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Hilbert modules, rigged modules, and
stable isomorphism

G. K. Eleftherakis and E. Papapetros

Abstract. Rigged modules over an operator algebra are a generalization of
Hilbert modules over a C∗-algebra. We characterize the rigged modules over
an operator algebra A which are orthogonally complemented in C∞(A), the
space of in�nite columns with entries in A.We show that every such rigged
module ‘restricts’ to a bimodule of Morita equivalence between appropriate
stably isomorphic operator algebras.
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1. Introduction
Let X, Y be operator spaces. We call them stably isomorphic if the spatial

tensor productsX⊗K, Y⊗K are completely isometrically isomorphic, where
K is the algebra of compact operators acting on an in�nite dimensional Hilbert
space. We also denote by C∞(X) the operator space of in�nite columns with
entries in X. In the case where X is a right rigged module over an operator
algebra, A, so is C∞(X).

Thenotion of aHilbertC∗-modulewas introduced and developed in the early
1970s by Paschke and Rie�el, see [14, 18]. A Hilbert module over a C∗-algebra
A is a rightA-module Y together with a map ⟨⋅, ⋅⟩ ∶ Y ×Y → Awhich is linear
in the second variable, and which also satis�es the following conditions:
(1) ⟨y, y⟩ ≥ 0 for all y ∈ Y,

(2) ⟨y, y⟩ = 0⇔ y = 0,

(3) ⟨y, za⟩ = ⟨y, z⟩ a, for all y, z ∈ Y, a ∈ A,
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(4) ⟨y, z⟩
∗
= ⟨z, y⟩ for all y, z ∈ Y,

(5) Y is complete in the norm ‖y‖ = ‖ ⟨y, y⟩ ‖1∕2.

Observe that the space IA(Y), which is the closure of the linear span of the
set {⟨y, z⟩ ∈ A ∣ y, z ∈ Y}, is an ideal of A.

Consider the C∗-algebra KA(Y) of the ‘compact’ adjointable operators from
Y to Y. It is known that Y is a bimodule of Morita equivalence between IA(Y)
and KA(Y). But these C∗-algebras are not always stably isomorphic.

Let Y be a right HilbertA-module. In case there exists a sequence (yk)k∈ℕ ⊆
Y such that

y =

∞∑

k=1

yk ⟨yk, y⟩ , ∀ y ∈ Y

where the series converges in the norm of Y,we say that (yk)k∈ℕ is a right qua-
sibasis for Y. It follows by the Brown–Kasparov stabilization theorem, see [3,
Corollary 8.20], that the spaces IA(Y), KA(Y), Y are all stably isomorphic.

Let Y be a right Hilbert A-module. We call it countably generated if there
exists a sequence (yk)k∈ℕ ⊆ Y such that

Y = span({yk a ∣ k ∈ ℕ, a ∈ A}).

IfY has a right quasibasis, thenY is countably generated and conversely. Every
countably generated Hilbert A-module is isomorphic as a Hilbert A-module
with an orthogonally complemented bimodule of C∞(A).

Blecher in [1] generalized the notion of Hilbert modules to the setting of
non-selfadjoint operator algebras. He called these modules rigged modules,
see the de�nition below. Hilbert modules over a C∗-algebra are riggedmodules
in terms of this de�nition. Using the notion of a ternary ring of operators, we
introduce a new category ofA-rigged modules, whereA is an operator algebra,
the �∆-A-rigged modules. We prove that anA-rigged module is a �∆-A-rigged
module if and only if it is isomorphicwith an orthogonally complementedmod-
ule inC∞(A).We also introduce a subcategory of the �∆-A-riggedmodules, the
doubly �∆-A-rigged modules. In the case of C∗-algebras, these two categories
coincide. Every doubly �∆-A-riggedmodule implements a stable isomorphism
between the corresponding operator algebras. Conversely, if A and ℬ are sta-
bly isomorphic operator algebras, there exists a doubly �∆-A-rigged module
Y which is a bimodule of strongMorita equivalence (BMP-Morita equivalence)
forA andℬ in the sense of Blecher, Muhly and Paulsen, [4]. Every �∆-A-rigged
module has a ‘restriction’ which is a doubly �∆-A-rigged module. Thus, every
orthogonally complemented rigged module in C∞(A), has a ‘restriction’ mak-
ing it into a bimodule of BMP-Morita equivalence over some operator algebras
C, D. Furthermore, C andD are stably isomorphic.

In Section 4, we will develop a theory of Morita equivalence for rigged mod-
ules. If A, ℬ are operator algebras, E is a right ℬ-rigged module, and F is a
right A-rigged module, we call E and F �-Morita equivalent if there exists a
doubly �∆-A-rigged module Y such that
(i) A ≅ Ỹ ⊗ℎ

ℬ
Y,
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(ii) ℬ ≅ Y ⊗ℎ
A
Ỹ,

(iii) F ≅ E ⊗ℎ

ℬ
Y,

where Ỹ is the counterpart bimodule of Y. In this case we write E ∼�M F.We
will prove that if E ∼�M F, then E and F are stably isomorphic.

This paper has beenwrittenwith an emphasis on the theory of non-selfadjoint
operator algebras, but the conclusions for C∗-algebras follow easily.

At this point, we recall some de�nitions, notation and lemmas which will be
useful for what follows.

De�nition 1.1. [1]
Let A be an approximately unital operator algebra, i.e. an operator algebra

with a contractive approximate identity, and letY be a rightA-operatormodule.
Suppose there is a net (n(b))b∈B of positive integers and right A-module maps

Φb ∶ Y → Cn(b)(A), Ψb ∶ Cn(b)(A)→ Y, b ∈ B

such that
(i) the maps Φb, Ψb are completely contractive,
(ii) Ψb◦Φb → IdY strongly on Y,
(iii) the maps Ψb, b ∈ B are right A-essential maps (that is, Ψb ei → Ψb for a

bounded approximate identity (ei)i∈I of A),
(iv) Φc◦Ψb◦Φb → Φc, ∀ c ∈ B (uniformly in norm)
Then we say that Y is a right A-rigged module.

We denote byB(H,K) the space of all linear and bounded operators from the
Hilbert spaceH to the Hilbert space K. IfH = K, we write B(H,H) = B(H). If
X is a subset of B(H,K) and Y is a subset of B(K, L), then we denote by [YX]
the norm-closure of the linear span of the set

{y x ∈ B(H, L) ∣ y ∈ Y, x ∈ X} .

Similarly, if Z is a subset of B(L, R), we de�ne the space [Z YX].

De�nition 1.2. (i) A linear subspace M ⊆ B(H,K) is called a ternary ring
of operators (TRO) ifMM∗M ⊆ M.

