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FREDHOLM THEORY AND SEMILINEAR EQUATIONS WITHOUT

RESONANCE INVOLVING NONCOMPACT PERTURBATIONS,
II. APPLICATIONS

P. S. Milojevié

1. Introduction. In this paper we shall give applications of the abstract
theory developed in Part I [9] to nonlinear Hammerstein integral equations and
to linear and nonlinear boundary value problems for semilinear elliptic equations.
Due to the generality of the class of (pseudo) A-proper maps, we are able to treat
nonlinear perturbations that depend also on the highest order derivatives, in con-
trast to the most of earlier known results. Moreover, our proofs are direct, i.e. do
not require any reduction to an equivalent problem (using some type of inversion
procedure), and are constructive (via finite-dimensional approximations) when the
induced maps are A-proper. For applications to hyperbolic equations, we refer to
[10].

2. Fredholm alternative to Hammerstein integral equations. Let
@ C R™ be a bounded domain, F': @ x R® - R™ and K (t,s) be a n X n matrix,
ie. K:QxQ— R™. Let L, = Ly(Q, R"™) and consider the Hammerstein integral
equation

(2.1) z(t) — /QK(t,s)F(s,m(s))ds =h(t), (t€Q, heLy)

Regarding F', we assume

(2.2) F(t,z) satisfies the Caratheodory condition, i.e. it is measurable in t for each
fixzed x € R™ and is continuous in x for each fixredt € @), and, for some A € R,
B > 0 sufficiently small, 0 < py, <1, s € Ly;p,, (Q, R) and m € Ly(Q, R),

|F(s,z) = M| < Bz + Y si(s)|a]' P* +m(s),
k=1
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Define C' : Ly — Lo by Cz(t) = )\fQ K (t,s)xz(s)ds and assume that K € Ly(Q %

Q,R”2). Since C' is compact, r = dim N(I — C) < oo and let {z1,...,2,} C L2 be
a basis of the null space N(I — C*), i.e., they are linearly independent and

(2.3) zi(t) — )\/K(s,t)zi(s) ds=0 (teQ,i=1,...,7).
Q

Suppose also that for each € Lo

(2.4) / ( / K(t, 8)[F(s,(s)) — Aa(s)] ds)zi(t) dt =0, 1<i<r.
Q Q

Set Mz(s) = A\"'CF(s,z(s)) on Ly. Since (M — C)xz(t) = [ K(t,s)[F(s,z(s)) —
Q

Az(s)]ds, the range R(M — C) ¢ N(I — C*)* = R(I — C) by (2.4). Moreover,
M : Ly — L is compact and Eq. (2.1) is equivalent to

(2.5) x— Mz = h(h € Ly).

THEOREM 2.1 (FREDHOLM ALTERNATIVE). Let (2.2) hold. Then

(a)  If the equation ©— Cz = 0 has a unique zero solution, Eq. (2.1) is approzima-
tion-solvable w.r.t. any Iy for Ly for each f € Lo, or

(b) if N(I —C) # {0} and (2.4) holds, then Eq. (2.1) is solvable for a given
h € Ly if and only if

(2.6) / h(s)z(s)ds =0, (1<i<r)
Q

in which case there is a connected closed subset S of (I — M)~1(h) whose
covering dimension at each point is at least r.

Proof. Set A=T—-C,N=M—Cand T = A — N. Then A : Ly — Ly
is Fredholm of index zero with codim R(A) = r. Moreover, T is A-proper w.r.t.
any projection scheme I'y = {X,,, P,} for L, and the quasinorm |N| is sufficiently
small (cf. [8]). Moreover, as in [8], we get that R(N) C R(A) = N(A)*L. Hence,
the conclusions follow from Theorems 2.3 and

Remark 2.1. Without the dimension assertion, Theorem 2.1 has been proved
in [8] with i |[N| > 0 and, existentially, in Kachurovsky [6] when |[N| = 0. When
F(s,z(s)) = z(s), it reduces to the classical Fredholm alternative.

