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ABELIAN TYPE THEOREMS FOR SOME
INTEGRAL OPERATORS IN R"

Tatjana Ostrogorski

Abstract. For integral transforms of functions defined on cones in the n-dimensional
Euclidean space we prove two theorems of the following “Abelian” type: The transform of a
regularly varying function is regularly varying.

1. Introduction. Let, as usual, R™ denote the real n-dimensional Euclidean
space. If x = (&1,...,&,) and y = (n1,...,7m,) are elements of R™, their inner
product is denoted by z -y = 37, &n; and the norm of z by |z| = (z - z)'/2.

The set I' C R™ is a cone if z € T implies Az € T, for every A > 0. An
example of cone is R} = {x € R" : & > 0,...,§, > 0}, the positive octant. We
shall always assume that the cone T is closed, convex, that it has nonempty interior
and that it is acute; see [3] or [4].

When examining the asymptotic relations the notion of regular variation is
very useful. Regularly varying functions were first defined by Karamata — in the
one-dimensional case (see [2]). This definition was generalized to the n-dimensional
case by Yakymiv in the following way.

Definition [5]. Let T’ be a cone in R™. A measurable function R:T" = R is
regularly varying (at infinity) if a function ¢ : ' = R exists such that

. R(Ax)
1 1
(1) oo 216111; R()e)

—¢mﬂ=o

for a fixed e € ' (e # 0) and for every compact set B C I\ {0}.

Recall that in the definition of regularly varying functions in one variable
only the existence of the pointwise limit of R(Az)/R(A) is required and that (the
analogue of) (1) follows by the Uniform Convergence Theorem [2]. It was proved
by Yakymiv that for n > 2 the existence of the pointwise limit would not imply
the existence of the uniform limit and this motivates the Definition.
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It is easily seen that the class of functions satisfying the Definition does not
depend on the choice of e; we can assume that ¢(e) = 1.

The function ¢ in (1) is homogeneous, i.e. there is an p € R, called the
order of ¢, such that p(A\z) = APy(x), for every A > 0 and z € T'; moreover, ¢ is
continuous and bounded away from zero. The order of ¢ is also called the index of
the regularly varying function R. We shall consistently use the following notation:
R will stand for a regularly varying function, ¢ for its “index” function, r for the
function in one variable R(Ae) (which is obviously regularly varying in R ).

A regularly varying function whose index function is 1 is called a slowly
varying function. Every regularly varying function R can be represented in the
following way R = ¢L, where ¢ is the index function and L is a slowly varying
function.

Finally, let us define regular variation at zero. A measurable function R :
T — R, is regularly varying at zero (with index p) if the limit

R(z/)\)
A—00 7‘()\)

= p(z)

exists uniformly in z € B, for every compact set B C T\ {0}.

The main objective of the present paper is the investigation of some integral
operators of the form

@) KF(z) = / Fwk(u,2)du, =z €G,

which transform functions defined on a cone I' into functions defined on a cone
G. We shall consider two kinds of such operators (the first applicable to arbitrary
regularly varying functions — Section 2, and the second only to the monotone ones
— Section 3) and we shall prove that for these operators the regular variation of F
implies the regular variation of F'. In Section 4 we deduce analogous results for
the regular variation at zero. These statements are n-dimensional counterparts of
the one-dimensional results from [1].

Let us first state some facts about regularly varying functions.

(i) A regularly varying function on T is locally bounded on T' (= bounded on every
compact set B C T'\ {0}) [5].

(ii) For every slowly varying function L there is an asymptotically equivalent radial
slowly varying function L, [5].

This is easily seen by putting L,.(z) = L(|z|e), for some e € T'; let | be defined
by I(|z]) = L. ().

Let L be a slowly varying function on I'" and let F' be a locally integrable
function on I'. Let |u| < & denote the set {u € T' : |u| < 6} and similarly for
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|u| > A. Then for some 1 > 0 and some positive constants C; and Cy we have

(iii) L(Au)F(u)du < C18"(A)) |u| 7" F(u)du
u[{& u|[6
(iv) LOw)F(u)du < CoAT(AA) |u|"F(u)du
u|{5 u|[A

for X large enough.