(ii) A norm closed ternary ring of operatorsM is called a �-TRO if there exist
sequences {mi ∈ M ∣ i ∈ ℕ} and

{
nj ∈ M ∣ j ∈ ℕ

}
such that

lim
n

n∑

i=1

mim
∗
i
m = m, lim

t

t∑

j=1

mn∗
j
nj = m, ∀m ∈ M

and
‖‖‖‖‖‖‖‖‖

n∑

i=1

mim
∗
i

‖‖‖‖‖‖‖‖‖

≤ 1,

‖‖‖‖‖‖‖‖‖‖

t∑

j=1

n∗
j
nj

‖‖‖‖‖‖‖‖‖‖

≤ 1, ∀n, t ∈ ℕ.

A norm closed TROM is a �-TRO if and only if the C∗-algebras [M∗M] and
[MM∗] have �-units, [6].
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IfX is an operator space, then the spatial tensor productX⊗K is completely
isometrically isomorphic with the space K∞(X), which is the norm closure of
the �nitely supported matrices inM∞(X). Here,M∞(X) is the space of∞×∞

matrices with entries in X which de�ne bounded operators. Also, for another
operator space Y, we denote by X ⊗ℎ Y the Haagerup tensor product of X and
Y. IfA is an operator algebra, X is a rightA-module, and Y is a leftA-module,
then we denote by X ⊗ℎ

A
Y the balanced Haagerup tensor product of X and Y

over A, see [4]. We now give two basic de�nitions.

De�nition 1.3. Let X ⊆ B(H,K), Y ⊆ B(L, R) be operator spaces. We call
them �-TRO equivalent if there exist �-TROs M1 ⊆ B(H, L), M2 ⊆ B(K, R)

such that
X = [M∗

2
YM1], Y = [M2 XM

∗
1
].

In this case we write X ∼�TRO Y.

De�nition 1.4. Let X, Y be operator spaces. We call them �∆ equivalent if
there exist completely isometric maps � ∶ X → B(H,K),  ∶ Y → B(L, R)

such that �(X) ∼�TRO  (Y).We write X ∼�∆ Y.

If A, ℬ are abstract or concrete operator algebras, we say that they are �∆
equivalent and we write A ∼�∆ ℬ if there exist completely isometric repre-
sentations a ∶ A → a(A) ⊆ B(H), � ∶ ℬ → �(ℬ) ⊆ B(K) and a �-TRO
M ⊆ B(H,K) such that

a(A) = [M∗ �(ℬ)M], �(ℬ) = [Ma(A)M∗].

For further details about the notion of �∆ equivalence of operator algebras
and operator spaces, we refer the reader to [7, 8, 9, 10]. If X, Y are operator
spaces, then X ∼�∆ Y if and only if X and Y are stably isomorphic, that is,
K∞(X) ≅ K∞(Y) (similarly for operator algebras). We present a lemma which
will be used in some of the proofs in the following sections.

Lemma1.5. Suppose thatA, ℬ are operator algebras andD ⊆ ℬ is aC∗-algebra
such that [Dℬ] = [ℬD] = ℬ. LetM ⊆ B(H,K) be a �-TRO such that [M∗M] ≅

D (as C∗-algebras) and assume thatA ≅ M ⊗ℎ
D
ℬ⊗ℎ

D
M⋆. Then,A ∼�∆ ℬ.

A proof of this lemma can be found in [10, Lemma 2.2].

2. Orthogonally complemented modules and ��-rigged modules
LetA be an approximately unital operator algebra and P ∶ C∞(A)→ C∞(A)

be a left multiplier of C∞(A) (that is, P ∈ Ml(C∞(A))) such that P is contrac-
tive and P2 = P. Then the spaceW = P(C∞(A)) is said to be orthogonally com-
plemented in C∞(A). In this section we characterize the orthogonally comple-
mented modules in the the terms of ternary rings of operators. A dual version
of the results obtained here is in [2].
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De�nition 2.1. Let A ⊆ B(H) be an approximately unital operator algebra
and M ⊆ B(H,K) be a �-TRO such that M∗MA ⊆ A. The operator space
Y0 = [MA] ⊆ B(H,K) is called a �-TRO-A-rigged module.

We recall that Y0 is a right A-operator module with action

(ma) ⋅ x = m(a x), m ∈ M, a, x ∈ A.

De�nition 2.2. LetA be an abstract approximately unital operator algebra and
let Y be an abstract right A-module. We call Y a �∆-A-rigged module if there
exists a completely isometric homomorphism a ∶ A → a(A) and there exist a
�-TRO-a(A)-rigged module Y0 and a complete surjective isometry � ∶ Y → Y0
which is also a right A-module map. In case A is a C∗-algebra we call Y a �∆-
A-Hilbert module.

Proposition 2.3. LetA be an approximately unital operator algebra. Every �∆-
A-rigged module is a right rigged module overA in the sense of De�nition 1.1.

Proof. Let Y be a right �∆-A-rigged module. Then there exist a completely
isometric homomorphism a ∶ A → a(A) ⊆ B(H), a �-TRO M ⊆ B(H,K)

and a complete surjective isometry � ∶ Y → Y0 = [Ma(A)] which is also a
right A-module map. So, if we choose a {Φb, Ψb ∣ b ∈ B} for the module Y0,
then we de�ne for each b ∈ B the maps Φ′

b
= Φb◦�, Ψ

′

b
= �−1◦Ψb and we

can see that the
{
Φ′
b
, Ψ′

b
∣ b ∈ B

}
satisfy the conditions of De�nition 1.1. So, Y

becomes a rightA-riggedmodule. Therefore, it su�ces to prove the proposition
when Y = [Ma(A)] ⊆ B(H,K). Since M is a �-TRO, there exists a sequence
{mi ∈ M ∣ i ∈ ℕ} such that ||(mi)i∈ℕ|| ≤ 1 and

∞∑

i=1

mim
∗
i
m = m, ∀m ∈ M.

Since Y = [Ma(A)], it follows that
∞∑

i=1

mim
∗
i
y = y, ∀ y ∈ Y.