3. Nonlinear nonresonance perturbations of regular elliptic prob-
lems. In this section we shall consider the following semilinear elliptic boundary
value problems without resonance (at zero or infinity)

(3.1) Au — F(z,u,Du,...,D*™u) = f(z) in Q
(3.2) Au - G(z,u,Du,...,D?*™ Yy — F(z,u, Du,...,D*™u) = f(z) in Q
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(3.3) Bj(z,D)u=00n0Q, j=1,...,m,

where the boundary 0@ is smooth and Au = Z ao(2)D%u(z) is an elliptic
o] <2m

operator acting on V = {u € ng(Q) | Bju = 0and @, 1 < j < m}, the space

of functions satisfying ”coercive” (i.e. Lopatinski-Schapiro) boundary conditions

Bju = 0 on 8Q for some p € (1,00), with ay € C(Q) for |a| = [(a1,...,a,)| =

o1+ -+ ap =2m and ay € Loo(Q) for |a] < 2m. Assume that A: V — L,(Q) is

Fredholm of index zero which is the case under suitable conditions on the boundary

operators {B;}. Let s, be the number of distinct derivatives of order < 2m.

Regarding F' and G, we assume
(3.4) F : Q x R*®™ — R satisfies the Caratheodory condition and there is M > 0
sufficiently small and h € Ly(Q) such that

|F(z,€)| < h(z) + M Z |€al| for a.e. © € Q and each £ € RS ™.

|a|<2m
(3.5) G : @ x R®>m-1 — R satisfies (3.4) on Q x R®>m-1 and, for each u €
wrm(Q), B(u) = G(z,u,Du,...,D*™ " u) is a continuous linear map
from Ly, into itself and such that
limsup ||B(u)|| < -
[P 1A=z, L,

Define: N :V — L, by Nu = F(z,u,... D*™u). Then boundary value problems
(3.1), (3.3) and (3.2), (3.3) are equivalent to the operator equations

(3.6) Au—Nu=f
and
(3.7) Au — B(u)u — Nu = f.

When A is injective, we have

THEOREM 3.1. A : V — L, be injective and A-proper w.r.t. I' = {X,,,Y,, Qn}

for (V,L,) and (3.4)—(3.5) hold. Then

(a) IfA-N:V — L, is (pseudo) A-proper w.r.t. I', BVP (3.1), (3.3) is (solvable)
approzimation-solvable for each f € L,.

(b) If N :V — L, is k-ball contractive, k < 1, then BVP (3.2), (3.3) is
approzimation-solvable for each f € L,.

Proof. (a) By (3.4), ||Nu|| < a + b||u|| for each u € V and some a and
b. Since b is sufficiently small, the conclusions follow from Theorem 2.1 in [9].
(b) Define amap U : V xV — L, by U(u,v) = B(u)v. For each v € V fixed, the
map U(-,v) = B(-)v : V — L, is completely continuous by the continuity of v —
G(z,u,...,D*™1) from W2™! into L, and the compactness of the embedding
V — W2™~1. Moreover, for each u € V fixed, the map U(u,-) = B(u)(-) : V = Ly
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is also completely continuous. Hence, Tyu = Au — B(u)u and T' = Ty — N are
A-proper w.r.t. I' by Proposition 3.1 in [9]. Thus, the conclusion follows from
Theorem 3.3 in [9] . O

Let us now look at some special cases. Suppose
(3.8) There is a constant k1 sufficiently small such that

|F(55777;§) _F($7777€I)| S Z |£a _é-(lx|

la|<2m
for a.e. x € Q and ally € R2m-1, £ &' € R%m, Shm = S2m — S2m—1-

COROLLARY 3.1. Let A be as in Theorem 3.1, and (3.4), (3.5) and (3.8)
hold. Then BVP’s (3.1), (3.3) and (3.2), (3.3) are approximation-solvable for each
f €L,

Proof. Define amap U : V xV — L, by
U(u,v) = F(z,u,...,D*™ 1y, D*y).