The proof of (iii) and (iv) is similar to the proof of the corresponding one-
dimensional statements [2]. For (iii) we use the following property of slowly varying
functions sup |u|"L(u) ~ |z|"l(|z]), for n > 0, || = oo (see [5]), and similarly

u|<|z]
for (iv).

2. Operators with absolutely integrable kernels. Let T' and G be
two cones in R™. A measurable function k& : I' x G — R will be called a kernel
(on T' x G). In this section we shall consider kernels which satisfy the following
condition. For a given p € R

(A) / max([u[ =", [u[") k(u, 2)|du < C(z), = € G,

for some 1 > 0 and a positive function C(z).
The number p is called the index of the kernel k.

Now consider an operator defined as in (2). Assume moreover that the func-
tion k is homogeneous of order «, for some a € R (i.e. k(Au,Az) = A\*k(u,x)).
Then we have

(3) KF(Az) = A+n / FOw)k(u, 5)du.

Indeed, by making a change of variables we have

F(A\x) /F u)\mdu—)\"/F)\vk()\v)\x)d
= /\0‘+"/F()\v)k(v,x)dv

which proves (3),

PROPOSITION 1. LetT' and G be two cones in R™. Let k be a kernel on T' x G
satisfying (A) with index 0, homogeneous of order a, and let L be a slowly varying
function on T'. Then

KL(\x)

No+nj()) Kl(z)| <e(N)C(z), =z€G,
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where e(A) = 0, as A = o0.

Proof. We have by (3)

KL(\x) B L(Au) B
XJ‘TZ()\) - ]C].(IL') = / (W - 1) k(u,:c)du =
r

/+ / + / =h+DL+1;

lul<d  6<[u|<A  4<]|ul

(4)

where ¢ and A will be chosen later.
For the integral I; we have

1
e / LOW) [k (u, 2)|du + / le(u, )| ds.

|u|<d |u|<d

|I1] <

If we apply property (iii) of slowly varying functions and then condition (A) we
obtain

1] < 5= CLTI) / |~k (u, )] du + / (s, 2)|du <

()
(5) lul<s lul <8
< CLI(M)/IA) +1)6"C(x) < Cs6"C(a)

for A large enough.
Analogously, using (iv) instead of (iii) we have for I3

(6) [I3| < CsA7"C ()

for X large enough.

Now for a given € > 0 we choose § and A such that C36"7 < € and C4A™ " < €.
Then from (5) and (6) we have

(7) |Ii| + |I3] < eC(x)

Next for 6 and A chosen as above consider I. Since the set § < |u] < A is
compact it follows from the definition of slowly varying functions that

(8) |[I2] < eCl(x)

for A large enough. Now the proof of the proposition follows by substituting (7)
and (8) into (4).

THEOREM 1. Let T’ and G be two cones in R™. Let k be a kernel satisfying
(A) with index p, homogeneous of order a, and let R be u regularly varying function
of index p in T'. Then

KR(A\x)

9) seinr(y ~ Kelw)| <C@E(), ze@



Abelian type theorems for some integral operators in R™ 97

where e(A) = 0 as A = 0.

Proof. The function ¢ is homogeneous of order p and continuous and bounded
away from zero; therefore

Cilul” < p(u) = [ul’o(u’) < Colul’

and from this it follows that (A) is equivalent to

/ ma(|u] ", |u]")o(w)k(u, x)du < C5C/()

which means that the function ky(u,z) = ¢(uw)k(u,z) is a kernel satisfying (A)
with index 0. It is moreover homogeneous of order p + a, and thus it satisfies
the conditions of Proposition 1 (with « replaced by p + a ). We shall apply this
proposition to the operator X; with kernel k; and to the slowly varying function
L = R/¢p. First observe that

R(M)  L(Aw)p(dv)  L(dv)Xo(v)

r(A) IN)phe) 1NN
From this, by an application of (3), it follows that

KR(w) _ R(\v) _
— 2 — Ky(z) = = (v) ) k(v z)dv =
/( )

XaFnr(\) O
L{Av KiL(w
= / ( l(()\)) _ 1) p(v)k(v,z)dv = W(Pl())\) - Ki1(z).
r

Now an application of Proposition 1 completes the proof of the theorem.