For n ∈ ℕ we de�ne

Φn ∶ Y → Cn(A), Φn(y) =
⎛

⎜

⎝

m∗
1
y

...

m∗
n y

⎞

⎟

⎠

,

which is linear and a completely contractive rightA-module map. We also de-
�ne the linear, completely contractive and right A-module map

Ψn ∶ Cn(A)→ Y, Ψn

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

=

n∑

i=1

mi ai.
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For all y ∈ Y, it holds that

Ψn◦Φn(y) = Ψn

⎛

⎜

⎝

⎛

⎜

⎝

m∗
1
y

...

m∗
n y

⎞

⎟

⎠

⎞

⎟

⎠

=

n∑

i=1

mim
∗
i
y → y = IdY(y)

andwe conclude thatΨn◦Φn → IdY strongly onY.The next step is to prove that
Ψn, n ∈ ℕ, is a right A-essential map. To this end, let (ei)i∈I be a contractive
approximate identity of A.We have that

‖‖‖‖‖‖‖‖‖‖‖

Ψnei

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

− Ψn

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

‖‖‖‖‖‖‖‖‖‖‖

=

‖‖‖‖‖‖‖‖‖‖‖

Ψn

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

ei − Ψn

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

‖‖‖‖‖‖‖‖‖‖‖

=

‖‖‖‖‖‖‖‖‖‖

n∑

j=1

(mj aj) ei −

n∑

j=1

mj aj

‖‖‖‖‖‖‖‖‖‖

=

‖‖‖‖‖‖‖‖‖‖

n∑

j=1

mj

(
aj ei − aj

)
‖‖‖‖‖‖‖‖‖‖

≤

n∑

j=1

||mj|| ||aj ei − aj||

where
lim
i

||aj ei − aj|| = 0

for all j = 1, ..., n, so

lim
i

‖‖‖‖‖‖‖‖‖‖‖

Ψnei

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

− Ψn

⎛

⎜

⎝

⎛

⎜

⎝

a1
...

an

⎞

⎟

⎠

⎞

⎟

⎠

‖‖‖‖‖‖‖‖‖‖‖

= 0.

Finally, let r ∈ ℕ.We shall show that

lim
n

||Φr◦Ψn◦Φn − Φr|| = 0.

We denote by sn the operators

sn =

n∑

i=1

mim
∗
i
, n ∈ ℕ.

Hence, if y ∈ Y, we have that

||Φr◦Ψn◦Φn(y) − Φr(y)|| = ||Φr (Ψn◦Φn(y) − y) ||

=

‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

m∗
1
sn −m∗

1

...

m∗
r sn −m∗

r

⎞

⎟

⎠

y

‖‖‖‖‖‖‖‖‖‖‖

≤

‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

m∗
1
sn −m∗

1

...

m∗
r sn −m∗

r

⎞

⎟

⎠

‖‖‖‖‖‖‖‖‖‖‖

||y||
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Therefore, ||Φr◦Ψn◦Φn − Φr|| ≤

‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

m∗
1
sn −m∗

1

...

m∗
r sn −m∗

r

⎞

⎟

⎠

‖‖‖‖‖‖‖‖‖‖‖
Since

lim
n

||m∗
i
sn −m∗

i
|| = 0, ∀ i = 1, ..., r,

we have that
lim
n

||Φr◦Ψn◦Φn − Φr|| = 0.

Weconclude thatY is a rightA-riggedmodule in the sense ofDe�nition 1.1. �

Theorem 2.4. Let A be an approximately unital operator algebra and Y be a
rightA-operator module. Then the following are equivalent:
(i) Y is a right �∆-A-rigged module.
(ii) Y is orthogonally complemented in C∞(A).

Proof. (i) ⟹ (ii) Let a ∶ A → a(A) ⊆ B(H) be a completely isometric
representation of A on H and assume there is a �-TRO M ⊆ B(H,K) such
thatM∗Ma(A) ⊆ a(A). Consider the �∆-A-rigged module Y0 = [Ma(A)] ⊆

B(H,K) and a complete surjective isometry � ∶ Y → Y0 which is also a right
A-module map. Let {mi ∈ M ∣ i ∈ ℕ} be a sequence of elements of M having
the property

‖‖‖‖‖‖‖‖‖

n∑

i=1

mim
∗
i

‖‖‖‖‖‖‖‖‖

≤ 1, ∀n ∈ ℕ,

∞∑

i=1

mim
∗
i
m = m, ∀m ∈ M.

It follows that
∞∑

i=1

mim
∗
i
y = y, ∀ y ∈ Y0.

We de�ne the map f ∶ Y0 → C∞(�(A)) by f(y) = (m∗
i
y)i∈ℕ,which is linear

and a A-module map. Also,

||f(y)||2 =

‖‖‖‖‖‖‖‖‖

∞∑

i=1

(m∗
i
y)∗m∗

i
y

‖‖‖‖‖‖‖‖‖

=

‖‖‖‖‖‖‖‖‖

∞∑

i=1

y∗mim
∗
i
y

‖‖‖‖‖‖‖‖‖

= ||y∗ y|| = ||y||2,

so f is an isometry. We also de�ne

g ∶ C∞(�(A))→ Y0, g((�(xi))i∈ℕ) =

∞∑

i=1

mi�(xi),

which is linear and a contractiveA-right module map. We see that

(g◦f)(y) = g((m∗
i
y)i∈ℕ) =

∞∑

i=1

mim
∗
i
y = y, ∀ y ∈ Y0,

that is, g◦f = IdY0 .We now de�ne P = f◦g ∶ C∞(�(A))→ C∞(�(A)). Clearly
P is a contractive map satisfying P2 = P.We shall prove that P ∈ Ml(C∞(A)).
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For all x =
⎛

⎜

⎝

x1
x2
...

⎞

⎟

⎠

∈ C∞(a(A)) we have that

P(x) =
⎛

⎜

⎝

m∗
i

∞∑

j=1

mj xj

⎞

⎟

⎠i∈ℕ

= s x,

where s =
(
m∗
i
mj

)∞

i ,j=1
∈ M∞(B(H)). Observe that s =

⎛

⎜

⎝

m∗
1

m∗
2

...

⎞

⎟

⎠

(m1, m2, ...) and

due to the fact that ||(m1, m2, ...)|| ≤ 1 we get ||s|| ≤ 1.We de�ne the map

�P ∶ C2(C∞(a(A)))→ C2(C∞(a(A))), �P ((
x

y
)) = (

P(x)

y
) = (

s x

y
)

and for all (x
y
) ∈ C2(C∞(a(A))) holds that

‖‖‖‖‖‖‖
�P ((

x

y
))

‖‖‖‖‖‖‖
=

‖‖‖‖‖‖‖
(
s x

y
)
‖‖‖‖‖‖‖
=

‖‖‖‖‖‖‖
(
s 0

0 I2
) (

x

y
)
‖‖‖‖‖‖‖
≤

‖‖‖‖‖‖‖
(
x

y
)
‖‖‖‖‖‖‖
,

so �P is a contraction. Similarly, we can prove that �P is completely contractive.
Therefore by [3, Theorem 4.5.2], P is a left multiplier of C∞(a(A)). It is easy to
see that f(Y0) = P(C∞(�(A))) and thus Y ≃ P(C∞(�(A))).

