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ON RANDOM VARIABLES WITH THE SAME
DISTRIBUTION TYPE AS THEIR RANDOM SUM

Slobodanka Janjié

Abstract. Let £1,82,...,&n,... be a sequence of nonnegative, independent, equally dis-
tributed random variables with distribution function F(z) and corresponding Laplace transform
f(¢); let v be integer-valued random variable independent of &,, n = 1,2,..., pn = P(v = n),
po = 0, P(s) = Y 0% ,s™pn — its generating function. In this paper, solutions (P, f) of the
following functional equation are found:

P(f(t)) = f(eut),

where ¢, is a real number depending on v.

Let &1,&2,...,&n, ... be a sequence of nonnegative, independent and equally
distributed random variables with distribution function F(z) = P ({1 < z), and v
integer-valued random variable, p, = P(v = n), po = 0, independent of the random
variables &, k = 1,2,.... Denote by S, the following sum:

Sy=L+&+ -+ &,
®,(z) = P(S,z). Obviously, we have

d,(x) =Y P(Sp <z)pn = Y F*™(2)p, (1)

where F*(?) (z) is the distribution function of the sum S, =& + &+ -+ &,. In
terms of Laplace transform (1) becomes

where f(t) = ;foe_t’”dF(a:), o(t) = :foe_tzd@,,(:c).
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Let us denote by K the class of random variables for which
®,(x) = F(z/cy) 3)

is valid, where ¢, is a real number depending on v. In other words, K is the class
of random variables for which the distribution function of the sum & + - - -+ &,u of
random number of equally distributed random variables differs only by a scale factor
from the distribution of one random variable from that sum, i.e., the distribution
function of random variables from K has the same type [1, p. 137] as the distribution
of one random variable from the sum.

From (2) and (3) we have the functional equation

oo

S @) pn = Flet) (4)

n=1

Let us denote by P(s) the generating function of random variable v, P(s) =
> 0 8™Pn, s € (0,1]; then (4) becomes

P(f(8) = f(et). ()

In [2] a case when the random variable v has geometric distribution (i.e.
pn=p¢"" ', p+q=1,n=1,2,...) was investigated; then equation (5) reduces to

pfO)(1 = qf(t)™" = f(ct),

and a characterization of the corresponding class of random variables was given by
their Laplace transforms.

The question is how the solutions (P, f) of functional equation (5) look like,
where P and f are, as before, generating function and Laplace transform of some
random variables. We shall obtain the solution of (5) as a special case when s = 1
from the solution of the more general functional equation:

P(sf(t))/P(s) = f(c(s)t), (6)

t € [0,00), s € (0,1], where P(s) is the generating function of a nondegenerate,
integer-valued random variable with finite mathematical expectation and variance,
f() is the Laplace transform of nondegenerate random variable; ¢(s) is a real
function on (0, 1].

THEOREM. Functions (P, f,c) are solutions of the functional equation (6) if
and only if

psh 1/k
=|— 1 N 1
P =[] pe@, ken e,

&) =0 +ct®) VY ¢>0, 0<a<1, t>0,
o(s) = (1— (1 —p)s*)~H/.
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Proof. In one direction this theorem is proved immediately by substitution of
(7) in the equality (6).

We shall now prove the converse of the theorem. Let us suppose that func-
tional equation (6) is valid for some functions P(s), f(t) and c¢(s). Since f(t) is
a Laplace transform, it must be strictly monotone, continuous and it possesses
derivatives of all orders. Let us show that its first derivative never equals zero. If,
on the contrary, f'(to) = 0 for some tg, then for every T > 0 the following holds:

0=f'(to) = [ ze "dF(z) > | ze ""dF(z) >
[z ]
>T(1—F(T))e %, g4 € (T,0),

so we have that F(z) is a distribution function of a degenerate random variable,
contrary to our assumption. Since the first derivative of f(t) never vanishes, the
derivative of the inverse function f~!(u) exists.

Let us write (6) in the following way:
fTHP(su)/P(s)) = c(s)f 7' (w), we(0,1), se(0,1]. (8)
If, for some sg, ¢(sg) = 0, it follows from (6) that f(¢) = 1, which is impossible.
So, ¢(s) =0, for every s € (0,1].
From (8) we have

F1(P(su)/P(s)) B ()
f~H(P(sv)/P(s)) T )’ u,v € (0,1), s € (0,1]. 9)

Differentiating (9) with respect to s, u, v, after simple transformations we get

') fH w) _ P'(sv)(uP'(su)P(s) — P'(s)P(su))

PO @) - PE)ePeoPe) - PePE)
Let us differentiate (10) with respect to s, and let s tend to 1. We have
uP"(u) u?P"(u) — P"(1)P(u) _ vP"(v) v2P"(v) — P"(1)P(v) (11)

P!'(u) uP!(u) — P'(1)P(u) P'(v) vP'(v) — P'(1)P(v)

for every u,v € (0,1). If, for fixed v, we denote by a the expression on the right-
hand side of equality (11), we have

P'(1)P"(u)/P'(u) + aP'(u)/P(u) — (P"(1) + aP'(1))/u =0, u € (0,1), P(1)=1
which is equivalent to
P'(1)In P'(u) + aln P(u) — (P"(1) 4+ aP'(1))Inu = Co = P'(1) In P'(1).
The solution of this equation is:
a/P'(1)+1)7"