Remark. We have not proved yet that KR is regularly varying, for (9) gives
only the pointwise convergence of KR(Az)/A*t"r()) (and not the uniform). How-
ever, it is immediate from (9) that we shall indeed have regular variation if C'(z) is
assumed to be locally bounded (for instance, C(z) = C). We shall formulate this
remark as a corollary and observe that similar considerations are in order whenever
we have an equation similar to (9) (see (19) in Theorem 2 below).

COROLLARY 1. Let k and R satisfy the conditions of Theorem 1 and let
the function C(x) in (A) be bounded on compact sets in G1 \ {0}, where G, is a
cone contained in, or equal to G. Then |KR| is reqularly varying in G1 with index
function |Kp| and index o+ n + p.

In the next corollary we shall consider several examples of operators to which
Theorem 1 applies.

Let us write (a,b) for the “interval”, defined by (a,b) = {z €T :a <r z <r
b} = (a+T)N (b —T). We shall write )a,b) for the difference of two intervals
Ya,b) = (0,b)\ (0, a), and also by abusing the notation {a,0) = a+T and )a, 00) =
'\ (0,a).
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Consider the following three operators:

(10) Tr f(z) = / f(u)du, z€T
(0,x)

(11) Jrf(z) = / f(u)du, z €Tl
{(z,00)

(12) T (@) = / f(u)du, z€T.
Y& ,00)

COROLLARY 2. Let R be a regularly varying function on a cone I', with index
p and indez function .

a) Let —n < p < 0. Then IR is regularly varying in T with index p+n and index
function Zpp.

b) Let p > —n. Then JrR and J}R are regularly varying in T with index p + n
and indezx functions Jre and J ¢ respectively.

Proof. We shall prove a) only, the proof of b) being similar. Obviously (10)
is an operator of the form (2) with kernel k(u,z) = 6(0,)(u) (where 84 is the
characteristic function of the set A). We have to prove that this kernel satisfies the
conditions of Corollary 1. Since k(\u, Az) = k(u, ), we see that k is homogeneous
of order 0. Next we prove that (A) holds. We have

/ma.x(|u|p_",|u|”+")|k(u,m)|du: / + / L+ D
r

[u/<1 Jul>1
For the first integral we have
(13) L= / (P~ (u, 2)|du < / lufP~du < C
lu<1 lul<1

if 0 < n < p+n; and for the second, if 0 < < —p

(14 L= / (a7, 2) s < / (u, 2)du < / du= V().
[u|>1 [u[>1 (0,)
From (13) and (14) it follows that if we choose n < min(—p,p+n), then I1 + I, <
C + V(z), and this proves (A) with C(z) = C + V (z).
If B is a compact set in I'\ {0}, then sup V' (z) is bounded, since V' (z) is the
volume of a bounded set. Now Corollary 1 zgrlf be applied to complete the proof.

The functions defined in (10), (11) and (12) may be called primitive functions
for f. They are monotone in the following sense.
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A cone T defines a partial order in R™. We say that ¢ <p y if y —z € T.
A real function F' is said to be monotone increasing (decreasing) on I' if x <r y
implies F(z) < F(y) (F(z) = F(y)).

Now, it is obvious that for positive f the function Zr f is monotone increasing
in T, and Jrf and J} f are monotone decreasing.

Remark. For monotone functions it is possible to obtain the converse of
Corollary 2 (the Tauberian theorem for operators (10), (11) and (12)), i.e., that
for monotone R the regular variation of ZrR (or JrR or J¢ R) implies the regular
variation of R. This was proved (implicitly) by Yakymiv [5] (see the proof of
Theorem 9.1).