(ii) ⟹ (i) Suppose that A ⊆ A∗∗ ⊆ B(H). Let P ∶ C∞(A) → C∞(A) be
a left multiplier of C∞(A) which is a right A-module map with ||P||cb ≤ 1 and
such that P2 = P, Y ≅ P(C∞(A)). According to [5, Appendix B], there is an
extension P̃ ∶ Cw∞(A∗∗)→ Cw∞(A

∗∗) of P. The operator P̃ lies in the diagonal of
Ml(C

w
∞(A

∗∗)),which is contained inM∞(A
∗∗). Therefore, P̃ = ( ̃pi,j)i,j∈ℕ where

̃pi,j ∈ A∗∗, ∀ i, j ∈ ℕ. Thus,

P̃(u) = ( ̃pi,j)i,j∈ℕ ⋅ u, ∀u =
⎛

⎜

⎝

u1
u2
...

⎞

⎟

⎠

∈ C∞(A).

In what follows we identify P̃ and ( ̃pi,j)i,j. We have that Y ≅ P(C∞(A)) =

P̃(C∞(A)) and P̃2 = P̃ = P̃∗. Let N2 = [P̃], D be the C∗-algebra generated
by P̃ andK∞ and let N1 = C∞. By [8, Lemma 2.5],M = [N2 DN1] = [P̃ D C∞]

is a �-TRO. We claim that D C∞(A) ⊆ C∞(A). Indeed,

P̃(C∞(A)) = P(C∞(A)) ⊆ C∞(A) (2.1)

and C∞ R∞ C∞(A) ⊆ C∞(A). Due to the fact thatK∞ = C∞ R∞, we have that

K∞ C∞(A) ⊆ C∞(A). (2.2)

But since D is generated by P̃ ,K∞ by (2.1) and (2.2) we have that D C∞(A) ⊆
C∞(A). Now,

P(C∞(A)) ⊆ P̃ D C∞(A) = [MA].



HILBERT MODULES, RIGGED MODULES, AND STABLE ISOMORPHISM 37

On the other hand,

[MA] = [P̃ D C∞ ⋅A] ⊆ P̃ (C∞(A)) = P(C∞(A))

so, [MA] = P(C∞(A)).
Finally,

M∗MA ⊆ M∗ P(C∞(A)) = R∞ D P̃(C∞(A))

⊆ R∞ D C∞(A) ⊆ R∞ C∞(A)

= R∞ C∞ ⋅A = A

so Y is a right �∆-A-rigged module. �

There is a category of riggedmodules, the so-called countably column gener-
ated and approximately projective modules. We are going to examine whether
there is a connection between them and the �∆-rigged modules.

De�nition 2.5. [1].
LetA be an approximately unital operator algebra. A rightA operator mod-

uleY is called countably columngenerated and approximately projective (CCGP
for short) if there are completely contractive right A-module maps � ∶ Y →

C∞(A) and  ∶ C∞(A) → Y with  �nitely A-essential (that is, for all n ∈ ℕ

the restrictionmap of  to Cn(A) ⊆ C∞(A) is rightA-essential) and also  ◦� =
IdY .

Remark 2.6. From [1, Theorem8.3] andTheorem2.4, it is obvious that aCCGP
module is a �∆-rigged module. The converse is not true. Indeed, by [1, The-
orem 8.2], we have that the CCGP modules over C∗-algebras are precisely the
countably generated right Hilbert modules, but there exist �∆-Hilbert modules
which are not countably generated. For example if A a C∗-algebra without �-
unit, sinceℂA = A thenA is a �∆-Hilbert module over itself, but clearly is not
countably generated, so it is not a CCGP module.

3. Doubly ��-rigged modules
In this section we introduce a subcategory of �∆-rigged modules, the doubly

�∆-rigged modules and we prove that these modules implement stable isomor-
phism between the corresponding operator algebras.

De�nition 3.1. Let Y be a right A-operator module over the approximately
unital operator algebra A.We call Y a BMP equivalence bimodule if there ex-
ist an operator algebra ℬ such that Y is a left ℬ-operator module and a ℬ-A-
operator module X such that

ℬ ≅ Y ⊗ℎ
A
X, A ≅ X ⊗ℎ

ℬ
Y.

In this case we call X and Y bimodules of BMP-Morita equivalence.

We note that every ℬ-A-bimodule of Morita equivalence is a right A-rigged
module. We now introduce the notion of a doubly �∆-rigged module.
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De�nition 3.2. LetA ⊆ B(H) be an approximately unital operator algebra and
M ⊆ B(H,K) be a �-TRO such that

M∗MA ⊆ A, [M∗MA] = [AM∗M].

We call the operator space Y = [MA] ⊆ B(H,K) a doubly �-TRO-A-rigged
module.

We note that every doubly �-TRO-A-riggedmodule is also a �-TRO-A-rigged
module in the sense of De�nition 2.1.

De�nition 3.3. LetA be an abstract approximately unital operator algebra and
Y be an abstract right A-module. We call Y a doubly �∆-A-rigged module if
there exists a completely isometric homomorphism a ∶ A → a(A) and also
there exists a doubly �-TRO-a(A)-riggedmoduleY0 and a complete onto isom-
etry � ∶ Y → Y0 which is a right A-module map.

De�nition 3.4. Let A be an approximately unital operator algebra and Y be a
�∆-A-rigged module. There exist a ∶ A→ a(A) ⊆ B(H), a completely isomet-
ric representation ofA onH and a �-TROM ⊆ B(H,K) such thatM∗Ma(A) ⊆

a(A) and Y ≅ Y0 = [Ma(A)]. Then the operator space Z = [Y0M
∗M] ⊆

B(H,K) is called the restriction of Y over A. Observe that Z is a right module
over the operator algebra [a(A)M∗M].

In the following theorem we prove that the notions of �∆ right Hilbert mod-
ules and of doubly �∆ right Hilbert modules coincide:

Theorem 3.5. LetA be a C∗-algebra and let Y be a right Hilbert module overA.
The following are equivalent:
(i) Y is orthogonally complemented in C∞(A).
(ii) Y is a �∆ right Hilbert module overA.
(iii) Y is a doubly �∆ right Hilbert module overA.

Proof. (i) ⟹ (iii) Let P ∶ C∞(A)→ C∞(A) be an adjointable map such that
P = P2 = P∗ and Y ≅ P(C∞(A)). Since P ∈ Ml(C∞(A)), where Ml(C∞(A))

is the left multiplier algebra of C∞(A), P can be extended to a multiplier of
Cw∞(A

∗∗).HereA∗∗ is the second dual ofA andCw∞(A∗∗) is the space of columns
with entries inA∗∗ which de�ne bounded operators. The algebra of left multi-
pliers of Cw∞(A∗∗) is isomorphic toM∞(A

∗∗) (we refer the reader to [5]). There-
fore, we may assume that there exist ai j ∈ A∗∗, i, j ∈ ℕ such that

P(u) = (ai j) ⋅ u, ∀u ∈ C∞(A).

