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Multipliers of the Hilbert spaces
of Dirichlet series

Chaman Kumar Sahu

Abstract. For a sequence w = {wj}∞j=2 of positive real numbers, consider
the positive semi-de�nite kernel �w(s, u) =

∑∞
j=2 wjj−s−u de�ned on some

right-half plane ℍ� for a real number �. Let Hw denote the reproducing ker-
nel Hilbert space associated with �w . Let

�w = inf {ℜ(s) ∶
∑

j⩾2
gpf(j)⩽pn

wjj−s <∞ for all n ∈ ℤ+},

where {pj}j⩾1 is an increasing enumeration of prime numbers and gpf(n) de-
notes the greatest prime factor of an integer n ⩾ 2. Ifw satis�es

∑

j⩾2
j|n

j−�wwj�
(n
j
)
⩾ 0, n ⩾ 2,

where � is theMöbius function, then themultiplier algebraℳ(Hw) ofHw is
isometrically isomorphic to the space of all bounded and holomorphic func-
tions on ℍ �w

2
that are representable by a convergent Dirichlet series in some

right half plane. As a consequence, wedescribe themultiplier algebraℳ(Hw)
whenw is an additive function satisfying �w ⩽ 0 and

wpj−1

wpj
⩽ p−�w for all integers j ⩾ 2 and all prime numbers p.

Moreover, we recover a result of Stetler that describes the multipliers of Hw
whenw is multiplicative. The proof of the main result is a re�nement of the
techniques of Stetler.
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1. Preliminaries
Let ℤ+ and ℕ denote the sets of positive and non-negative integers, respec-

tively. For k ∈ ℕ, let ℕk = {m ∈ ℕ ∶ m ⩽ k}. Denote by ℝ and ℂ, the sets of
real and complex numbers, respectively. For s ∈ ℂ, let ℜ(s), |s|, s and arg(s)
denote the real part, the modulus, the complex conjugate and the argument of
s, respectively. The open unit disc {z ∈ ℂ ∶ |z| < 1} is denoted byD. For � ∈ ℝ,
let ℍ� denote the right half-plane {s ∈ ℂ ∶ ℜ(s) > �}.

We invoke here some known arithmetic functions onℤ+ used in the sequel.
The prime omega function ! that counts the total number of all distinct prime
factors of a positive integer. The divisor function d counts all divisors of a posi-
tive integer. TheMöbius function � ∶ ℤ+ → ℂ is given by

�(n) =
⎧

⎨
⎩

1 if n = 1,
(−1)j if n is a product of j distinct primes,
0 otherwise.

(1)

A Dirichlet series is a series of the form

f(s) =
∞∑

j=1
ajj−s,

where aj ∈ ℂ. If aj = 1 for all j ⩾ 1, then we have the Riemann zeta function,
denoted by �. If f is convergent at s = s0, then it converges uniformly through-
out the angular region {s ∈ ℂ ∶ | arg(s − s0)| <

�
2
− �} for every positive real

number � < �
2
. Consequently, f de�nes a holomorphic function on ℍℜ(s0) (re-

fer to [13, Chapter IX] for the basic theory of Dirichlet series). Let D denotes
the set of all functions which are representable by a convergent Dirichlet series
in some right half plane.

The following proposition describes the product of two Dirichlet series (see
[10, Theorem 4.3.1 and discussion prior to Theorem 4.3.4]).

Proposition 1.1. Let f(s) = ∑∞
j=1 ajj

−s and g(s) = ∑∞
j=1 bjj

−s be two conver-
gent Dirichlet series on ℍ�. If g converges absolutely on ℍ�, then

f(s)g(s) =
∞∑

j=1

( ∑

m|j
amb j

m

)
j−s,

which converges on ℍ�.

For an integer n ⩾ 2, let gpf(n) denote the greatest prime factor of n. For a
sequence x = {xj}j⩾2 of non-negative real numbers, let

�x ∶= inf
{
ℜ(s) ∶

∞∑

j=2
xjj−s <∞

}
,
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�x ∶= inf {ℜ(s) ∶
∑

j⩾2
gpf(j)⩽pn

xjj−s <∞ for all n ∈ ℤ+}, (2)

where {pj}∞j=1 is the increasing enumeration of prime numbers. Note that �x ⩽
�x.