3. Operators with nonabsolutely integrable kernels. In this section we
shall consider operators K with a different kind of kernel (satisfying condition (B)
below). These operators will be applied to monotone functions and the integrals
defining them will not be absolutely convergent.

Let F be a locally integrable function on I'. The integral [ F(t)dt is said
r
to converge in the sense of principal value if the limit lim [ F(t)dt exists for

|b\—>oo<07b)
b € T'y, where I'y is a cone such that 'y C fF.

Let " and G be two cones in R™. In this section we shall consider kernels on
I' x G which satisfy the following condition

(B) / (u, z)du

{a;b)

<C(z), ze€qG

for some positive function C(z) and all intervals {a,b) C T.

Let us call, for short, the function F' monotone primitive if there is a positive

integrable function f on T such that F(z) = [ f(t)dt = Jrf(z).
z+T

In the following proposition we prove the existence of the integral KF(x).
This proposition is the analogue of Dirichlet s criterion for nonabsolutely convergent
integrals.

PROPOSITION 2. Let I' and G be two cones in R™. Let k be a kernel on T x G
satisfying (B) and let F be a monotone primitive function on T'. Then the integral

(13) KF(z) = /F(u)k(u,m)du, zeG
r

exists in the sense of principal value.

The proof of the proposition is based on the following lemma.
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LEMMA 1. Let F and k satisfy the conditions of Proposition 2. Let F(u) =

J f(t)dt. Then
/F k(u, 2)du| < C(x /f

u+T
(14) Hap| =
Ya,b) Ya,00)

With this lemma, Proposition 2 follows at once. Indeed, to show that (13)
converges in the sense of principal value we have to show that the “remainder”
I, of this integral tends to 0, as |al,|b|] = co. Now, by (14) we have |I,;| <

J f(t)dt, and the last integral tends to 0 as |a| — oo, since f is integrable.

)a,00)

This proves Proposition 2.

Proof of Lemma 1. First we shall prove that for k satisfying (B) we have

/ k(u, z)du

)a,b)

Indeed, since )a,b) = (0,b) \ (0,a) wehave [ = [ — [ . Now an application
Ya,b)  {0,b)  (0,a)

(15) <2C(x)

of (B) yields (15).
To prove (14) we shall apply Fubini’s Theorem to the integral

(16) Iy = / F(u)k(u,z)du = / k(u, ) / f@)dtdu.
Ya,b) Ya,b) u+I

The domain of integration in the double integral is defined by u € )a,b), which
means (i) u € )a,o00) and (ii) u <r b, and by t € u + I', which means (iii) ¢ >r u.

Now, it is easily seen that by (i) and (iii) we have ¢t € )a, 00), and that for u
we have, by (ii) and (iii), v <r b and u <r t, which, if we put ¢ = minr(b,t), is
equivalent with u <r ¢; and this together with (i) gives u € )a,c).

Thus if we reverse the order of integration in (16) we have

Iy = /kum /f t)dtdu. = /f(t)/k(u,x)dudt.

Ya,b) utT )a,o0) )asc)

dt < C(x) / £(t) dt

)a,00)

And now we apply (15) to the last integral:

Loy| = / 0 b, z)du

)a,00)

Ya,c)
which completes the proof of the lemma.

Now we shall consider the regular variation of monotone primitive functions.
First we prove a lemma.
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LEMMA 2. Let R be monotone primitive on a cone ', R(z) = [ f(t)dt such
z+T
that f is also monotone, and let R be regularly varying with index p, —n < p < 0.

Then
a) the function f is regularly varying with index function v such that ¢(z) =
J (u)du.

z+T
b) Let k satisfy condition (B), then

(17) < C(a) / (u)du.