In what follows we identify P with the matrix (ai j). We also may consider a
Hilbert space K such that A ⊆ A∗∗ ⊆ B(K) and also IK ∈ A∗∗.

LetN2 be the linear span of the element P. Since P2 = P = P∗ we get thatN2

is a �-TRO. LetA1 = [A + ℂ IK] andN1 = C∞(A
1). ClearlyN1 is a �-TRO. If D

is the C∗-algebra generated by P and K∞(A1), thenM = [N2 DN1] is a �-TRO,
[8, Lemma 2.5].



HILBERT MODULES, RIGGED MODULES, AND STABLE ISOMORPHISM 39

We note that

[M∗MA] = [N∗
1
DN∗

2
N2 DN1A] = [N∗

1
DN∗

2
C∞(A

1)A] ⊆ A.

If Y0 = [MA], then

Y0 = [N2 DN1A] = [N2 D C∞(A)] = [PD C∞(A)] = P(C∞(A)).

We have that

[M∗MA] = [M∗ P(C∞(A))] = [N∗
1
DN∗

2
P C∞(A)]

= [N∗
1
D PC∞(A)] = [R∞(A

1)P(C∞(A))]

= [R∞(A)P(C∞(A))]

and therefore
([M∗MA])∗ = ([R∞(A)P(C∞(A))])

∗,

that is
[AM∗M] = [R∞(A)P(C∞(A))] = [M∗MA],

which implies that
[M∗MA] = [AM∗M] ⊆ A.

Since also
Y ≅ P(C∞(A)) = Y0 = [MA],

we conclude that Y is a doubly �∆ Hilbert module.
(iii) ⟹ (ii) This is obvious.
(ii) ⟹ (i) This is a consequence of Theorem 2.4. �

At this point, we prove a Lemma which will be very useful for what follows.

Lemma3.6. LetA be an operator algebrawith cai (ak)k∈K andC be aC∗-algebra
with cai (ci)i∈I . Assume that CA ⊆ A, AC ⊆ A.We de�ne A0 = [CAC] ⊆ A.

ThenA0 is an operator algebra with a two-sided approximate identity

x(i,k) = ci ak ci, i ∈ I, k ∈ K.

Proof. The space A0 is a closed subspace of A and is an algebra since

A0A0 ⊆ [CACCAC] ⊆ [CACAC] ⊆ [CA AC] ⊆ [CAC] = A0.

It is obvious that x(i,k) = ci ak ci ∈ A0, i ∈ I, k ∈ K and A0 ⊆ A. Now, if
a ∈ A0, then ci a → a and ak a → a. For all i ∈ I, k ∈ K we have that

||x(i,k) a − a|| = ||ci ak ci a − a||

≤ ||ci ak ci a − ci a|| + ||ci a − a||

≤ ||ak ci a − a|| + ||ci a − a||

≤ ||ak ci a − ak a|| + ||ak a − a|| + ||ci a − a||

≤ ||ci a − a|| + ||ak a − a|| + ||ci a − a||

= 2 ||ci a − a|| + ||ak a − a||
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Thus,
lim
(i,k)

x(i,k) a = a.

Similarly, we can prove that

lim
(i,k)

a x(i,k) = a. �

Lemma 3.7. Let A ⊆ B(H) be an approximately unital operator algebra and
M ⊆ B(H,K) be a�-TRO such thatM∗MA ⊆ A. Wealso assume thatAM∗M ⊆

A.We de�ne ℬ = [MAM∗] ⊆ B(K) and also A0 = [M∗ℬM] ⊆ B(H). Then
A0 andℬ are approximately unital operator algebras andA0 ∼�TRO ℬ.

Proof. It su�ces to prove thatA0, ℬ are closed under multiplication and that
A0 ∼�TRO ℬ. Indeed,

ℬℬ ⊆ [MAM∗MAM∗] ⊆ [MAAM∗] = [MAM∗] = ℬ

so ℬ is an operator algebra. Now, we observe thatMM∗ℬ ⊆ ℬ and then

A0A0 ⊆ [M∗ℬMM∗ℬM] ⊆ [M∗ℬℬM] ⊆ [M∗ℬM] = A0

which means that A0 is an operator algebra. We have that A0 = [M∗ℬM] =

[M∗MAM∗M]. If C is the C∗-algebra [M∗M], then CA ⊆ A, AC ⊆ A. By
Lemma 3.6, the operator algebra A0 has a cai. Also, since A0 = [M∗ℬM] and
on the other hand

[MA0M
∗] = [MM∗ℬMM∗] = [MM∗MAM∗MM∗] = [MAM∗] = ℬ

we deduce that A0 ∼�TRO ℬ. Since A0 has a cai, we have that ℬ has also a
cai. �

Theorem 3.8. Let A be an approximately unital operator algebra and Y be a
doubly �∆-A-rigged module. Then, there exist operator algebrasA0, ℬ with cai’s
such that A0 ∼�TRO ℬ and also ℬ ∼�TRO Y. In case A is a C∗-algebra and Y is
a �∆-A-Hilbert module thenA0 ≃ IA(Y), ℬ ≃ KA(Y).

Proof. Let H be a Hilbert space, a ∶ A → a(A) ⊆ B(H) be a completely
isometric representation of A onH and letM ⊆ B(H,K) be a �-TRO such that
M∗Ma(A) ⊆ a(A) and also

[M∗Ma(A)] = [a(A)M∗M] (3.1)

Consider now a complete surjective isometry

� ∶ Y → Y0 = [Ma(A)] ⊆ B(H,K)

which is a right A-module map. We de�ne the spaces ℬ = [Ma(A)M∗] ⊆

B(K) and A0 = [M∗ℬM] ⊆ B(H). Now by Lemma 3.7, A0, ℬ are operator
algebras with cai’s such that A0 ∼�TRO ℬ. It remains to prove that ℬ ∼�TRO Y.
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SetM1 = M∗ ⊆ B(K,H) andM2 = [MM∗] ⊆ B(K). Then,M1, M2 are �-TRO’s
and we have that

[M∗
2
�(Y)M1] = [MM∗Ma(A)M∗] = [Ma(A)M∗] = ℬ

and

[M2ℬM∗
1
] = [Ma(A)M∗M]

(3.1)
= [MM∗Ma(A)] = [Ma(A)] = �(Y).

From De�nition 1.4 we get that ℬ ∼�TRO Y.

The other assertions follow easily. �

Theorem 3.9. Let A be an approximately unital operator algebra, a ∶ A →

B(H) be a completely isometric homomorphism and M ⊆ B(H,K) be a �-TRO
such thatM∗Ma(A) ⊆ a(A).We de�ne the �∆-A-rigged moduleY = [Ma(A)].
Then there exist operator algebras A0, ℬ with cai’s and a restriction Z of Y such
that Z is a doubly �∆-A0-rigged module andA0 ∼�TRO ℬ ∼�TRO Z.

