KÖTHE-TOEPLITZ DUALS OF SOME NEW SEQUENCE SPACES AND THEIR MATRIX MAPS

Z. U. Ahmad and Mursaleen

Abstract. The spaces of sequences obtained by Kizmaz have been extended for a sequence $p=(p_k)$ of strictly positive numbers, and their Köthe-Toeplitz duals have also been obtained. Furthermore, we study the matrix transformations of these sequence spaces.

1. Introduction

Let l_{∞} , c and c_0 , denote the Banach spaces of bounded, convergent, and null sequences $x = (x_k)$ respectively with $||x|| = \sup_k |x_k|$.

Recently Kizmaz [1] defined the sequence spaces

$$\begin{split} l_{\infty}(\varDelta) = \{x = (x_k) : \varDelta x \in l_{\infty}\}, \quad c(\varDelta) = \{x = (x_k) : \varDelta x \in c\}, \\ c_0(\varDelta) = \{x = (x_k) : \varDelta x \in c_0\}, \end{split}$$

where $\Delta = (x_k - x_{k+1})$. These are Banach spaces with the norm $||x||_{\Delta} = |x_1| + ||\Delta x||$. For convenience we denote these spaces by Δl_{∞} , Δc , and Δc_0 and call the constituent sequences Δ -bounded, Δ -convergent, and Δ -null sequences respectively.

Let E be any of the spaces l_{∞} , c, c_0 . Then it is easy to see that $E \subset \Delta E$. For example, let $x_k = k$, $k = 1, 2, \ldots$ Then the sequence (x_k) is not convergent but it is Δ -convergent

In this paper, we extend these Δ -sequence spaces to $\Delta l_{\infty}(p)$, $\Delta c(p)$, and $\Delta c_0(p)$ for $p=(p_k)$ with $p_k>0$, just like l_{∞} , c, and c_0 were extended to $l_{\infty}(p)$, c(p), and $c_0(p)$ (Madox [4], Simons [5]). We also investigate their Köthe-Toeplitz duals and their matrix transformations.

AMS Subject Classification (1980): 40C05, 40D05, 40H05.

Key words and phrases: Δ -bounded, Δ -convergent, and Δ -null sequences, Köthe-Toeplitz duals, matrix transformations.

Let $p = (p_k)$ denote a sequence of strictly positive numbers (not necessarily bounded). We define

$$\Delta l_{\infty}(p) = \{ x = (x_k) : \Delta x \in l_{\infty}(p) \}, \quad \Delta c(p) = \{ x = (x_k) : \Delta x \in c(p) \},$$
$$\Delta c_0(p) = \{ x = (x_k) : \Delta x \in c_0(p) \},$$

When (p_k) is constant with all terms equal to p > 0 we have $\Delta l_{\infty}(p) = l_{\infty}(\Delta)$, $\Delta c(p) = c(\Delta)$ and $\Delta c_0(p) = c_0(\Delta)$.

Let s be the space of all sequences (real or complex) and E a nonempty subset of s. Then we denote by E^+ the Kothe-Toeplitz dual of E, i. e.

$$E^{+} = \{a = (a_k) : \sum_{k} |a_k x_k| < \infty \text{ for every } x \in E\}.$$

Let $\Delta E(p)$ be any of the sets $\Delta l_{\infty}(p)$, $\Delta c(p)$, $\Delta c_0(p)$. Then we write $\Delta E(p;1)$ for $\Delta E^+(p)$, and $\Delta E(p;2)$ for $\Delta E^{++}(p)$ etc.

Throughout the paper, we shall write

$$\sup_k := \sup_{k=1,2,\dots}, \quad \lim_k := \lim_{k \to \infty}, \quad \sum_k := \sum_{k=1}^{\infty}.$$

2. Köthe-Toeplitz duals

Theorem 2.1. For every sequence $p=(p_k),$ we have $\Delta l_{\infty}(p;1)=D_1(p),$ where

$$D_1(p) = \bigcap_{N>1} \{ a = (a_k) : \sum_k k |a_k| N^{1/p_k} < \infty \}.$$

Proof. Let $a \in D_1(p)$ and $x \in \Delta l_{\infty}(p)$. Choose $N > \max(1, \sup_k k^{-1}|x_k|)$ Then

$$\sum_{k} |a_k x_k| \le \sum_{k} k |a_k| (|x_k|/k) \le \sum_{k} k |a_k| N^{1/p_k} < \infty.$$

Therefore $a \in \Delta l_{\infty}(p; 1)$.