1.1. Multipliers of a reproducing kernel Hilbert space. Let X be a non-
empty open subset of ℂ and let H∞(X) denote the Banach space of bounded
holomorphic functions on X endowed with supremum norm. Let ℋ be a re-
producing kernel Hilbert space of complex-valued holomorphic functions on
X. A function ' ∶ X → ℂ is called multiplier of ℋ if ' ⋅ f ∈ ℋ for every
f ∈ ℋ. Clearly,ℳ(ℋ) is an algebra. Denote byℳ(ℋ), the set of all multipli-
ers ofℋ.Note that if the constant function equal to 1 belongs toℋ, then by [9,
Corollary 5.22],ℳ(ℋ) is contractively contained inH∞(X).

2. The multiplier algerba of Hw

For a sequencew = {wj}∞j=2 of positive real numbers, consider the weighted
Hilbert space of the formal Dirichlet series

Hw ∶= {f(s) =
∞∑

j=2
f̂(j)j−s ∶ ‖f‖2w ∶=

∞∑

j=2

|f̂(j)|2
wj

<∞}

endowed with the norm ‖ ⋅ ‖w . If �w < +∞, then Hw is a reproducing kernel
Hilbert space associated with �w given by

�w(s, u) =
∞∑

j=2
wjj−s−u, s, u ∈ ℍ �w

2
. (3)

For every s ∈ ℍ �w
2
, �w(⋅, s) ∈ Hw and the following holds:

⟨f, �w(⋅, s)⟩ = f(s), f ∈ Hw . (4)

Note that �w converges absolutely on ℍ �w
2
× ℍ �w

2
.

The following is immediate from [12, Theorem 3.1] and the discussion prior
to [12, Theorem 2.7].

Theorem 2.1. ℳ(Hw) ⊆ H∞(ℍ �w
2
) ∩D and

‖'‖∞,ℍ �w
2
⩽ ‖M',w‖Hw , ' ∈ℳ(Hw).

This raises the following question.

Question 2.2. For which sequencesw, the multiplier algebraℳ(Hw) of Hw is
isometrically isomorphic toH∞(ℍ �w

2
) ∩D?

In the following cases, Question 2.2 is answered a�rmatively.
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(i) If 1 denotes the constant sequence with value 1, thenℳ(H1) is isomet-
rically isomorphic toH∞(ℍ0) ∩D (see [5, Theorem 3.1]).

(ii) If, for some positive Radon measure � on [0,∞) with 0 ∈ supp(�) and
n0 ∈ ℤ+,

1
wj

= ∫
∞

0
j−2�d�(�), j ⩾ n0, (5)

thenℳ(Hw� ) is isometrically isomorphic toH∞(ℍ0) ∩D (see [6, The-
orem 1.11]).

(iii) Ifw is either { 1
d�(n)

}∞n=1,where � > 0 and d�(n) denotes n-th coe�cient

of the Dirichlet series ��, or {(d(n))�}∞n=1 for � ∈ ℝ, then ℳ(Hw) is
isometrically isomorphic toH∞(ℍ0) ∩D (see [8, Section 8]).

(iv) If w = {wn}∞n=1 is a multiplicative function (i.e., wmn = wmwn for all
integersm, n ⩾ 1 such that gcd(m, n) = 1) satisfying
wpj−1

wpj
⩽ p−�w for all integers j ⩾ 1 and prime numbers p, (6)

then ℳ(Hw) is isometrically isomorphic to H∞(ℍ �w
2
) ∩ D (see [12,

Corollary 4.2]).
It follows from the cases above that the multipliers of Hw may be extended

beyond the common domain of Hw . However, this is not always true (see [6,
Theorem 3.6]).

The following is themain theorem of this paper, which generalizes the afore-
mentioned results (i) and (iv).

Theorem 2.3. Suppose that
∑

j⩾2
j|n

j−�wwj�
(n
j
)
⩾ 0, n ⩾ 2, (7)

where � and �w are given by (1) and (2), respectively. Thenℳ(Hw) is isometri-
cally isomorphic toH∞(ℍ �w

2
) ∩D.

Remark 2.4. Here we make some observations:
(a) If �w = −∞, then there are no non-constantmultipliers ofHw . Indeed,

if ' ∈ ℳ(Hw), then by Theorem 2.1, ' is entire and bounded. Hence,
by the Liouville’s theorem (see [11, Corollary 4.5]), ' is constant.

(b) Ifw = {wj}∞j=2 in the above theorem is replaced by {wj}∞j=k ⊆ (0,∞) for
an integer k ∈ ℤ+ and

∑

j⩾k
j|n

j−�wwj�
(n
j
)
⩾ 0, n ⩾ k, (8)

then the conclusion of Theorem 2.3 will be same.
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The following consequence of Theorem 2.3 deals with additive functions.