Proof. We de�ne the restriction Z = [YM∗M] = [Ma(A)M∗M] of Y. Let
A0 = [M∗Ma(A)M∗M]. Then A0 is an operator algebra and

[MA0] = [MM∗Ma(A)M∗M] = [Ma(A)M∗M] = Z

such that

[M∗MA0] = [M∗MM∗Ma(A)M∗M] = [M∗Ma(A)M∗M] = A0

[A0M
∗M] = [M∗Ma(A)M∗MM∗M] = [M∗Ma(A)M∗M] = A0

which means that [M∗MA0] = [A0M
∗M], that is, Z = [MA0] is a doubly

�∆-A0-rigged module. If we de�ne ℬ = [Ma(A)M∗] then by Lemma 3.6, A0

and ℬ have cai’s and by Lemma 3.7, we get that A0 ∼�TRO ℬ.

Finally, ℬ ∼�TRO Z. Indeed, if we consider the �-TRO’sM1 = M andM2 =

[MM∗], then

[M2 ZM
∗
1
] = [MM∗Ma(A)M∗MM∗] = [MA0M

∗] = ℬ

[M∗
2
ℬM1] = [MM∗Ma(A)M∗M] = [MM∗ℬM] = [MA0] = Z.

�

Corollary 3.10. Every �∆-A-rigged-module Y over an approximately unital
operator algebra A has a restriction which is a bimodule of BMP equivalence,
which actually implements a stable isomorphism over the operator algebrasA0

and ℬ de�ned as in Theorem 3.9.

Corollary 3.11. Every orthogonally complemented module over an approxi-
mately unital operator algebra A has a restriction which is a bimodule of BMP
equivalence between operator algebras which are stably isomorphic.
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Proof. IfY is an orthogonally complementedmodule over the operator algebra
A, then according to Theorem 2.4, Y is a �∆-A-rigged module and due to the
previous corollary, Y has a restriction which is a bimodule of BMP equivalence
between operator algebras which are stably isomorphic. �

Another interesting category of rigged modules is the category of column
stable generator modules. We prove that the restriction of a �∆-rigged module
overA is a column stable generatedmodule (maybe over another operator alge-
bra than A). We refer the reader to [1, Section 8] for facts about column stable
generated modules.

De�nition 3.12. [1].
A right A-rigged module Y is called a column stable generator (CSG for

short) if there exist completely contractive right A-module maps � ∶ A →

C∞(Y) and � ∶ C∞(Y)→ A such that �◦� = IdA.

Proposition 3.13. LetA be an approximately unital operator algebra, a ∶ A→

a(A) ⊆ B(H) be a completely isometric homomorphism and suppose there is a
�-TROM ⊆ B(H,K) such that

M∗Ma(A) ⊆ a(A), a(A)M∗M ⊆ a(A).

Consider the �∆-A-rigged module Y = [Ma(A)]. Then, there exist operator al-
gerbas A0 and ℬ and a restriction Z of Y over A0 such that Z is a CSG module
overA0.

Proof. SinceM is a �-TRO, we �x a sequence {mi ∈ M ∣ i ∈ ℕ} ⊆ M such that
‖‖‖‖‖‖‖‖‖

n∑

i=1

m∗
i
mi

‖‖‖‖‖‖‖‖‖

≤ 1, ∀n ∈ ℕ,

∞∑

i=1

m∗
i
mim

∗ = m∗, ∀m ∈ M. (3.2)

We de�ne the operator algebras ℬ = [Ma(A)M∗] ⊆ B(K), A0 = [M∗ℬM] ⊆

B(H) and also Z = [YM∗M] = [ℬM],which is a restriction of Y, and is also a
doubly �∆-A0-rigged module (Theorem 3.9). Since

[MA0] = [MM∗Ma(A)M∗M] = [Ma(A)M∗M] = [ℬM] = Z

and [M∗ Z] = [M∗ℬM] = A0, the maps
� ∶ A0 → C∞(Z), �(a) = (mi a)i∈ℕ

and

� ∶ C∞(Z)→ A0, �((zi)i∈ℕ) =

∞∑

i=1

m∗
i
zi

are well de�ned and also completely contractive rightA0-module maps. For all
m∗ b n ∈ M∗ℬM ⊆ A0 we have that

(�◦�)(m∗ b n) = �((mim
∗ b n)i∈ℕ) =

∞∑

i=1

m∗
i
mim

∗ b n
(3.2)
= m∗ b n = IdA0

(m∗ b n).

It follows that (�◦�)(a) = IdA0
(a), ∀ a ∈ A0 ⟹ �◦� = IdA0

. �
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Theorem 3.14. Let A, ℬ be approximately unital operator algebras such that
A, ℬ are stably isomorphic. Then, there exists a doubly �∆-A-rigged module Y
which is also an A-ℬ-operator module and there exists a ℬ-A-operator module
X such that ℬ ≅ Y ⊗ℎ

A
X and A ≅ X ⊗ℎ

ℬ
Y. Furthermore, A, ℬ, X, Y are all

stably isomorphic.

Proof. Since A and ℬ are stably isomorphic, we have that they are also �∆
equivalent, that is, A ∼�∆ ℬ, [8, Theorem 3.3]. So, there exist Hilbert spaces
H, K and completely isometric homomorphisms a ∶ A → B(H) and � ∶ ℬ →

B(K) and also a �-TROM ⊆ B(H,K) such that a(A) = [M∗ �(ℬ)M], �(ℬ) =

[Ma(A)M∗].We have that

[a(A)M∗M] = a(A) = [M∗Ma(A)]

and so Y = [Ma(A)] ⊆ B(H,K) is a doubly �∆-A-rigged module which is also
a left ℬ-operator module since

�(ℬ)Y ⊆ [Ma(A)M∗Ma(A)] ⊆ [Ma(A) a(A)] ⊆ [Ma(A)] = Y.

We also de�ne X = [a(A)M∗] ⊆ B(K,H) which is a left A-operator module
via the module action

a(x) ⋅ (a(y)m∗) = a(x y)m∗, x, y ∈ A, m ∈ M.

Furthermore X is a right ℬ-operator module since

X �(ℬ) ⊆ [a(A)M∗Ma(A)M∗] = [a(A) a(A)M∗MM∗] ⊆ [a(A)M∗] = X.

