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Division Algebras that Ramify Only Along a
Singular Plane Cubic Curve

T. J. Ford

Abstract. Let K be the field of rational functions in 2 variables over an
algebraically closed field k of characteristic 0. Let D be a finite dimensional
K-central division algebra whose ramification divisor on the projective plane
over k is a singular cubic curve. It is shown that D is cyclic and that the
exponent of D is equal to the degree of D.

Let k be an algebraically closed field of characteristic 0. Let P2 = Proj k[x, y, z]
denote the projective plane over k and K the function field of P2. We view K
as the set of all rational functions of the form f/g ∈ k(x, y, z) where f and g are
homogeneous forms in k[x, y, z] of the same degree.

The Brauer group of the projective plane, B(P2), is trivial. Therefore a division
algebra D that is central and finite dimensional over K necessarily ramifies at some
prime divisor of P2. By [1, Theorem 1] there is a canonical exact sequence

0 −−−−→ B(K)
a

−−−−→
⊕

C H1(K(C),Q/Z) .(1)

The map a measures the ramification of a central K-division algebra D along a
prime divisor C on P2. The group H1(K(C),Q/Z) is the first étale cohomology
group of the function field K(C) of C, with coefficients in the constant sheaf Q/Z.
By Kummer theory [4, pp. 125–126] H1(K(C),Q/Z) classifies the finite cyclic
Galois extensions of K(C). The “ramification of D along C” is a cyclic extension
L of K(C) obtained in the following way. Let A be a maximal order for D over
the local discrete valuation ring OC . Then L = A ⊗ K(C)/(radical) is a cyclic
extension of K(C), which represents an element of H1(K(C),Q/Z). Those C for
which L is non-trivial make up the ramification divisor of D. A division algebra D
is completely determined by its ramification data.

In this article we consider the case where D is a finite dimensional K-central
division algebra whose ramification divisor is a reduced cubic curve C that is sin-
gular. Our main result is Theorem 1 below which states that every such algebra D
is a cyclic algebra with exponent(D) = degree(D). By exponent(D) we mean the
exponent of the class of D in the Brauer group B(K). By degree(D) we mean the
square root of the dimension of the vector space D over K.
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If D has ramification divisor C, a nonsingular cubic curve on P2, then it is known
that exponent(D) = degree(D). The reader is referred to [3] and its bibliography
for a discussion of this case. M. Van den Bergh has recently announced a proof
that if D has odd exponent, then D is cyclic.

In our context, each irreducible component of C is a rational curve whose nor-
malization is isomorphic to P1. Let C be a reduced curve on P2 each of whose
irreducible components is a rational curve. Write C = C1 ∪ · · · ∪ Cm as a union
of irreducible curves. Let C̃i denote the normalization of Ci. By our assumption
C̃i ∼= P1. Let C̃ be the disjoint union C̃1

∐
· · ·
∐
C̃m. Let Z denote the singular

locus of C, which is a finite set of points, hence Z = {Z1, . . . , Zs}. Let π : C̃ → C
be the natural projection and W = π−1(Z). Then W is a finite set of points, hence
W = {W1, . . . ,We}. The square

W −−−−→ C̃yπ yπ
Z −−−−→ C

(2)

is commutative. Define a graph Γ = Γ(C). The vertex set of Γ is {Z1, . . . , Zs, C̃1,

. . . , C̃m} and the edge set is {W1, . . . ,We}. The edge Wi has positive end the C̃j
containing Wi and negative end the Zt defined by Zt = π(Wi). Let M be the
incidence matrix of Γ. Then M induces a boundary map, also denoted M ,

M : (Z/n)
(e) → (Z/n)

(m) ⊕ (Z/n)
(s)

(3)

for any positive integer n. The kernel of M is the combinatorial cycle space
H1(Γ,Z/n) of Γ. Since we are assuming each C̃i ∼= P1 is simply connected,
it follows that H1(C,Z/n) = 0. Since P2 is simply connected, H1(P2,Z/n) ∼=
H3(P2,Z/n) = 0. Combining Lemma 0.1 and Corollary 1.3 of [2], there is an iso-
morphism n B(P2 − C) ∼= H1(Γ,Z/n). Therefore the K-division algebras D with
exponent dividing n and that ramify only along C make up a subgroup of B(K)
that is isomorphic to H1(Γ,Z/n).