Then, for each v € V fixed, U(-,v) : V — L, is continuous, bounded and therefore
compact by the imbedding theorem. Moreover, for each u € V fixed, U(u,:) : V —
L, is k-ball-contractive with k small. Since Nu = U(u,u) for u € V, it is k-ball-
contractive and therefore A — N is A-proper w.r.t. I'. Hence, Corollary 3.1 follows
from Theorem 3.1. O

COROLLARY 3.2. Let A be as in Theorem 3.1 and F(z,u,...,D?™u) =
Fi(z,u,...,D*™ 1) + Fy(x, Au) such that
(3.9 Nyu= Fy(z,u,...,D*™ 1u) is continuous form ng_l into Ly;
(3.10) F2:Q x R — R is continuous and there are h € L, and b > 0 such that
forx e Q, t,t1,t2 € R:

|Fa (2, 8)] < b(|h(2)] + [t]) and (Fa(2,t1) — Fa(2,12))(f1 — t2) > 0.

Then BVP (3.1), (3.3) is solvable for each f € L,.

Proof. Let Nou = Fy(x,Au) on V. Then A — Ny 4+ Ny : V — L, is pseudo
A-proper w.r.t. I' = {X,,, A(X,,), Qn} since Ny is completely continuous and N is
A-monotone, i.e. (Nau — Nav, A(u —v)) > 0on V (cf. [12]). Since ||(N1 + Na)u|| <
a+ b||ul|2m for u € V with b sufficiently small, the corollary follows from Theorem
3.1 (a). O

Let us now look at (3.1)—(3.3) when ker A # {0} and there is no resonance at
infinity. Suppose that F' = F; + F; satisfies the Carathéodory condition and

3.11) There are hy € L,, My >0 and § € (0,1) such that
p

|Fi(z,8)| < ha(z) + My Z |&c|? for a.e. x € Q, all £ € R

la|<2m
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(3.12) There are A € R, by > 0 and hy € L, such that for a.e z € Q and £ € R*>

|Fo(x, €051, - - Eam) — Mo| S ha(@) + D ballal-

lal<2m

THEOREM 3.2. Let Ay = A— A : V — L, have a continuous inverse and

I'={X, =A"(Y,),Ys,Qn} be a scheme for (V,L,). Then

(a) If (3.11)—(3.12) hold with the by’s small and A— N : V — L, is (pseudo)
A-proper w.r.t. I', then BVP (3.1), (3.3) is (solvable) approzimation-solvable
for each f € Ly.

(b) If (3.4) hold N : V — L, is k-ball-contractive with k < 1 and By = B — A
and Ay satisfy (3.5), then BVP (3.2), (3.3) is approximation-solvable for each
f €Ly

Proof. (a) We note first that ||QnAxul| = [|Axu|| > [|A5 | ||u]|2m for u € X,.

Let Nyu = Fi(z,u,...D*™u), i = 1,2, and N = N; + N». By (3.12), Minkowski
and Holder inequalities imply that

[|Nou — || < @+ bl|ul|2m for u € V

and some a and b. Moreover, Ny : V' — L, has a sublinear growth by (3.11), and
therefore ||[N — AI|| < b. Hence, Theorem 2.1 [9] applies.
(b) Using the arguments similar to those in the proof of Theorem 3.1 (b), we
see that the conclusion follows from Theorem 3.3 [9]. O

Next, suppose that A : D(A) = V C Ls — L, is self-adjoint and has the
pure point spectrum consisting of eigenvalues: A\; < A2 < -+ < A < ... of finite,
multiplicities, with no finite point of accumulation. Assume

(3.13) Let Ay < Apg1 and A and v be such that A\, < A < Agg1 and 0 < v <
min{\ — Ag, Ag+1 — A} and small. Suppose that for some ha C La, a.e.
z € Q and all £ = (&,&1,. -, &2m) € R%2m

|F2(z,€) — Abo| < /&0l + ha(x).

(3.14) There are positive constants €, ¢ and M and hy € Lo such that
(i) |Fa(,5,8)| < M|s| + hi(z) for a.e. x € Q, s € R, £ € R®>m~1;
(ii) For some A\, < Ag+1 and all (z,s,€) € Q x R x R*>m~1 with |s| > o

A +e < Fy(z,8,8) /s < Agy1 — €.