By Lemma 1.5, if D1 = [M∗M], then

Y ⊗ℎ

a(A)
X = [Ma(A)]⊗ℎ

a(A)
[a(A)M∗]

≅
(
M ⊗ℎ

D1
a(A)

)
⊗ℎ

a(A)

(
a(A)⊗ℎ

D1
M∗

)

≅ M ⊗ℎ
D1
a(A)⊗ℎ

D1
M∗

(1.5)

≅ [Ma(A)M∗] = �(ℬ)
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and also, due to the fact that Y = [a(A)M∗] = [M∗ �(ℬ)], if D2 = [MM∗] we
have that

X ⊗ℎ

�(ℬ)
Y = [M∗ �(ℬ)]⊗ℎ

�(ℬ)
[MM∗ �(ℬ)M]

≅
(
M∗ ⊗ℎ

D2
�(ℬ)

)
⊗ℎ

�(ℬ)
[Ma(A)]

≅ M∗ ⊗ℎ
D2

(
�(ℬ)⊗ℎ

�(ℬ)
[Ma(A)]

)

≅ M∗ ⊗ℎ
D2
[Ma(A)]

≅ M∗ ⊗ℎ
D2

(
M ⊗ℎ

D1
a(A)

)

≅
(
M∗ ⊗ℎ

D2
M

)
⊗ℎ
D1
a(A)

≅ [M∗M]⊗ℎ
D1
a(A)

≅ [M∗Ma(A)]

= [M∗MM∗ �(ℬ)M]

= [M∗ �(ℬ)M] = a(A).

�

By the same arguments, we obtain the following corollary:

Corollary 3.15. LetA, ℬ be stably isomorphic C∗-algebras. There exists a �∆-
Hilbert module Y over a C∗-algebraD such that

A ≃ KD(Y), ℬ ≃ ID(Y).

Furthermore A, ℬ and Y are all stably isomorphic.

4. Morita equivalence of rigged modules
De�nition 4.1. [1]. Let A be an approximately unital operator algebra and
let Y be a right A-rigged module. If {Φb, Ψb ∣ b ∈ B} is a choice for Y as in
De�nition 1.1, then we write Eb for the map Eb = Ψb◦Φb ∶ Y → Y, b ∈ B. We
de�ne

Ỹ = {f ∈ CBA(Y,A) ∣ f◦Eb → f uniformly}
and K(Y) to be the closure in CBA(Y,Y) of the set of �nite rank operators

Ty,f ∶ Y → Y, Ty,f(y
′) = y f(y′)

where y ∈ Y, f ∈ Ỹ.

For further details we refer the reader to [1, Section 3]. We also note that
K(Y) and Ỹ are actually independent of the particular directed set and nets
{Φb, Ψb ∣ b ∈ B} . In the following lemma we use the notion of a complete quo-
tient map. For further details we refer the reader to [4].
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Lemma 4.2. Let A ⊆ B(H) be an approximately unital operator algebra, M ⊆

B(H,K) be a �-TRO and Y = [MA] ⊆ B(H,K). Assume that M∗MA ⊆

A, AM∗M ⊆ A (thus Y is a �∆-A-rigged module). Then Ỹ ≅ [AM∗] and
K(Y) ≅ [MAM∗].

Proof. We de�neℬ = [MAM∗]. Clearly,ℬ is an operator algebra. By Lemma
3.6, the algebra A0 = [M∗MAM∗M] has a cai. By Lemma 3.7, the algebra
ℬ has also cai and obviously the algebras A0 and ℬ are �-TRO equivalent. If
X = [AM∗], then we de�ne the completely contractive maps

(⋅, ⋅) ∶ X × Y → A, (x, y)↦ (x, y) = x y

[⋅, ⋅] ∶ Y × X → ℬ, (y, x)↦ [y, x] = y x.

These maps satisfy

(x, y)x′ = x [y, x′], y (x, y′) = [y, x] y′, ∀x, x′ ∈ X, y, y′ ∈ Y.

The map [⋅, ⋅] induces a complete quotient map Y ⊗ℎ X → ℬ, y ⊗ x → y x.

Indeed, by making the same calculations as those of the proof of Theorem
3.14, we have that Y ⊗ℎ

A
X ≅ [MAM∗] = ℬ. Futhermore, the map � ∶

Y ⊗ℎ X → Y ⊗ℎ
A
X, y ⊗ x ↦ y ⊗A x is a complete quotient since the map

�̂ ∶
(
Y ⊗ℎ X

)
∕Ker(�) → Y ⊗h

A
X is a complete surjective isometry. From [1,

Theorem 5.1] it follows that Ỹ ≅ [AM∗] and K(Y) ≅ ℬ = [MAM∗]. �

Theorem 4.3. IfA is an approximately unital operator algebra and Y is a dou-
bly �∆-A-rigged module, then there exist approximately unital operator algebras
A0 ⊆ A andℬ such that
(i) ℬ ≅ Y ⊗ℎ

A0
Ỹ

(ii) A0 ≅ Ỹ ⊗ℎ

ℬ
Y

(iii) A0 ∼�∆ ℬ, A0 ∼�∆ Y, Y ∼�∆ Ỹ.

Proof. It su�ces to prove the above assertions for the case of a doubly �-TRO-
A-module Y = [MA] where A ⊆ B(H), M ⊆ B(H,K) is a �-TRO such that
M∗MA ⊆ A and

[M∗MA] = [AM∗M]. (4.1)
We set A0 = [AM∗M] ⊆ A. Clearly A0 is an approximately unital operator
algebra.
(i) By Lemma 4.2, Ỹ ≅ [AM∗], and so

[A0M
∗] = [AM∗MM∗] = [AM∗] = Ỹ.

On the other hand

[MA0] = [MAM∗M]
(4.1)
= [MM∗MA] = [MA] = Y.

Using Lemma 1.5 andmaking the same calculations as in the proof of Theorem
3.14 we have that Y ⊗ℎ

A0
Ỹ ≅ [MAM∗]. If we de�neℬ = [MAM∗], thenℬ is
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an approximately unital operator algebra such that ℬ ≅ Y ⊗ℎ
A0
Ỹ.

(ii) It is true that Ỹ ≅ [AM∗] = [M∗ℬ], so if D1 = [M∗M] and D2 = [MM∗],

it follows that

Ỹ ⊗ℎ

ℬ
Y = [M∗ℬ]⊗ℎ

ℬ
[MA]

≅
(
M∗ ⊗ℎ

D2
ℬ
)
⊗ℎ

ℬ
Y

≅ M∗ ⊗ℎ
D2

[
ℬ⊗ℎ

ℬ

(
M ⊗ℎ

D1
A
)]

≅ M∗ ⊗ℎ
D2
M ⊗ℎ

D1
A

≅ [M∗M]⊗ℎ
D1
A

≅ [M∗MA]

= [AM∗M] = A0.

