New York Journal of Mathematics

New York J. Math. 1 (1995) 178-183.

Division Algebras that Ramify Only Along a Singular Plane Cubic Curve

T. J. Ford

ABSTRACT. Let K be the field of rational functions in 2 variables over an algebraically closed field k of characteristic 0. Let D be a finite dimensional K-central division algebra whose ramification divisor on the projective plane over k is a singular cubic curve. It is shown that D is cyclic and that the exponent of D is equal to the degree of D.

Let k be an algebraically closed field of characteristic 0. Let $\mathbb{P}^2 = \operatorname{Proj} k[x, y, z]$ denote the projective plane over k and K the function field of \mathbb{P}^2 . We view K as the set of all rational functions of the form $f/g \in k(x, y, z)$ where f and g are homogeneous forms in k[x, y, z] of the same degree.

The Brauer group of the projective plane, $B(\mathbb{P}^2)$, is trivial. Therefore a division algebra D that is central and finite dimensional over K necessarily ramifies at some prime divisor of \mathbb{P}^2 . By [1, Theorem 1] there is a canonical exact sequence

(1)
$$0 \longrightarrow B(K) \xrightarrow{a} \bigoplus_{C} H^{1}(K(C), \mathbb{Q}/\mathbb{Z})$$
.

The map *a* measures the ramification of a central *K*-division algebra *D* along a prime divisor *C* on \mathbb{P}^2 . The group $\mathrm{H}^1(K(C), \mathbb{Q}/\mathbb{Z})$ is the first étale cohomology group of the function field K(C) of *C*, with coefficients in the constant sheaf \mathbb{Q}/\mathbb{Z} . By Kummer theory [4, pp. 125–126] $\mathrm{H}^1(K(C), \mathbb{Q}/\mathbb{Z})$ classifies the finite cyclic Galois extensions of K(C). The "ramification of *D* along *C*" is a cyclic extension *L* of K(C) obtained in the following way. Let *A* be a maximal order for *D* over the local discrete valuation ring \mathcal{O}_C . Then $L = A \otimes K(C)/(radical)$ is a cyclic extension of K(C), which represents an element of $\mathrm{H}^1(K(C), \mathbb{Q}/\mathbb{Z})$. Those *C* for which *L* is non-trivial make up the *ramification divisor* of *D*. A division algebra *D* is completely determined by its ramification data.

In this article we consider the case where D is a finite dimensional K-central division algebra whose ramification divisor is a reduced cubic curve C that is singular. Our main result is Theorem 1 below which states that every such algebra D is a cyclic algebra with exponent(D) = degree(D). By exponent(D) we mean the exponent of the class of D in the Brauer group B(K). By degree(D) we mean the square root of the dimension of the vector space D over K.

Received May 15, 1995.

Mathematics Subject Classification. Primary 13A20; Secondary 12E15, 14F20, 11R52.

Key words and phrases. Brauer group, division algebra, central simple algebra, symbol algebra, cyclic algebra.

If D has ramification divisor C, a nonsingular cubic curve on \mathbb{P}^2 , then it is known that exponent(D) = degree(D). The reader is referred to [3] and its bibliography for a discussion of this case. M. Van den Bergh has recently announced a proof that if D has odd exponent, then D is cyclic.

In our context, each irreducible component of C is a rational curve whose normalization is isomorphic to \mathbb{P}^1 . Let C be a reduced curve on \mathbb{P}^2 each of whose irreducible components is a rational curve. Write $C = C_1 \cup \cdots \cup C_m$ as a union of irreducible curves. Let \tilde{C}_i denote the normalization of C_i . By our assumption $\tilde{C}_i \cong \mathbb{P}^1$. Let \tilde{C} be the disjoint union $\tilde{C}_1 \coprod \cdots \coprod \tilde{C}_m$. Let Z denote the singular locus of C, which is a finite set of points, hence $Z = \{Z_1, \ldots, Z_s\}$. Let $\pi : \tilde{C} \to C$ be the natural projection and $W = \pi^{-1}(Z)$. Then W is a finite set of points, hence $W = \{W_1, \ldots, W_e\}$. The square