Note that (ii) holds if lirf Fy(z,s,€)/s = fi(x) uniformly with respect to
§—>1I00

€ € R*2» ! and fi(z) € [M + &, A\t1 — €] for z € Q. Moreover, (3.14) implies
(3.13) with A = (At + Mer1)/2, 7 = kst — Ae)/2 and ha() = hu (z) + o(M + A).
We have now

THEOREM 3.3. Let A : V = Wi™(Q;{B;}) = Ly be Fredholm of index zero
and self-adjoint in Ly. Then
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(a) If (3.11) and (3.13) hold and A—N : V — L, is (pseudo) A-proper w.r.t. I' =
{X,, = A Y(Y,),Y,,Qn}, then BVP (3.1), (3.3) is (solvable) approzimation-
solvable for each f € L.

(b) If (3.11) and (3.13) hold, N : V — L is k-ball-contractive, (e.g. (3.8) holds),
k<1, and

. 1 1
(3.15) limsup [|B(u) = 5 (A + A1) < 5 Aerr = Ak),

[1w|[2m —00

then BVP (3.2), (3.3) is approzimation-solvable for each f € L.

Proof. (a) The spectral gap of A induced by the gap (Ag, Aky1) is (Ap —
A, Ak+1 — A). Hence, A;l : Ly — Ly is a bounded self-adfoint map whose spectrum
lies in [(Ar, —A) 71, (Agp1 = A) " and so || A |] < max{(A—=XAg) ™!, Mgy —A) 71} <
1/7. Since A is self-adjoint in Lo, it follows that 0 < v < ||A}"||™! = min{|u||p €
o(A—= X}

Next, let Nyu = F(x,u,...,D*™u) on V, i = 1,2. Using Minkowski and
Holder inequalities we get ||[Nou — Au|| < v||ul|| + ||he]| for w € V and ||Nyu|| <
m||u||3,, +||h1|| for some m and all u € V. Hence, ||Nu—Au|| < 7||u||+m||u|[3,,+b
for u € V and the conclusions follow from Theorem 3.1 in [9]. (b) Let A = (Ax +
Akt1)/2. Then, as in (a), ||45"']| = (Ak+1 — Ax)/2. Hence, as in Theorem 3.1, the
conclusion follows from Theorem 3.3 in [9]. O

As before, we obtain

COROLLARY 3.2. Let A be as in Theorem 3.2 and (3.11) and (3.13) hold.
Then, if F = F; + F2 satisfies (3.8) ((3.9)—(3.10), respectively), Theorem 3.2 (a)
holds.

Remark 3.1. Clearly, (3.8) holds if F' does not depend on D%u with |a| =
2m. In this setting, Corollary 3.2 was proved existentially by de Figueiredo [4],
while Theorem 3.3 (b) by Kazdan-Warner [7], using completely different arguments.
When F = F, satisfies (3.8) and (3.14) with m = 1 and A is symmetric and
uniformly elliptic in @, Corollary 3.2 also extends one of the main existence results
of Fitzpatrick [5]. His proof was based on the Courant min-max principle and
therefore does not extend to the higher order equations. As in [7], we could extend
Theorem 3.2 to systems of equations in (3.1) and (3.2).

4. Nonlinear boundary value problems for semilinear elliptic equa-
tions. Let @ be a bounded open subset of R™ with smooth boundary and
B : R! - 2B have a maximal monotone graph in R? with 0 € B(0). Let
X = WZ(Q), Y = L»(Q) In this section we shall study the solvability of the
following eigenvalue problems in X.

(4.1) {—Au—l—F(w,u,Vu,Au)=)\u—|—finQ
’ —0u/0n € f(u) on 0Q.

and

(4.9) {—Au+fy(u)9/\u+finQ
) —Ou/0n € p(u) on 0Q,
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where f € L2(Q) and 0/0n denotes the outward normal derivative, and - is another
maximal monotone graph in R2. Such problems appear in thermodynamics, fluid
dynamics, elasticity, etc.

