, we need only consider when there are 0 or 1 sign changes among the
coe�cients (aj). Assuming all (aj) are positive, we have, using (11),
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DN−1f(x) =DN−1
⎛
⎜
⎝
lnx

N−1∑

j=0
ajxj

⎞
⎟
⎠

=(N − 1)!aN−1 lnx + CN−1 + x−N+1
N−2∑

j=0
(−1)N+jcjajxj

=x−N+1
⎛
⎜
⎝
xN−1((N − 1)!aN−1 lnx + CN−1) +

N−2∑

j=0
(−1)N+jcjajxj

⎞
⎟
⎠

= ∶ x−N+1g(x).

Again from (11), we can see thatDN−1g(x) > 0 for x ≥ 1, soDN−1f has at most
N − 1 roots, hence f has at most 2N − 2 roots in this case. The same would be
true if we took all of the coe�cients negative.

Next, suppose that there is a sign change in the coe�cients (aj), then using
Lemma 5.4 and Descartes’s rule of signs again provide at most N − 2 roots for
DNf, so Lemma 5.3 shows that f has at most 2N−2 roots. Thusℋ♯ ≤ 2N−2.
Hence Lemma 5.2 shows that forN ≥ 2, we can solve the system (10) to isolate
AN(x).

Nowwe establish a bound for the growth rate of the solution components ãi.
Using Cramer’s rule, we �nd an upper bound for the cofactor Ai in the numer-
ator and a lower bound for the determinant ofA. For a doubling sequence (yj),
we have for positive constants �, �, and 

�y−(N
2+N−1)

i ≤ | detA| ≤ �y−(N
2+N−1)

i (ln yi)
N

and
| detAi| ≤ y−(N

2−1)
i (ln yi)

N−1 ,
so that

|ãi| ≤ CyNi (ln yi)
N−1 . (13)

If there is additional structure, for instance X = ℤ, then we can get a sharper
bound, but for our purposes, this is not necessary. Since (Ak) form a basis for
Π, we have all of the necessary tools to prove a version of Theorem 3.1, which
we write as a proposition.

Proposition 5.5. Suppose thatX is a scattered sequence and that'(x) = x−1 ln(1+
x2). For any f ∈ C[a, b] and " > 0, there exists s ∈ S(',X) such that

‖f − s‖L∞ < ".

Proof. The proof is nearly identical to the one given for Theorem 3.1 provided
thatN ≥ 2. We note that since we �rst choose a polynomial p using the Stone-
Weierstrass theorem, we can �x N = deg(p). Now just as before, we recover
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(Aj ∶ 1 ≤ j ≤ N). We may recover A1 with the 1 × 1 matrix, which pro-
duces an error term that is O(y−11 ). For j ≥ 2, the corresponding error term is
O(y−11 ln(y1)j) rather than O(y−11 ). This means that there exists (aj) such that

N∑

j=1
aj'(x − yj) − p(x) = O

(
y−11

)
+ O

⎛
⎜
⎝

N∑

j=2

ln(y1)j
y1

⎞
⎟
⎠

= O (
ln(y1)N
y1

) .

Hence we can now choose y1 so large that the error term is as small as we like.
�
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