PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 33 (47), 1983, pp. 17-22

AN ERROR ESTIMATE FOR GAUSS-JACOBI QUADRATURE
FORMULA WITH THE HERMITE WEIGHT w(z) = exp(—122)

Radwan Al-Jarrah

The purpose of this paper is to give an estimate of the error in approximating
oo

the integral / f () exp(—xz?)dx by the Gauss-Jacobi quadrature formula Q, (w; f),
—0o0

assuming that f is an entire function satisfying a certain growth condition which

depends on the Hermite weight function w(z) = exp(—z?).

1. Introduction. Let da be a non-negative measure supported in the
interval (a,b), —0o < a < b < co. Let the support of da contain infinitely many
points and let

b
/x"da(az) <00, for n=0,1,2,....

a

Then there exists a uniquely determined sequence of orthonormal polynomials
{pn(da;x)} generated by this measure (see e. g. [1; Ch. I], [5; Ch. II]); they are
determined by the properties

(a) pn(da;x) = y,2™ + ... is a polynomial of degree n and -, > 0.
0; if m#n

1; if m=mn.

b
©) [ pnldepm(daria = {
It is well known that all zeros zg, (k= 1,2,...,n) of p,(da; x) are real, simple
and are contained in (a,b). We shall assume, as usual, that 1, > 22, > -+ > Tpgp.

If, in addition, da is an absolutely continuous measure, then da(z) = o/ (z)dx
and o' (z) is called a weight function. In this case, /(x) will be denoted by w(x)
and pp(da) by pn(w).
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If f is an arbitrary function defined in (a,b), the Gauss-Jacobi quadrature
formula is defined by the interpolatory quadrature formula

n

Qn(do; £) = An(da, Tkn) f (Tkn)

k=1

and it has the property that for every polynomial 7 having degree 2n — 1, at most,

we have
b

Qn(da;m) = /ﬂ'da.

a

The coefficient A, (da; zgy,) in this formula for @, (da) are called the Christof-
fel numbers and are the values of the function (see [4]) A5 (da; z) = S2"—0 p2(da; z)
at x =z, (k=1,2,...,n).

The nodes xy, are called the Gaussian abscise with respect to da.

2. Preliminary results. To prove our main result, we are going to use the
following three lemmas. Lemmas 1 and 2 are due to G. Freud [2, 3].

LEMMA 1. (See [2]). Let f(z) be an analytic function in a domain containing
the Gaussian abscise g, (kK = 1,2,...,n) and ;41 (j = 1,2,...,n+1). If
pn(da; ) = v,2™ + ... is the orthonormal polynomial of degree n associated with
the measure do, we have

, L J(e)dz
@n+1(da; ) — Qn(da; f) = Yo 2mi 7& pr(da; 2)ppa1 (da; 2)

where C, C D is a simple closed curve containing the zeros of pn(da) and
Pnt1(da, 2) in its interior. The error term of the quadrature formula is

b oo
[ 1o Quas =3 2 L f TR 2.1)

Y o 2mi da; 2)py+1(da; 2)

v=n
LEMMA 2. (See [3]). For every even weight function w(zx), we have

_ < < _ .
| Jpax 1/ < @1n < 2 max 1/Vk (2:2)

LEMMA 3. Let w(zx) be an even weight function. Then we have

[n/2] * n—1 o 2
T3, = — 2.3
2 ok Z( e ) 23

k=1 k=1

1Here, [ ] is the greatest integer function
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Proof. From the fact that w is an even weight function, it follows that (see
e.g. [5; §2.3(2)]) pn(w; ) is an even or an odd polynomial according as n is even
or odd. Hence, we can write

po(w; ) = yna™ — Buz™ 2 4 ... (2.4)

Recalling the recursion formula for the orthogonal polynomials generated by
an even weight function (see [5; §3.2(1)] or (1; §1.2]), we have

TP (W5 ) = YnYnt1Pnt1 (W5 T) + Yne17p, Pt (w; T) (2.5)

Combining (2.4) and (2.5) and comparing the coefficients of z"~! on both
sides of (2.5) we get

—Bn = _Bn-i-l')'n/')'n-i-l + '7371/'7%

i. e,
/8n+1/7n+1 = /Bn/’)'n + (’7n—1/7n)2
2
. . . ﬂ_" _ n—1 { yp—1
which implies that Z= =3~ <—w ) .

Since it is easy to see that f:—: = 259"2/12] z3,, the proof of the lemma is com-

pleted.

3. The main result.

THEOREM. Let f(2) be an entire function satisfying the condition

B = lim sup R~? max(log|f(2)]) < p (3.1)
R—oo |z|=R

where p (= .70541786) is such that p = (39 + 1)(1 — o) /8o and eq is the solution
of 2 exp (42) = 1, Then we have

1/n

lim sup ‘/00 f@)w(z)dz — Qn(w; f) <1

n— oo

where w(z) = exp(—x2),

Proof. Since w(x) = exp(—x?), it is well known that the n-th orthonormal
polynomial generated by this weight function is the n-th Hermite polynomial h,,(z)
and it is also well known (see. e. g. [5; §5.5]) that

72 = 2"/y/n/n! (3.2)

which easily implies
Yn—-1/Yn = /n/2 (3-3)
Combining (3.3) and (2.2), we get

T1,n+1 S V2n (34)
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Combining (3.3) and (2.3), we find that

—1
Z%F% n=234,... (3.5)