_ [ @/P(Q)+1)P'(1) oy pr1y/pay4
Pl = s paypm +1" T
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From P(1) =1 we obtain that

(a/P'(1) + 1) P'(1)
a+P'(1)/P'(1)+ 1

Ci=1-

Solution P(u) is of the form
Pw)=[pu =1 -pp "7 we(01). (12)

Let us show that a, 3 are positive integers and 0 < p < 1.
1. If @ < 0, let us write the Taylor expansion for P(u):

o= (52)o 102 = (5 S () (5

n=

Since P(u) is a generating function, powers of u must be positive integers, which
means that —a € N; for all n, coefficients must be nonnegative, i.e., (_i / a)(p -
1)™>0,n=0,1,..., whence 8 < 0 and p < 1. But then we get P(u) > 1, which
is impossible.

2. If a > 0, the Taylor expansion for (12) is

P(u) = (u—ap—l)—ﬂ/a(l +(p— 1)ua)—ﬂ/a _

= (up~) P/ i <_i/a) (p—1)"u" = iop"/“ (_i/a) (p— 1) u™t]
o =

whence again 8 > 0, p < 1, a and 3 are positive integers. From p < 0 it follows
that P(u) > 1, and we must have p > 0. We obtain that P(u) is

k

pu ni/k
P(U): [W] 5 UG(O,l), pE(O,l), k,nleN.

Let us write M (¢) = (f(¢))*, (1 — p)s¥ = 1 — z; then from (6):

[1 § (zM(t)

m] - M(((2)t), te R, (13)

where ((z) is a real function on (p, 1),

IR M(t) "

— 11 i

(=) =t 1-(1-2)M®| )’

and therefore ((z) is differentiable and its derivative never vanishes. Let us differ-

entiate (13) with respect to ¢ and z; after simple transformations we get

M) ()
M- M@®) ()

t € (0,00), z € (p,1). (14)
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If we denote by ag the left-hand side of (14) for t fixed, it follows that ag/z =
¢'(2)/¢(2), whence ((z) = 2% /a;. In order to obtain M (t), let us write (14) in the
following way (for fixed z, the right-hand side of (14) is constant bp):

b M'(t) — 2M(£) M'(t) + 2M (£) M' ()
t M@#)(1 - M) '

It follows that
bolnt =In M(#)(1 — M(t)) —2In(1 — M(®)) +InC,

and therefore M(t) = (1 4+ ct~%0)~'. Since M(t) is an k-th power of the Laplace
transform f(t), we must have ¢ > 0, —bp = a € (0,1]. So, M(¢t) and ((z) are
solutions of equation (13) only when n; =1, a; =1, ap = —1/a. We have that

F@) = (L +et)7HE, e(s) = [1 = (1= p)s"] /e

The proof is complete.

We supposed that P(s) was the generating function of a nondegenerate ran-
dom variable. Let us discuss now solutions of (6) in case P(s) is the generating
function of a degenerate random variable. Then (6) reduces to

(f@)" = F(ct), t€[0,00), n€N, ¢>1. (15)

If ¢ =1, then if n = 1, f is arbitrary, and if n > 1, f is the Laplace transform of
a degenerate random variable. Let us consider the case when n > 1, ¢ > 1. Since
for every t € [0,00) f(t) # 0, we can write f(t) = exp(u(t)), and (15) becomes
exp(nu(t)) = exp(u(ct)), or

nu(t) = u(ct). (16)

Let u1(t) and ua(t) be two solutions of (16), and let g(t) = u1(t)/u2(t). Then, from

(16), we have
9(t) = w1 (t)/u2(t) = wi(ct) fua(ct) = g(ct).

Let h(Int) = g(t), then h(Int) = h(lnt + Inc), i.e. h(s) = h(s + Inc). Whence
u(t) = uo(t)h(Int) and f(t) = (fo(t))heclnt) = exp(uo(t)h(Int)). Since (15) holds,

(@)™ = o)™ = (fo(ct) ™D = (fo(ct))" 1) = f(ct).

One solution of (15) is fo(t) = exp(—t°), 0 < 3 < 1. Let us compute 3. We have
uo(t) = —tP, —nt? = —(n/Pt)? = wug(ct); then ¢ = n'/?, whence g = Inn/Inc.
Since f(t) = exp(—t*h(Int)), then h(lnt) = —¢°In f(¢). When h(Int) is constant,
f(¢) is the Laplace transform of a stable, [1, p. 448] distribution function.

Remark. It is natural to ask about solutions of (6) when P(s) and ¢(s) are as
before, and f(t) is the characteristic function of a random variable which need not
be only positive. In [3], the solution of (4) is found on the condition that v has the
geometric distribution function and f(¢) is the characheristic function of a random
variable with arbitrary sign. It is easy to see that if P(s) and ¢(s) are as in (7) and

F() = (1 + u(t) /%
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where v(t) = (co + it/|tlc|)|t]®, 0 < @ <2, ¢ > 0, c1 € R, k € N, then stch
(P, f,c) are solutions of the equation (6). The question is whether, except for these
(P, f,c), other solutions in this class of function exists.
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