Let α, β be elements of K, n ≥ 2 an integer, and ζ a fixed nth root of unity
in K. The symbol algebra (α, β)n is the associative K-algebra generated by u, v
subject to the relations un = α, vn = β, uv = ζvu. The ramification divisor of
the algebra (α, β)n is contained in the union of the sets of zeros and poles of the
functions α and β on P2.

The main tool used in proving Theorem 1 is [2, Theorem 2.1] which tells us how
to map a symbol algebra (α, β)n over K to a sum of weighted edges in the graph
Γ. This sum of weighted edges is an element in the edge space, Z/n(e), that is in
kerM = H1(Γ,Z/n). According to [2, Theorem 2.1], the weights on the edges of the
graph can be computed in terms of the local intersection multiplicities of the various
components of α and β. Suppose the zeros and poles of α and β are contained in
C. Let P ∈ Z be a singular point on C. Let A1, . . . , At be the components of C
corresponding to vertices in Γ that are adjacent to P , as shown in Figure 1. Assume
first that the curve Ã1 has only one point W1 lying over P . Then the weight (as
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an element of Z/n) assigned to the edge W1 connecting P to A1 is

t∑
i=2

[v1(β)vi(α)− v1(α)vi(β)] (A1.Ai)P ,(4)

where (A1.Ai)P is the local intersection multiplicity and vi is the discrete valuation
on K given by the local ring OAi . If A1 has multiple tangents at P , then there
will be several edges connecting A1 to P in Γ. In this case (4) gives the weight
for any one branch W1 of A1 at P where instead of (A1.Ai)P the local intersection
multiplicity for the branch that is associated with W1 is used.

Theorem 1. Let C be a reduced cubic curve in P2 and assume C is singular. Let
D be a finite dimensional central K-division algebra whose ramification divisor on
P2 is C. Then D is a cyclic algebra and exponent(D) = degree(D).

Proof. Let n be the exponent of the class of D in the Brauer group of K. We use
the techniques of [2, Sec. 2] that were mentioned above. Upon desingularization,
the singular cubic C consists of one, two or three components each of which is
isomorphic to P1. Therefore the subgroup of B(K) consisting of classes of division
algebras annihilated by n that ramify only along C is isomorphic to H1(Γ,Z/n).
Here Γ is the graph associated to C and H1 is simply the combinatorial cycle space
of the graph. In each example below, Γ is a planar graph hence the Z/n-rank of
H1(Γ,Z/n) simply counts the number of regions of Γ.

There are only 6 cases to consider. In each case we show that D is a symbol
algebra (α, β)n hence is cyclic.

Case 1: C is irreducible and has a cuspidal singularity. In this case C is
simply connected, H1(Γ(C),Z/n) = 0, hence no non-trivial division algebra can
have ramification divisor equal to C.

Case 2: C is irreducible and has a nodal singularity. Let l1 = 0 and l2 = 0
be the equations of the tangent lines to C at the node. The line l1 = 0 intersects
the first branch of C with multiplicity 2 and the second branch with multiplicity
1. Similarly, l2 intersects the first branch of C with multiplicity 1 and the second
branch with multiplicity 2. Consider the symbol algebra

Λ =

(
l1

l2
,
c

l32

)
n

over K. The ramification divisor of Λ must be contained in the curve l1l2c = 0. The
graph of l1l2c = 0 is shown in Figure 2. Let W1 denote the edge of Γ corresponding
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Figure 2. The graph for the symbol Λ in Case 2.
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Figure 3. The graph for the symbol Λ in Case 3.

to the first branch of C. We apply (4) to determine the weights wi for the edges
Wi of the element in the cycle space corresponding to Λ. In the notation above, we
have α = l1/l2, β = c/l32, A1 is the first branch of C, A2 is the curve l1 = 0, A3 is
the curve l2 = 0, (A1.A2)P = 2, (A1.A3)P = 1, v1(β) = 1, v2(β) = 0, v3(β) = −3,
v1(α) = 0, v2(α) = 1, and v3(α) = −1. From (4) we have

w1 = [(1)(1)− (0)(0)](2) + [(1)(−1)− (0)(−3)](1) = +1 .