(2)
$$\begin{array}{ccc} W & \longrightarrow & \tilde{C} \\ & & & \downarrow \pi \\ & & & \downarrow \pi \\ & & Z & \longrightarrow & C \end{array}$$

is commutative. Define a graph $\Gamma = \Gamma(C)$. The vertex set of Γ is $\{Z_1, \ldots, Z_s, C_1, \ldots, \tilde{C}_m\}$ and the edge set is $\{W_1, \ldots, W_e\}$. The edge W_i has positive end the \tilde{C}_j containing W_i and negative end the Z_t defined by $Z_t = \pi(W_i)$. Let M be the incidence matrix of Γ . Then M induces a boundary map, also denoted M,

(3)
$$M: (\mathbb{Z}/n)^{(e)} \to (\mathbb{Z}/n)^{(m)} \oplus (\mathbb{Z}/n)^{(s)}$$

for any positive integer n. The kernel of M is the combinatorial cycle space $\mathrm{H}_1(\Gamma, \mathbb{Z}/n)$ of Γ . Since we are assuming each $\tilde{C}_i \cong \mathbb{P}^1$ is simply connected, it follows that $\mathrm{H}^1(C, \mathbb{Z}/n) = 0$. Since \mathbb{P}^2 is simply connected, $\mathrm{H}^1(\mathbb{P}^2, \mathbb{Z}/n) \cong \mathrm{H}^3(\mathbb{P}^2, \mathbb{Z}/n) = 0$. Combining Lemma 0.1 and Corollary 1.3 of [2], there is an isomorphism ${}_n \mathrm{B}(\mathbb{P}^2 - C) \cong \mathrm{H}_1(\Gamma, \mathbb{Z}/n)$. Therefore the K-division algebras D with exponent dividing n and that ramify only along C make up a subgroup of $\mathrm{B}(K)$ that is isomorphic to $\mathrm{H}_1(\Gamma, \mathbb{Z}/n)$.

Let α , β be elements of K, $n \geq 2$ an integer, and ζ a fixed *n*th root of unity in K. The symbol algebra $(\alpha, \beta)_n$ is the associative K-algebra generated by u, vsubject to the relations $u^n = \alpha$, $v^n = \beta$, $uv = \zeta vu$. The ramification divisor of the algebra $(\alpha, \beta)_n$ is contained in the union of the sets of zeros and poles of the functions α and β on \mathbb{P}^2 .

The main tool used in proving Theorem 1 is [2, Theorem 2.1] which tells us how to map a symbol algebra $(\alpha, \beta)_n$ over K to a sum of weighted edges in the graph Γ . This sum of weighted edges is an element in the edge space, $\mathbb{Z}/n^{(e)}$, that is in ker $M = H_1(\Gamma, \mathbb{Z}/n)$. According to [2, Theorem 2.1], the weights on the edges of the graph can be computed in terms of the local intersection multiplicities of the various components of α and β . Suppose the zeros and poles of α and β are contained in C. Let $P \in Z$ be a singular point on C. Let A_1, \ldots, A_t be the components of Ccorresponding to vertices in Γ that are adjacent to P, as shown in Figure 1. Assume first that the curve \tilde{A}_1 has only one point W_1 lying over P. Then the weight (as

FIGURE 1

an element of \mathbb{Z}/n) assigned to the edge W_1 connecting P to A_1 is

(4)
$$\sum_{i=2}^{t} \left[v_1(\beta) v_i(\alpha) - v_1(\alpha) v_i(\beta) \right] (A_1.A_i)_P ,$$

where $(A_1.A_i)_P$ is the local intersection multiplicity and v_i is the discrete valuation on K given by the local ring \mathcal{O}_{A_i} . If A_1 has multiple tangents at P, then there will be several edges connecting A_1 to P in Γ . In this case (4) gives the weight for any one branch W_1 of A_1 at P where instead of $(A_1.A_i)_P$ the local intersection multiplicity for the branch that is associated with W_1 is used.