Corollary 2.5. Letw be an additive function (i.e.,wmn = wm+wn for all integers
m, n ⩾ 2 such that gcd(m, n) = 1) satisfying

wpj−1

wpj
⩽ p−�w for all integers j ⩾ 2 and all prime numbers p. (9)

If �w ⩽ 0, thenℳ(Hw) is isometrically isomorphic toH∞(ℍ �w
2
) ∩D.

The proofs of Theorem2.3 andCorollary 2.5will be presented in Section 3. In
Section 4, we discuss some consequences of Theorem 2.3 (see Theorem 4.1 and
Proposition 4.2). In particular, we recover [12, Corollary 4.2]. We also present
some examples of the Hilbert spaces Hw illustrating the results of this paper.

3. Proof of Theorem 2.3
In view of Remark 2.4 (a), we assume that �w ∈ ℝ. To prove Theorem 2.3,

we require several lemmas.
The �rst one relates the condition (7) with the positive semi-de�niteness of

a kernel.

Lemma 3.1. Let w̃ = {n−�wwn}∞n=2 and � =
1
2
max{�w−�w , 1}.Then the kernel

� ∶ ℍ� × ℍ� → ℂ de�ned by

�(s, u) = �w̃(s, u)
�1(s, u)

, s, u ∈ ℍ� (10)

is positive semi-de�nite if and only if (7) holds.

Proof. By [2, Example 11.4.1],

1
�(s)

=
∞∑

j=1
�(j)j−s, s ∈ ℍ1.

This, combined with Proposition 1.1 and (3), yields

�(s, u) =
( ∞∑

j=2
j−�wwjj−s−u

)( ∞∑

j=1
�(j)j−s−u

)

=
∞∑

n=2

( ∑

j⩾2
j|n

j−�wwj�
(n
j
))
n−s−u, s, u ∈ ℍ� .

The desired equivalence is now immediate from [7, Lemma 20]. �

The following lemma is needed in the proof of Theorem 2.3.

Lemma 3.2. For t ∈ ℝ, let w̃ = {n−twn}∞n=2. If ' ∈ℳ(Hw), then '̃ ∶ ℍ �w−t
2

→
ℂ de�ned by

'̃(s) = '
(
s + t

2
)
, s ∈ ℍ �w−t

2
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is a multiplier of Hw̃ (see (3)).

Proof. Let j ∶ Hw → Hw̃ be a map de�ned by

j(f)(s) = f
(
s + t

2
)
, s ∈ ℍ �w−t

2
.

Since ' ∈ℳ(Hw), for any f ∈ Hw ,

'̃(s)j(f)(s) = '
(
s + t

2
)
f
(
s + t

2
)

= (' ⋅ f)
(
s + t

2
)
= j(' ⋅ f)(s), s ∈ ℍ �w−t

2
.

As j is surjective, '̃ ⋅ g ∈ Hw̃ for every g ∈ Hw̃ . This concludes the proof. �

The following fact shows that the inclusion mapℳ(Hw) ,→ H∞(ℍ �w
2
) ∩D

is surjective (cf. [12, Theorem 4.5]).

Lemma 3.3. If (7) holds, thenH∞(ℍ �w
2
) ∩D =ℳ(Hw) (as a set).

Proof. Assume that (7) holds. In view of Theorem 2.1, it su�ces to check that
H∞(ℍ �w

2
)∩D ⊆ℳ(Hw). To see that, let ' ∈ H∞(ℍ �w

2
)∩D. Then '̃ ∶ ℍ0 → ℂ

de�ned by '̃(s) = '(s + �w
2
), s ∈ ℍ0, belongs to H∞(ℍ0) ∩ D. Hence, by [5,

Theorem 3.1], '̃ is a multiplier of H1. Therefore, by [9, Theorem 5.21], there
exists c ⩾ 0 such that

(c2 − '̃(s)'̃(u))�1(s, u) ⩾ 0.
Let w̃ = {n−�wwn}∞n=2. Then, by Lemma 3.1 and [9, Theorem 4.8],

(c2 − '̃(s)'̃(u))�w̃(s, u) ⩾ 0.
Thus, by [9, Theorem 5.21], '̃ ∈ ℳ(Hw̃). An application of Lemma 3.2 now
completes the proof. �

Proof of Theorem 2.3. By Lemma 3.3,

H∞(ℍ �w
2
) ∩D =ℳ(Hw) (as a set). (11)

Hence, in view of Theorem 2.1, it is su�cient to check that

‖M',w‖Hw ⩽ ‖'‖∞,ℍ �w
2
, ' ∈ H∞(ℍ �w

2
) ∩D.