To compute w2 using (4), we have A1 is the second branch of C, A2 is the curve
l1 = 0, A3 is the curve l2 = 0, (A1.A2)P = 1, (A1.A3)P = 2, and the vi values are
the same as for w1. From (4) we have

w2 = [(1)(1)− (0)(0)](1) + [(1)(−1)− (0)(−3)](2) = −1 .

To compute w3 using (4), we have A1 is the curve l1 = 0, A2 = C, A3 is the curve
l2 = 0, (A1.A2)P = 3, (A1.A3)P = 1, v1(β) = 0, v2(β) = 1, v3(β) = −3, v1(α) = 1,
v2(α) = 0, and v3(α) = −1. From (4) we have

w3 = [(0)(0)− (1)(1)](3) + [(0)(−1)− (1)(−3)](1) = 0 .

Similarly, using (4) we find w4 = 0. Therefore Λ has ramification divisor C and
exponent n. Since n B(P2−C) ∼= H1(Γ,Z/n) ∼= Z/n we see that every algebra class
of exponent n is some power of the class of Λ, and therefore has degree n.

Case 3: C factors into a line and an irreducible conic and has 2 nodes. Let
q = 0 be the equation of the conic and l1 = 0 the equation of the line. Let P and
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Figure 4. The graph for the symbol Λ in Case 5.

Q denote the 2 nodes of C. Let l2 = 0 be the equation of the tangent to q = 0 at
P . Consider the symbol algebra

Λ =

(
l1

l2
,
q

l22

)
n

over K. The ramification divisor of Λ is contained in the curve l1l2q = 0. The
graph for Λ is shown in Figure 3. We apply (4) to compute the weight w1 of edge
W1 for the algebra Λ. In the notation above, we have α = l1/l2, β = q/l22, A1 is
the curve l1 = 0, A2 is the curve l2 = 0, A3 is the curve q = 0, (A1.A2)P = 1,
(A1.A3)P = 1, v1(α) = 1, v2(α) = −1, v3(α) = 0, v1(β) = 0, v2(β) = −2, and
v3(β) = 1. From (4) we have

w1 = [(0)(−1)− (1)(−2)](1) + [(0)(0)− (1)(1)](1) = +1 .

Similarly we compute w2 = −1, w3 = +1, w4 = −1, and w5 = 0. Therefore Λ has
ramification divisor C and exponent n. Since n B(P2 − C) ∼= H1(Γ,Z/n) ∼= Z/n
we see that every algebra class of exponent n is some power of the one given, and
therefore has degree n.

Case 4: C factors into a line and an irreducible conic and has a cuspidal sin-
gularity. In this case C is simply connected, H1(Γ,Z/n) = 0, hence no division
algebra can have ramification divisor equal to C.

Case 5: C factors into 3 lines and has 3 nodes. Let the equation of C be written
l1l2l3 = 0 where each li is a linear form. Consider the symbol algebra

Λ =

(
l1

l3
,
l2

l3

)
n

over K. The graph for Λ in this case is the hexagon shown in Figure 4. Using (4)
and the same ideas as in the earlier cases, we find that the ramification divisor of
Λ is C and exponent(Λ) = n. Since n B(P2 − C) ∼= H1(Γ,Z/n) ∼= Z/n we see that
every algebra class of exponent n is some power of the one given, and therefore has
degree n.

Case 6: C factors into 3 lines and has 1 singular point. In this case C is simply
connected, H1(Γ,Z/n) = 0, hence no division algebra can have ramification divisor
equal to C. �
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