Theorem 1. Let C be a reduced cubic curve in \mathbb{P}^2 and assume C is singular. Let D be a finite dimensional central K-division algebra whose ramification divisor on \mathbb{P}^2 is C. Then D is a cyclic algebra and exponent(D) = degree(D).

Proof. Let *n* be the exponent of the class of *D* in the Brauer group of *K*. We use the techniques of [2, Sec. 2] that were mentioned above. Upon desingularization, the singular cubic *C* consists of one, two or three components each of which is isomorphic to \mathbb{P}^1 . Therefore the subgroup of B(K) consisting of classes of division algebras annihilated by *n* that ramify only along *C* is isomorphic to $H_1(\Gamma, \mathbb{Z}/n)$. Here Γ is the graph associated to *C* and H_1 is simply the combinatorial cycle space of the graph. In each example below, Γ is a planar graph hence the \mathbb{Z}/n -rank of $H_1(\Gamma, \mathbb{Z}/n)$ simply counts the number of regions of Γ .

There are only 6 cases to consider. In each case we show that D is a symbol algebra $(\alpha, \beta)_n$ hence is cyclic.

Case 1: *C* is irreducible and has a cuspidal singularity. In this case *C* is simply connected, $H_1(\Gamma(C), \mathbb{Z}/n) = 0$, hence no non-trivial division algebra can have ramification divisor equal to *C*.

Case 2: C is irreducible and has a nodal singularity. Let $l_1 = 0$ and $l_2 = 0$ be the equations of the tangent lines to C at the node. The line $l_1 = 0$ intersects the first branch of C with multiplicity 2 and the second branch with multiplicity 1. Similarly, l_2 intersects the first branch of C with multiplicity 1 and the second branch with multiplicity 2. Consider the symbol algebra

$$\Lambda = \left(\frac{l_1}{l_2}, \frac{c}{l_2^3}\right)_n$$

over K. The ramification divisor of Λ must be contained in the curve $l_1 l_2 c = 0$. The graph of $l_1 l_2 c = 0$ is shown in Figure 2. Let W_1 denote the edge of Γ corresponding

FIGURE 2. The graph for the symbol Λ in Case 2.

FIGURE 3. The graph for the symbol Λ in Case 3.

to the first branch of C. We apply (4) to determine the weights w_i for the edges W_i of the element in the cycle space corresponding to Λ . In the notation above, we have $\alpha = l_1/l_2$, $\beta = c/l_2^3$, A_1 is the first branch of C, A_2 is the curve $l_1 = 0$, A_3 is the curve $l_2 = 0$, $(A_1.A_2)_P = 2$, $(A_1.A_3)_P = 1$, $v_1(\beta) = 1$, $v_2(\beta) = 0$, $v_3(\beta) = -3$, $v_1(\alpha) = 0$, $v_2(\alpha) = 1$, and $v_3(\alpha) = -1$. From (4) we have

$$w_1 = [(1)(1) - (0)(0)](2) + [(1)(-1) - (0)(-3)](1) = +1.$$

To compute w_2 using (4), we have A_1 is the second branch of C, A_2 is the curve $l_1 = 0$, A_3 is the curve $l_2 = 0$, $(A_1.A_2)_P = 1$, $(A_1.A_3)_P = 2$, and the v_i values are the same as for w_1 . From (4) we have

$$w_2 = [(1)(1) - (0)(0)](1) + [(1)(-1) - (0)(-3)](2) = -1$$
.

To compute w_3 using (4), we have A_1 is the curve $l_1 = 0$, $A_2 = C$, A_3 is the curve $l_2 = 0$, $(A_1.A_2)_P = 3$, $(A_1.A_3)_P = 1$, $v_1(\beta) = 0$, $v_2(\beta) = 1$, $v_3(\beta) = -3$, $v_1(\alpha) = 1$, $v_2(\alpha) = 0$, and $v_3(\alpha) = -1$. From (4) we have

$$w_3 = [(0)(0) - (1)(1)](3) + [(0)(-1) - (1)(-3)](1) = 0.$$

Similarly, using (4) we find $w_4 = 0$. Therefore Λ has ramification divisor C and exponent n. Since ${}_n \operatorname{B}(\mathbb{P}^2 - C) \cong \operatorname{H}_1(\Gamma, \mathbb{Z}/n) \cong \mathbb{Z}/n$ we see that every algebra class of exponent n is some power of the class of Λ , and therefore has degree n.