To see the above estimate, let ' ∈ H∞(ℍ �w
2
) ∩ D. Note that '̃ ∶ ℍ0 → ℂ,

de�ned by '̃(s) = '(s + �w
2
), s ∈ ℍ0, belongs toH∞(ℍ0) ∩D. Therefore, by an

application of [5, Theorem 3.1],

the multiplication operatorM'̃,1 is bounded on H1.
In particular, theHilbert space adjointM∗

'̃,1 ofM'̃,1 is well-de�ned as a bounded
linear operator.
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Note that Lemma 3.1 combined with (7) yields that the kernel � de�ned by
(10), is positive semi-de�nite onℍ�×ℍ�,where � =

1
2
max{�w−�w , 1}.Hence,

by [9, Theorem 2.14], there exists a reproducing kernel Hilbert spaceℋ(�) as-
sociated with �. Thus, by (4), for any s, u ∈ ℍ�,

⟨�w̃(⋅, u), �w̃(⋅, s)⟩Hw̃ = ⟨�1(⋅, u)⊗ �(⋅, u), �1(⋅, s)⊗ �(⋅, s)⟩H1⊗ℋ(�).
An application of the Lurking isometry Lemma (see [1, Lemma 2.18]) yields a
linear isometry V ∶ Hw̃ → H1 ⊗ℋ(�) such that

V(�w̃(⋅, u)) = �1(⋅, u)⊗ �(⋅, u), u ∈ ℍ� . (12)

Further, since ' ∈ ℳ(Hw) (see (11)), by Lemma 3.2, '̃ ∈ ℳ(Hw̃). This
implies that the multiplication operator M'̃,w̃ is bounded on Hw̃ , and hence,
by [9, Corollary 5.22],

V∗(M∗
'̃,1 ⊗ I)V(�w̃(⋅, u))

(12)= V∗(M∗
'̃,1 ⊗ I)(�1(⋅, u)⊗ �(⋅, u))

= '̃(u)V∗(�1(⋅, u)⊗ �(⋅, u))
= M∗

'̃,w̃(�w̃(⋅, u)), u ∈ ℍ� .
Since V∗(M∗

'̃,1 ⊗ I)V andM∗
'̃,w̃ are bounded linear operators on Hw̃ ,

V∗(M∗
'̃,1 ⊗ I)V = M∗

'̃,w̃ .

Because V is an isometry, we obtain

‖M'̃,w̃‖
Hw̃

⩽ ‖V∗‖‖M∗
'̃,1‖‖V‖ ⩽ ‖'̃‖∞,ℍ0 = ‖'‖∞,ℍ �w

2
,

which completes the proof. �

Remark 3.4. Let � be given by

�(z, w) =
∞∑

j=0
ajzjw

j.

Suppose that � converges onD×D. If {aj}∞j=0 is an increasing sequence of non-
negative real numbers, then the multiplier algebra ℳ(H (�)) of H (�) is iso-
metrically isomorphic to H∞(D). This can be shown using the arguments in
the proof of Theorem 2.3 with the essential change that �1 is replaced by the
Szegö kernel S ∶ D × D→ ℂ de�ned by

S(z, w) = 1
1 − zw

, z, w ∈ D.

Proof of Corollary 2.5. Fix an integer n ⩾ 2, let
!(n)∏
m=1

prmim , rm ∈ ℤ+, be the prime

factorization of n. If j ∈ ℤ+ such that j|n, then

j =
!(n)∏

m=1
psm,jim

, (sm,j)
!(n)
m=1 ∈

!(n)∏

m=1
ℕrm . (13)
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Hence, there exists a bijective map  ∶ {j ∈ ℤ+ ∶ j|n, j ⩾ 2} →
!(n)∏
m=1

ℕrm − {0}

de�ned by  (j) = (sm,j)
!(n)
m=1. Therefore, by (13),

∑

j⩾2
j|n

j−�wwj�
(n
j
)

=
∑

(sm)
!(n)
m=1∈ Im( )

( !(n)∏

m=1
p−�wsmim

)(
w∏!(n)

m=1 p
sm
im

)
�
(!(n)∏

m=1
prm−smim

)
. (14)