)a,00)

/ R(Au)k(u, z)du

)@,00)

Proof. Part a) follows by the remark at the end of Section 2.
b) By Lemma 1 we have
<% [ sa

))\a o)

(18)

/ R(A\uw)k(u,z)du
)a b)

But since f is regularly varying, an application of Corollary 2 b) yields that
Jtfla) = [ f(u)du is regularly varying and has the index function Ji¢(a).
)@,00)

Thus letting A — oo in (18) we shall have 1/r(\) [ f(u)du — [ ¢(u)du and
YAa,00) Ya,00)

this proves (17).

THEOREM 2. Let I' and G be two cones in R™. Let —n < p < 0. Let R
be regularly varying on T with index p, and let R be monotone primitive, R(x) =

[ f@)dt, such that f is also monotone. Let k be a bounded kernel on T x G
z+T
satisfying (B), homogeneous of order a.. Then

KR(\x)
Aatnr())

where e(A) = 0 as A = oo.

(19) —Kp(x)| <e(N)C(z), z€G

Proof. We have, as in the proof of Theorem 1 (see (3)),
s~ kip(o) = [ ()~ o)) kv, a1 =
r

Aetnp()) r(A)
(20)

+/+ / =L +5L+1s,
)0,a)  )a,A)  )A,00)

say. Consider I;. Since R is regularly varying with index p, —n < p < 0, from

Corollary 2 a) it follows that Zr R(x J R(u)du is regularly varying with index
(0,)
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function Zrp(z) = [ ¢(u)du (and with index p + n). From this we shall have,
(0,)
since k is bounded

1

L o IFR()\(I)
r(A) B

/ R(A\v)dv + / p(v)dv ) + Irp(a) < 2Iry(a)
(0,a) (0,a)

|| <

for A large enough. Now given € (depending on A) we can choose a small enough
in I" such that

(21) L] <e.

For the integral I3 we have

+

/ ROW)k(v, z)do

)A;00)

/ p()k(v,z)dv

)A,00)

1
I < —
oY

and since R satisfies the conditions of Lemma 2, we have by (17)

T3] < 20() / (u)du.

)A,00)

Now if we choose A large enough in ' we shall have [ ¢ (u)du < . Thus we
)A,00)
have proved
(22) |I3| < eC(x).
For a and A chosen as above we consider I
R(\v)
2 I < —
(23) nls [ RS- pw)|do o
)A,00)

as A — 00, by the definition of regularly varying functions, since )a, A) is compact
in T\ {0}. By substituting (21), (22) and (23) into (20) we complete the proof of
the theorem.

Remark. Obviously, we can obtain as a corollary of this theorem a statement
similar to Corollary 1 (see also the Remark after Theorem 1); namely, assuming the
local boundedness of C(z) the regular variation of R implies the regular variation
of |KCR|.

4. Asymptotic behavior at zero. In the present section we prove two
corollaries of Theorems 1 and 2.

COROLLARY 4. Let R and k satisfy the assumptions of Theorem 1, or the
assumptions of Theorem 2. Then

1 R/
Ao (V)

= (,O(U), u €l
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uniformly in compact sets in T\ {0}, implies

(23) lim L@/

A Neamnp(y) - Rele) T e G

and the convergence in (23) is uniform in compact sets in G \ {0}, under the
additional assumption that C(z) is locally bounded.

Proof. We have

KR(z/A) = / R(w)k(u, 2/ \)du = / R(o/A)k(v/A, 2/ \)A~"dv =
T N
=A"""% [ R(v/N)k(v,z)dv
/

and if we use this equation instead of (3), the proof of the corollary follows along
the same lines as the proof of Theorem 1 or the proof of Theorem 2.

Next we consider kernels which instead of bein homogeneous of order a satisfy
the following condition

(24) E(Au,z/A) = k(u, x).

COROLLARY 5. Let R and k satisfy the assumptions of Theorem 1 or the
assumptions of Theorem 2, — only let k satisfy (24) instead of being homogeneous
of order a.. Then

R(Au)
A—00 7‘()\)

=), wel,
uniformly in compact sets in T\ {0}, implies

. KR(z/\) _

Here also we have uniform convergence in (25) if the function C(z) is locally
bounded and the proof is very similar to the proof of Corollary 4.
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