Now suppose that $a \in \Delta l_{\infty}(p;1)$ but $a \notin D_1(p)$, i. e. there is an integer N>1 such that $\sum_k k |a_k| N^{1/p_k} = \infty$. Choose $x=(x_k)$ with $x_k = k N^{1/p_k} \operatorname{sgn} a_k$. Then $x \in \Delta l_{\infty}(p)$ but $\sum_k |a_k x_k|$ is divergent. Hence $\Delta l_{\infty}(p;1) = D_1(p)$.

Remark. Similarly, we can define, for every $p = (p_k)$

$$\Delta c_0(p;1) = \bigcup_{N>1} \{ a : \sum_k k |a_k| N^{-1/p_k} < \infty \}.$$

Theorem 2.2. For every $p=(p_k)$, we have $\Delta l_{\infty}(p;2)=D_2(p)$, where

$$D_2(p) = \bigcup_{N>1} \{ a : \sup_k (k^{-1}|a_k|) N^{-1/p_k} < \infty \}.$$

Proof. Let $a \in D_2(p)$. Therefore, there is N > 1 such that for some constant B

$$\sup_{k} k^{-1} |a_k| N^{-1/p_k} \le B < \infty,$$

that is, $k^{-1}B^{-1}|a_k|N^{-1/p_k} \le 1$ or $|a_k| \le kBN^{1/p_k}$. Now,

$$\sum_{k} |a_{k}x_{k}| = \sum_{k} |a_{k}| |x_{k}| \le \sum_{k} k^{-1} |a_{k}| \sum_{k} k |x_{k}| \le B \sum_{k} k |x_{k}| N^{1/p_{k}} < \infty.$$

Therefore $a \in \Delta l_{\infty}(p; 2)$.

Suppose $a \in \Delta l_{\infty}(p;2)$ and $a \notin D_2(p)$. Then there is a strictly increasing sequence (k_N) of positive integers such that for $k = k_N$, $|a_k| N^{-1/p_k} > N^2$. Now, define $x = (x_k)$ by

$$x_k = \begin{cases} 0, & k \neq k_N, \\ k^{N-(2+1/p_k)} \operatorname{sgn} a_k, & k = k_N. \end{cases}$$
 $(N \ge 2)$

Then, for every integer N > 1, we have $(k = k_N)$

$$|x_k| M^{1/p_k} \le kN^{-2}$$

for every $N \geq M$. But, for $k = k_N$, $a_k x_k > 1$, which contradicts the fact that $a \in \Delta l_{\infty}(p; 2)$.

Remark. It is easy to see that, for every $p = (p_k)$,

$$\Delta c_0(p;2) = \bigcap_{N>1} \{ a : \sup_k (k^{-1}|a_k|) N^{1/p_k} < \infty \}.$$

Theorem 2.3. $\Delta l_{\infty}(p)$ is perfect if and only if $p \in l_{\infty}$.

The proof is trivial (see [3]).

3. Some matrix mappings

Let X, Y be two nonempty subsets of the space s of all sequences and $A = (a_{nk})$ an infinite matrix, $n, k = 1, 2, \ldots$ For every $x = (x_k) \in X$ and every integer n we write $A_n(x) = \sum_k a_{nk} x_k$. The sequence $Ax = (A_n(x))$, if it exists, is called the transformation of x by the matrix A. We say $A \in (X, Y)$ if and only if $Ax \in Y$, whenever $x \in X$.

Theorem 3.1. Let $1 . Then, <math>A \in (l_p, c(\Delta))$ if and only if there exists all integer N > 1 such that

- (i) $M = \sup_{n \ge \infty} \sum_{k=N}^{\infty} N|a_{nk}|^q < \infty \quad (1/p + 1/q = 1),$
- (ii) $\lim_{n} \Delta a_{nk} = a_k$ exists for each fixed k, where

$$\Delta a_{nk} = a_{nk} - a_{n+1,k}, \quad l_p = \{(x_k) : \sum_k |x_k|^p < \infty\}.$$

Proof. Sufficiency. Suppose the conditions (i) and (ii) hold and that $x \in l_p$ Choose a fixed integer $n_0 \ge 1$ such that

$$\left(\sum_{k=n_0+1}^{\infty} |x_k|^p\right)^{1/q} \le M^{1/q} \,\varepsilon/4,$$