Let w̃ be the extension ofw to ℤ+ by letting w1 = 0. Sincew is additive, w̃ is
additive. This together with (14) and the multiplicativity of � gives

∑

j⩾2
j|n

j−�wwj�
(n
j
)
=

∑

(sm)
!(n)
m=1∈ Im( )

!(n)∑

t=1
(wpstit

( !(n)∏

m=1
p−�wsmim

)
�
(!(n)∏

m=1
prm−smim

)
)

=
!(n)∑

t=1

∑

(sm)
!(n)
m=1∈ Im( )

(
wpstit

(!(n)∏

m=1
p−�wsmim

)( !(n)∏

m=1
�(prm−smim

)
))

(1)=
!(n)∑

t=1

∑

(sm)
!(n)
m=1∈Un

(
wpstit

!(n)∏

m=1

(
p−�wsmim

�(prm−smim
)
))
,

where Un =
!(n)∏
m=1

{rm − 1, rm}. For any positive integer t ⩽ !(n), let

Tt =
∑

(sm)
!(n)
m=1∈Un

(
wpstit

!(n)∏

m=1

(
p−�wsmim

�(prm−smim
)
))
.

Then

Tt =
r1∑

s1= r1−1

r2∑

s2= r2−1
…

r!(n)∑

s!(n)= r!(n)−1

(
wpstit

!(n)∏

m=1

(
p−�wsmim

�(prm−smim
)
))

=
( rt∑

st=rt−1
p−�w stit

wpstit
�(prt−stit

)
) !(n)∏

m=1
m≠t

( rm∑

sm=rm−1
p−�wsmim

�(prm−smim
)
)

=
(
p−�w (rt−1)it

wprt−1it
�(pit ) + p−�wrtit

wprtit
�(1)

)

!(n)∏

m=1
m≠t

(
p−�w (rm−1)im

�(pim) + p−�wrmim
�(1)

)
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(1)= p−�w(rt−1)it
(p−�wit

wprtit
− wprt−1it

)
!(n)∏

m=1
m≠t

(
p−�w(rm−1)im

(p−�wim
− 1)

)
.

This combined with the assumptions �w ⩽ 0 and (9) (which imply that p−�wim
⩾

1 and p−�wit
wprtit

⩾ wprt−1it
) shows that Tt ⩾ 0 for every positive integer t ⩽

!(n). Since n is arbitrary, (7) is valid for all integers n ⩾ 2. An application of
Theorem 2.3 now completes the proof. �

We provide an example illustrating Corollary 2.5.

Example 3.5. Letw = !. Note that ! is additive and satis�es

!(pj) = 1 for every prime p and integer j ⩾ 1. (15)

By [13, Chap. I, Equations (1.6.1) and (1.6.2)],
∞∑

j=2
!(j)j−s = �(s)

∞∑

j=1
p−sj , s ∈ ℍ1. (16)

It follows from (15), (16) and [2, Theorem 1.13] that �! = 1. To compute �!,
consider any � > 0 and an integer n ⩾ 1,

∑

gpf(j)⩽pn
!(j)j−� =

n∑

j=1

n∑

i1,i2,…,ij=1
is≠it , s≠t

(
∞∑

mi1 ,…,mij=1
j(pmi1

i1
pmi2
i2

…p
mij
ij
)−�)

=
n∑

j=1
(

n∑

i1,i2,…,ij=1
is≠it , s≠t

(
j

j∏

r=1

∞∑

mir=1
p−�mir
ir

)
) <∞. (17)

In view of (15),
∑

gpf(j)⩽pn
!(j) diverges for all n ⩾ 1. This combined with (17)

yields �! = 0, and hence, (9) holds. Therefore, by Corollary 2.5, ℳ(H!) is
isometrically isomorphic toH∞(ℍ0) ∩D.Moreover,

!(pq) = 2
(15)
≠ !(p)!(q) for distinct primes p and q.

So, ! is not multiplicative. Also, because ! is not monotone, (5) does not hold.

4. Applications
In this section, we discuss some applications of Theorem 2.3. The �rst one

recovers [12, Corollary 4.2].