(iii) Consider the �-TROsM1 = M∗ ⊆ B(K,H) andM2 = M ⊆ B(H,K). Then

[M∗
2
YM1] = [M∗MAM∗] = [AM∗MM∗] = [AM∗] = Ỹ

and
[M2 Ỹ M

∗
1
] = [MAM∗M] = [MM∗MA] = [MA] = Y

so Y ∼�TRO Ỹ. By Theorem 3.8, we also have that ℬ ∼�TRO Y and ℬ ∼�∆
A0. �

De�nition 4.4. Let A, ℬ be approximately unital operator algebras, E be a
right ℬ-rigged module and F be a right A-rigged module. We call E and F
Morita equivalent if there exists a right A-rigged module Y such that
(i) A ≅ Ỹ ⊗ℎ

ℬ
Y as operator algebras,

(ii) ℬ ≅ Y ⊗ℎ
A
Ỹ as operator algebras,

(iii) F ≅ E ⊗ℎ

ℬ
Y as right A-rigged modules.

In this case we write E ∼M F.

Remark 4.5. If A, ℬ, E and F are as above, then by [1, Theorem 6.1] we get
that

K(F) ≅ K
(
E ⊗ℎ

ℬ
Y
)
≅ K(E).

De�nition 4.6. Let A, ℬ be approximately unital operator algebras, E be a
right ℬ-rigged module and F be a right A-rigged module. We call E and F �-
Morita equivalent if there exists a doubly �∆-A-rigged module Y such that
(i) A ≅ Ỹ ⊗ℎ

ℬ
Y as operator algebras,

(ii) ℬ ≅ Y ⊗ℎ
A
Ỹ as operator algebras,

(iii) F ≅ E ⊗ℎ

ℬ
Y as right A-rigged modules.

In this case we write E ∼�M F.
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Remark4.7. Other notions ofMorita equivalence for the subcategory ofHilbert
modules exist in [11, 17].

Proposition 4.8. If E ∼�M F, thenK(E) ≅ K(F).

Proof. If E ∼�M F, then E ∼M F and the conclusion comes from Remark
4.5. �

Lemma 4.9. Let M be a �-TRO, D1 = [MM∗], D2 = [M∗M], E be a right
D1-module and F be a right D2-module such that F ≅ E ⊗ℎ

D1
M. Then E ∼�∆ F.

Proof. By [10, Theorem 3.8], it su�ces to prove that E and F are stably isomor-
phic. We may assume that F = E ⊗ℎ

D1
M. Hence,

F ⊗ℎ
D2
M∗ =

(
E ⊗ℎ

D1
M

)
⊗ℎ
D2
M∗

≅ E ⊗ℎ
D1

(
M ⊗ℎ

D2
M∗

)

≅ E ⊗ℎ
D1
D1

≅ E.

We can also assume that there exists a complete onto isometry

a ∶ F ⊗ℎ
D2
M∗ → E

such that

a((e ⊗D1
m)⊗D2

n∗) = e m n∗, ∀ e ∈ E, m, n ∈ M. (4.2)

There exists a sequence {mi ∈ M ∣ i ∈ ℕ} such that
‖‖‖‖‖‖‖‖‖

n∑

i=1

m∗
i
mi

‖‖‖‖‖‖‖‖‖

≤ 1, ∀n ∈ ℕ

and also
∞∑

i=1

mm∗
i
mi = m, ∀m ∈ M.

We observe that for all e ∈ E andm ∈ M we have that
∞∑

i=1

a((e ⊗D1
m)⊗D2

m∗
i
)⊗D1

mi

(4.2)
=

∞∑

i=1

e mm∗
i
⊗D1

mi

mm∗
i
∈D1
=

∞∑

i=1

e ⊗D1
mm∗

i
mi = e ⊗D1

m.

Thus,
∞∑

i=1

a(f ⊗D2
m∗
i
)⊗D1

mi = f, ∀f ∈ F. (4.3)

We de�ne the completely contractive maps

Φ ∶ F → R∞(E), Φ(f) = (a(f ⊗D2
m∗
i
))i∈ℕ
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Ψ ∶ R∞(E)→ F, Ψ((ei)i∈ℕ) =

∞∑

i=1

ei ⊗D1
mi.

Using (4.3) we have that

(Ψ◦Φ)(f) =

∞∑

i=1

a(f ⊗D2
m∗
i
)⊗D1

mi = f, ∀f ∈ F.

So, Φ is a complete isometry and P = Φ◦Ψ ∶ R∞(E) → R∞(E) is a projec-
tion such that Φ(F) = Ran(P). Now we employ the usual arguments, see for
example the proof of [3, Corollary 8.2.6]:

R∞(E) ≅ Ran(P)⊕r Ran(I − P) ≅ Φ(F)⊕r Ran(I − P) ≅ F⊕r Ran(I − P)

where I = IR∞(E). Thus,

R∞(E) ≅ R∞(R∞(E))

≅ (F ⊕r Ran(I − P))⊕r (F⊕r Ran(I − P))⊕r ...

≅ F ⊕r (Ran(I − P)⊕r F)⊕r (Ran(I − P)⊕r F)⊕r ...

≅ F ⊕r R∞(E).

Therefore, R∞(E) ≅ R∞(R∞(E)) ≅ R∞(F) ⊕r R∞(E). By symmetry, R∞(F) ≅
R∞(E)⊕r R∞(F), so R∞(E) ≅ R∞(F) which implies that K∞(E) ≅ K∞(F). �

Theorem 4.10. LetA, ℬ be approximately unital operator algebras, E be a right
ℬ-rigged module and F be a right A-rigged module such that E ∼�M F. Then
E ∼�∆ F.

Proof. Let a ∶ A → B(H) be a completely-isometric representation of A
on H and M ⊆ B(H,K) be a �-TRO such that M∗Ma(A) ⊆ a(A) and also
[M∗Ma(A)] = [a(A)M∗M]. Consider also the doubly �∆-A-rigged module
Y = [Ma(A)] such that a(A) ≅ Ỹ ⊗ℎ

ℬ
Y, ℬ ≅ Y ⊗ℎ

A
Ỹ ≅ [Ma(A)M∗] and

also F ≅ E ⊗ℎ

ℬ
Y.We de�ne D1 = [MM∗] and we have that ℬMM∗ ⊆ ℬ. So

E = [Eℬ] ⊇ [EℬMM∗] = [EMM∗]

which means that E is a right D1-module. Therefore, since Y = [Ma(A)] =

[ℬM], it holds that

F ≅ E⊗ℎ

ℬ
Y = E⊗ℎ

ℬ
[ℬM] ≅ E⊗ℎ

ℬ

(
ℬ⊗ℎ

D1
M

)
≅

(
E ⊗ℎ

ℬ
ℬ
)
⊗ℎ
D1
M ≅ E⊗ℎ

D1
M.

Observe that if D2 = [M∗M], then F = [FA] ⊇ [FAM∗M] = [FM∗M]

which means that F is a right D2-module. From Lemma 4.9, we get that E ∼�∆
F. �
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