Now,

$$|A_n(x) - A_{n+1}(x)| = \left| \sum_k (a_{nk} - a_{n+1,k}) x_k \right|$$

$$\leq \sum_{k=1}^{n_0} |a_{nk} - a_{n+1,k}| |x_k| + \sum_{k=n_0+1}^{\infty} |a_{nk}| |x_k| + \sum_{k=n_0+1}^{\infty} |a_{n+1,k}| |x_k|$$

$$\leq \left(\sum_{k=1}^{n_0} |a_{nk} - a_{n+1,k}|^q \right)^{1/q} \left(\sum_{k=1}^{n_0} |x_k|^p \right)^{1/p} + \varepsilon/2.$$

By virtue of (ii), we have $\Delta a_{nk} \in c$, so there is an integer m_0 , such that

$$|a_{nk} - a_{n+1,k}| < \frac{\varepsilon}{2} \left(\sum_{k=1}^{n_0} |x_k|^p \right)^{1/p} (n_0)^{1/q}, \quad (n \ge n_0)$$

Hence $|A_n(x) - A_{n+1}(x)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Necessity. Condition (ii) follows from the fact that $e^k \in l_p$, where $e^k = (0,0,\ldots,0,1$ (k-th spot),0,...). Now, let $T(x) = \sup_n |A(\Delta x)|$. Then T is a continuous seminorm on l_p and bounded too. By uniform boundedness principle, there is a constant L such that

$$(*) T(x) \le L||x||.$$

Put $x = (x_k)$ with $x_k = 1$ $(k \ge N)$, 0 (k < N) in (*). Therefore (ii) holds true.

THEOREM 3.2. Let $0 . Then <math>A \in (l_p, c(\Delta))$ if and only if (i) $\sup_{n,k} |a_{nk}| < \infty$ (ii) $a_{nk} \to \alpha_k$ $(n \to \infty)$ for each fixed k.

Proof. Omitted.

Theorem 3.3. Let $p_k > 0$ for every k. Then $A \in (\Delta l_{\infty}(p), l_{\infty})$ if and only if, for every integer N > 1,

$$\sup_{n} \sum_{k} k |a_{nk}| N^{1/p_k} < \infty.$$

Proof. Sufficiency. Let the condition hold and $x \in \Delta l_{\infty}(p)$. Then

$$\begin{aligned} |A_n(x)| &= |\sum_k a_{nk} x_k| \le \sum_k |a_{nk}| \, |x_k| \\ &\le \sum_k k |a_{nk}| N^{1/p_k} \le \sup_n \sum_k k |a_{nk}| N^{1/p_k} < \infty \end{aligned}$$

for an integer $N > \max(1, \sup_k k^{-1} |x_k|^{p_k})$. Therefore $A \in (\Delta l_{\infty}(p), l_{\infty})$.

Necessity. Suppose for an integer N > 1

$$\sup_{n} \sum_{k} k |a_{nk}| N^{1/p_k} = \infty,$$

i. e. $(ka_{nk}N^{1/p_k}) \notin (l_{\infty}(\Delta), l_{\infty})$. Therefore, there exists $x \in l_{\infty}(\Delta)$ with $\sup_k |x_k - x_{k+1}| = 1$ such that

$$\sup_{n} \sum_{k} k|a_{nk}| |x_k - x_{k+1}| N^{1/p_k} = \infty.$$

Therefore, although $y = (N^{1/p_k} \Delta x_k) \in l_{\infty}(p)$, the sequence $(A_n(y)) \notin l_{\infty}$ which contradicts the fact that $A \in (\Delta l_{\infty}(p), l_{\infty})$. This completes the proof.

THEOREM 3.4. Let $p_k > 0$ for every k. Then $A(\Delta l_{\infty}(p), c)$ if and only if (i) $\sum_k k |a_{nk}| N^{1/p_k}$ converges uniformly in n, for all integers N > 1, and (ii) $a_{nk} \to \alpha_k \ (n \to \infty)$ for each k.

Proof. Omitted (see Lascarides and Maddox [2]).

REFERENCES

- [1] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 169-176.
- [2] C. G. Lascarides and I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Phil. Soc. 68 (1970), 99-104.
- [3] C. G. Lascarides, A study of certain sequences spaces of Maddox and a generalization of a theorem of Iyear, Pacific J. Math. 38 (1971), 487-500.
- [4] I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Cambridge Phil. Soc. 65 (1969), 431-435.
- [5] S. Simons, The sequence spaces l(p) and m(p), Proc. London Math. Soc. (3) 15 (1965), 422-436.

Department of Mathematics Aligarh Muslim University Aligarh, 202001 India (Received 06 05 1986)