Theorem4.1. Letw = {wj}∞j=1 be anmultiplicative function satisfying (6). Then
ℳ(Hw) is isometrically isomorphic toH∞(ℍ �w

2
) ∩D.
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Proof. Fix an integer n ⩾ 2, let∏!(n)
m=1 p

rm
im
, rm ∈ ℤ+, be the prime factorization

of n. Since any divisor of n is given by
∏!(n)

m=1 p
sm
im
, sm ∈ ℕrm ,

∑

j⩾1
j|n

j−�wwj�
(n
j
)

=
!(n)∏

m=1

rm∑

sm=0
p−�wsmim

wpsmim
�(prm−smim

)

(1)=
!(n)∏

m=1
(p−�w(rm−1)im

)(p−�wim
wprmim

− wprm−1
im

)
(6)
⩾ 0.

Thus, (8) is valid for all integers n ⩾ 2 and is trivially true for n = 1. Hence by
Theorem 2.3 and Remark 2.4(b), the conclusion now follows. �

As a consequence of the previous theorem, we recover [3, Theorem 3]. In-
deed, for any � > 0, consider w� = {(d(j))�}∞j=1. Since d(n) = o(n�) for every
� > 0 (see [2, Equation (31)]), �w� = 1 and �w� = 0. For any prime p and inte-
ger j ∈ ℤ+,d(pj) = j+1. Thus, (9) holds, and hence by Theorem 4.1,ℳ(Hw� )
is isometrically isomorphic toH∞(ℍ0) ∩D.

The following proposition yields a family of Hilbert spaces Hw illustrating
the main result.

Proposition 4.2. Letw = {wj}∞j=1 be a multiplicative function satisfying

(i) wj = O(j�) for every � > 0,
(ii) for each prime p, {wpj }∞j=0 is increasing.

If w̃ = {1 + wj}∞j=1, thenℳ(Hw̃) is isometrically isomorphic toH∞(ℍ0) ∩D.

Proof. For a real number r > 1, let � be a positive number such that r > �+1.
Then by (i),

∞∑

j=2
(1 + wj)j−r ⩽

∞∑

j=2
j−r + C�

∞∑

j=2
j−(r−�) <∞, (18)

which yields�w̃ ⩽ 1.Moreover, since
∑∞

j=2 j
−1 diverges, �w̃ = 1.For any� > 0,

let � be such that 0 < � < �. Then, [12, Lemma 3.2] combined with (i) yields
∑

j⩾2
gpf(j)⩽pn

wjj−� ⩽
∑

j⩾2
gpf(j)⩽pn

j−(�−�) <∞, n ⩾ 1. (19)

This implies �w ≤ 0 and �w̃ ≤ 0. Moreover, since
∑∞

j=0w2j diverges, �w =
�w̃ = 0. This together with (19) yields �w = 0. Hence, by (ii), (9) holds. Thus,
by using the steps in the proof of Theorem 4.1, we obtain

∑

j⩾1
j|n

wj�
(n
j
)
⩾ 0, n ⩾ 1.
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Combining this with [2, Theorem 2.1] gives
∑

j⩾1
j|n

(1 + wj)�
(n
j
)
⩾ 0, n ⩾ 1.

The desired conclusion is now immediate from Theorem 2.3 together with Re-
mark 2.4(b). �

Note that w̃ de�ned above is nevermultiplicative. Moreover, Proposition 4.2
applies tow = {d(j)}∞j=1.We conclude this paper by revealing that Theorem 2.3
also recovers [6, Theorem 1.11] for some particular sequences.

Example 4.3. Letw be given by (5). Then by [6, Equation (1.4)], �w ⩽ 1. Since
w is an increasing sequence, �w = 1. So, �w converges absolutely on ℍ1∕2 ×
ℍ1∕2. For an integer � > 0, consider the sequence w� = {(log(j))�}∞j=2. By [6,
Section 1],

(log(j))−� = ∫
[0,∞)

j−2� 2�
Γ(�)

�−1+�d�, j ≥ 2,

where Γ denotes the Gamma function, and hence �w� = 1.Also, combining [6,
Equation (1.4)] with [12, Lemma 2] yields �w� = 0. In addition, by [4, Equa-
tion (3.16)], we obtain the non-negativity of theGeneralized vonMangoldt func-
tion:

∑

j⩾2
j|n

(log(j))��
(n
j
)
⩾ 0. (20)

An application of Theorem 2.3 now shows that ℳ(Hw� ) is isometrically iso-
morphic toH∞(ℍ0) ∩D.

The previous example yields that for any integer � > 0,w� satis�es (20). In
general, we don’t know whetherw satisfying (5) guarantees that

∑

j⩾n0
j|n

wj�
(n
j
)
⩾ 0, n ⩾ n0.
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