4.1. Let us first consider the eigenvalue problem (4.1). Let C =1: X - Y
be the natural imbedding which is compact by the imbedding theorem. We make
the following assumptions on the nonlinear term
(4.3) F:Q x R*> — R! satisfies the Caratheodory condition, F = F} + F» and

(i) there are positive constants by, 6 € (0,1) and hy € Lo such that

|F1(z, )| < h(@) + 32 41<o baléal® for z € Q (a.e.) and £ € R*2.
(ii) There are \1 € RT, co > 0 sufficiently small and hy € Lo such that
|[F2(z,5,€) — As| < ha(z) + 720 <2 Caléal for z € Q (ae) and § €
Rl sec R
(4.4) F(x,n,&) is continuous in (z,7n) uniformly with respect to £ € R' and there
is a constant M > 0 such that

|F($777;§1) - F('T7777€2)| S lel - £2| fOT‘ T € Q (0,.6), ne Rn) 61762 € Rl'

Let D(A) = {u € W(Q)| — Ou/On € B(u) a.e. on 0Q} and define Au =
—Au for u € D(A). We note that D(A) is well defined by the trace theorem and
A:D(A) CY — Y is a maximal monotone (nonlinear) mapping. It is well known
that ([1]) C(A+ A I)~! is nonexpansive and compact in ¥ and there is a constant
K such that

(4.5) [lullx < K(||Au+ Aiu|ly + 1) for z € D(A).

THEOREM 4.1. Suppose that (4.3) and (4.4) hold. Then there exists an Ag > 0
such that for each A € (—Ao, o) BVP (4.1) has a solution for each f in L.

Proof. Define N; : X — Y by Nju = Fi(z,u,Vu, Au), i = 1,2. Then there
are constants m; depending only on the bl,s and c/,s such that for each u € X

[INvul| < 1 [|ull® + [[ha]] and [[Now = Ml < ymo|lul| + [|ho|]

Since yms is suitably small, there exists an R > 0 such that Ka < 1 for a =
ym + myR°~! and therefore N = N; 4+ N, satisfies

[Ny —mul| < allul| + b for [[u]| > R, where b = |[h][ +[|h2]|-

Let Ao > 0 be such that K(a+ Ag) < 1. Then, |[|[Nu— A1+ Nul|| < (a+ |A])||ul| +b
for each A € (=Xg,\o) and ||u|| > R. Therefore, since N(A + (A\; + \)I)~! is
M-ball-contractive in Y as in [5], the conclusion follows from Theorem 3.5 [9]. O

4.2. In this section we shall first consider a class of general eigenvalue prob-
lems in a Banach space X and then we shall obtain some solvability results for the
nonlinear eigenvalue problem (4.2).

Let T : D(T) C X — 2% be an m-accretive mapping (i.e., \I +T is surjective
for each A > 0 and T is accretive) and consider the eigenvalue problem

(4.6) f+ xeTz (f€ X given).
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By the m-accretivity of T', (4.6) is uniquely solvable for each f if A < 0. Suppose
that A > 0 and Ag > 0 is fixed. Setting p = A+ Ao, y = px + f and N = N,, =
(MI+T)1: X — X, it is easy to see that (4.6) is equivalent to

(4.7) y—uNy = f.

Since N is nonexpansive, uN is a p-contractive mapping and therefore (4.7)
is uniquely solvable for each f if u < 1. Hence, it remains to consider the solvability
of (4.6) when X\ > 1. In view of the above discussion, as an immediate consequence
of Theorem 2.1 (c) in [9] we obtain

THEOREM 4.2. Let I — (A + M)N : X — X be pseudo A-proper w.r.t. a
scheme I' = {X,,, P} for some A > 1 and A: X — X be such that for some cog > 0
and ng > 1,

(4.8) [l — (A + Xo) PrAz|| > col|z|| for z € Xpn, n > ng.

Suppose that
Nz — A 1
|N — A| = limsup [INw = As]] <+
le|soo | Ac
Then (4.6) is solvable for each f in X.

It follows that if, for example, A and N are compact with A linear and 1/A
is not an eigenvalue of A, then all the hypotheses of Theorem 4.2, except (4.9), are
satisfied. Hence, if (4.9) also holds, then (4.6) is solvable. We shall see below that
this situation occurs in studying (4.2).