Case 3: C factors into a line and an irreducible conic and has 2 nodes. Let q = 0 be the equation of the conic and $l_1 = 0$ the equation of the line. Let P and

T. J. Ford

FIGURE 4. The graph for the symbol Λ in Case 5.

Q denote the 2 nodes of C. Let $l_2 = 0$ be the equation of the tangent to q = 0 at P. Consider the symbol algebra

$$\Lambda = \left(\frac{l_1}{l_2}, \frac{q}{l_2^2}\right)_r$$

over K. The ramification divisor of Λ is contained in the curve $l_1 l_2 q = 0$. The graph for Λ is shown in Figure 3. We apply (4) to compute the weight w_1 of edge W_1 for the algebra Λ . In the notation above, we have $\alpha = l_1/l_2$, $\beta = q/l_2^2$, A_1 is the curve $l_1 = 0$, A_2 is the curve $l_2 = 0$, A_3 is the curve q = 0, $(A_1.A_2)_P = 1$, $(A_1.A_3)_P = 1$, $v_1(\alpha) = 1$, $v_2(\alpha) = -1$, $v_3(\alpha) = 0$, $v_1(\beta) = 0$, $v_2(\beta) = -2$, and $v_3(\beta) = 1$. From (4) we have

$$w_1 = [(0)(-1) - (1)(-2)](1) + [(0)(0) - (1)(1)](1) = +1$$

Similarly we compute $w_2 = -1$, $w_3 = +1$, $w_4 = -1$, and $w_5 = 0$. Therefore Λ has ramification divisor C and exponent n. Since ${}_n \operatorname{B}(\mathbb{P}^2 - C) \cong \operatorname{H}_1(\Gamma, \mathbb{Z}/n) \cong \mathbb{Z}/n$ we see that every algebra class of exponent n is some power of the one given, and therefore has degree n.

Case 4: C factors into a line and an irreducible conic and has a cuspidal singularity. In this case C is simply connected, $H_1(\Gamma, \mathbb{Z}/n) = 0$, hence no division algebra can have ramification divisor equal to C.

Case 5: C factors into 3 lines and has 3 nodes. Let the equation of C be written $l_1 l_2 l_3 = 0$ where each l_i is a linear form. Consider the symbol algebra

$$\Lambda = \left(\frac{l_1}{l_3}, \frac{l_2}{l_3}\right)_n$$

over K. The graph for Λ in this case is the hexagon shown in Figure 4. Using (4) and the same ideas as in the earlier cases, we find that the ramification divisor of Λ is C and exponent(Λ) = n. Since ${}_{n} \operatorname{B}(\mathbb{P}^{2} - C) \cong \operatorname{H}_{1}(\Gamma, \mathbb{Z}/n) \cong \mathbb{Z}/n$ we see that every algebra class of exponent n is some power of the one given, and therefore has degree n.

Case 6: *C* factors into 3 lines and has 1 singular point. In this case *C* is simply connected, $H_1(\Gamma, \mathbb{Z}/n) = 0$, hence no division algebra can have ramification divisor equal to *C*.

References

- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95.
- [2] T. J. Ford, On the Brauer group of a localization, J. Algebra 147 (1992), 365–378.
- [3] _____, Products of symbol algebras that ramify only on a nonsingular plane elliptic curve, The Ulam Quarterly 1 (1992), 12–16.
- [4] J. Milne, *Etale Cohomology*, Princeton Mathematical Series, no. 33, Princeton University Press, Princeton, N.J., 1980.

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida33431

Ford@acc.fau.edu