To prove this theorem we are going to use (2.1). First we will find an inequality
for |h,(z)| 1. Since w is an even weight function, it follows that (see [5; §2.3 (2)])

[n/2]
hn(z) = 2" H (2% = 23,)
k=1
Hence,
[n/2] [n/2]
i (2)] = Yl 22T 127 = 23] = ymlzMexp{ D log |1 — a3, /2%
k=1 k=1
[n/2] 22 [n/2] 22
> yn|2|™ exp 10g< - ﬂ) > Yalz|"exp = Y R0
" kzzl |z[? " > (I2I? — 23,,)

k=1
for every complex number z such that z1, < |z|. Next we have

/(|2 = 2%,) < 1/(12]* = 21,)

and so
1 [n/2]
|Pn(2)] > Ynl2|™ exp P =22 Z .
In p=1

Using (3.5), we find that
[ (2)] > Tal2|™ exp{—n(n — 1)/4(|2|* - 27,)}

Therefore
1/|hn(2)] < 75, 2" exp{n(n — 1)/4(|z|* — 27,,)}-

And so, for 1,41 < |2], it follows that

1 o1 1 eXp{4(n(n—1) L+ }

lhn(2)hnt1 (2] ~ Ynynts |2 |21? = 21,)  4(121> =23 540)

<1 1 n?
< exp )
YnYnt1 |22 2(|2* - m'%,n+1)

Since g = I%i_{noo sup R2 |r§|12}1{:5(10g |f(2)]) for any o > 0, we can find N, such that

|f(2)] < exp{(B + 0)|z|*}, for all |z| > N,. (3.6)
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Denoting by I,, the expresion Tnt1 7{
Yn 2mi ha(
integration to be the circle |z| = R, where
R >a2,,/(1-¢), (0<el), (3.7)

we find, that for |z2| = R

taking the path of
n+1 )

1 SRS SRR S { n? }
|hn(2)hnt1(2)] = YnYntr  REFHL 2(Rr? - x%,n+l)
< 1 . Al exp{ n? }< 1 . 1 exp{ "’ }
= YoYne1 RETL 2(R2—(1—-¢)R?) ) — YpYny1 HR2HL 2(2¢R?
Using the last inequality, (3.2) and (3.6), we conclude that for R > N,,

|| < Vanl2 "R max |f(2)] - exp{n®/2eR*} <

< VT2 "R exp{(B + 0)R? + n?/2eR?}.

Next, R will be chosen so as to minimize the right hand side of this inequality, and
at the same time, to satisfy (3.7).

Consider the function h(R) = R~ exp{(3 + o) R* + n®/2¢ R?}.
Differentiating h(R) and setting h'(R) = 0, we get
2(8+ 0)eR* — 2neR* —n? = 0. (3.8)
If we denote by R,, the positive solution of this equation, we find that

g2 1t {1+2(8+ 0)/e}'/? .
" 2(8+0)
(We can easily check that f(R) attains its minimum value at R = R,,). Forn > N,
for a suitable N > 0, we will have R,, > N,. Also, from (3.4), it follows that

1+ {14 2(8 +0)/e}'/?

2
> .
Rn - 4(ﬂ+ 0') xl,n—i—l
and consequently, condition (3.8) will be satisfied if
4B+0)1+{1+28+0)/e}/?=1—-¢ (3.9)

Since R, satisfies equation (3.8), we find that
(B+0)R: =n+n?/2R2
and it follows that

n2
|I|<\/— R2nexp{n+ﬁ}§

n! (B+0) " (B+0)
v on { 1+ (1 +2(ﬁ+a)/e)1/2} 'eXp{E(l + (1+2(ﬂ+0)/5)1/2)}
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Using (3.9), we find that
|I,| < V/an!l27"n~"((1 —€)/2)" exp{n + (1 — &)n/2¢}
Using the Stirling formula n! =~ v/2mnn"e~", we find that
1—¢ 1-e\\"
<
| 1| _K\/ﬁ{ 1 exp( 5 )}

K = constant and n is sufficiently large.

—€ 1-¢) . . .
exp | —— | is a decreasing function on
4 2e

(0,1). Consequently, if ¢ is the unique solution of g(g) = 1, then for g9 < ¢ < 1
we have 0 < g(e) < 1.

1
It is easy to see that g(e) =

Thus, Y po; |Ix| is a convergent series.
If A, =342, Ik, we have

> > 1-¢ 1-2\\*
< .
Aal< Dl <K 3V (S e ()

oo 2 n
Since Z kxk < % for 0 < z < 1, it follows that

k=n
1-—¢ 1—¢e\) 2 /1-¢ 1—e\\"

< _
|An|_K(n+3){1 1 exp( % >} ( 1 exp( P ))

1— 1-
lim sup|An|1/" < £ exp (—E) <1 for every g9 < e < 1.
n— 00 4 2e

and so

Finally, it remains to justify the assumption (3.1).
From (3.9) and the choice of gg < € < 1, we see that

4(8 + o) - 4(8 + o)
1+ {1+2(8+0)/eo}'/? " L+ {1+2(8+0)/e}!/?

=1—-e<1—¢gg

and therefore,
4(8 + o)
1+ {2(8 +0)/eo}'/?

Solving this inequality, we find that

<1—60.

0<B+0<(3e0+1)(1 —e9)/80 =p (~.70541786)

Hence, we must have 0 < 8 < p, which completes the proof of the theorem.
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