Assume that 8 and v : R! — 28" have maximal monotone graphs in R? such
that 0 € B(0) N v(0) and the domains D(B8)(= {y € R'|B(y) # 0}) and D(v)
contain at least one half-line starting at the origin. The classes of monotone graphs
to be considered in (4.2) are defined next.

Definition 4.1. Let a : R' — 2R be such that D(a) contains at least one
half-line starting at the origin.

(a) « is said to be asymptotically close to a(o00) = a' < oo if there is a constant
a > 0 such that to each € > 0 there corresponds an R. such that

|z — a'y| < (a+¢)|y| for each z € a(y), y € D(a), |y| > R.

and we write |o — | = a.
(b) «a is said to satisfy condition (+) if to each M > 0 there corresponds an Ry > 0
such that

|z| > M|y| for each z € a(y), y € D(a) and |y| > Rpr-
Define B(U) = —Au for u € D(B) = {u € W2(Q)| — 0u/0n € B(u(z)) forz €
0Q a.e.}. Then B is a maximal monotone operator in H = Ly(Q) and, for each
A > 0 fixed, there is a constant ¢ > 0 such that

(4.10) [lu||2,2 < ¢|| = A+ Aul|2 for each u € D(B)
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by Theorem 10 in [1]. Moreover, by Corollary 13 in [2], Tu = —Au + y(u) with
u € {u € WQ)| — 0u/on € B(u(z)), u(z) € D(y) for z € JQ a.e.} is maximal
monotone in H and therefore, for each w € H there is a unique function Nu
satisfying

(4.11) —ANu+~v(Nu)+ MNu>du in Q

(4.12) —ONu/0n € B(Nu) on 0Q
for any \g > 0 fixed. Moreover, N = Ny, = (Aol +7T)"!: H — H is nonexpansive
and ||Nu|| < ||ul| for each u € H.

Let us now consider (4.2). It is easy to see that it possesses only the trivial

solution u = 0 if A < 0. Suppose that A > 0 from now on. Then we can write (4.2)
in the operator form as

(4.13) f+ X u€Tu, ue D(T)
which is equivalent to (cf. [3])
(4.14) v—puNv=Ff, ve€ Ly,

where p = Ao+ A, v = pu + f and N is defined by (4.11)—(4.12).

In order to apply Theorem 4.2 we need to find a mapping A asymptotically
close to N. To that end, the following result is needed.

PROPOSITION 4.1. (a) Let o : Rt — 28" satisfy condition (+) and G C R"
be measurable. If u,v € La(G), u(z) € D(a) and v(z) € a(u(x)) for x € G (a.e.),
then there is a ¢ > 0 such that to each M > 0 there corresponds Ry > 0 such that
llull2 < e(Rar + M~ Hvl]2).
(b) Let a: R* — 28" be asymptotically close to a(o0) = o' and bounded (i.e. maps
bounded sets into bounded sets). If u,v € Ly(G), u(z) € D(a) and v(z) € a(u(x))
for x € G (a.e.), then there exists a ¢ > 0 such that to each € > 0 there corresponds
a C. > 0 such that

llv = a'ull2 < c((a + &) [[ull2 + C).

Proof. Part (a) was proved in [3] and (b) is an extension of Lemma 1.2 in [3].

Setting A = {z |u(z) > R.}, its conclusion follows from

[|lv — a'ul|3 = /(v(:c) —d'u(z))? dz + / (v(z) — 'u(z))? dx
A B=G—A
< [@+erw@ s+ [ () - au@)?ds < ((a+e) ullf + C2),
A B
where we used at the last step that |u(X)| < R. and « is bounded. O

The following Green’s theorem will be used in the sequel: if u(z) < W2(Q)
and w € W} (Q) then

ou 8w ou
/A wdz = Z/ oz, 8xz 6_de
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where 1 <¢<2ifn=2and ¢=2n/(n+2)if n > 2.

PROPOSITION 4.2. Let v be asymptotically close to v' and bounded. Then
[|INull2,1 < vV2—=Xo||u|| and ||Null22 < (1 +a+e¢)||ul| + Ce) for u € H, and
some ¢ > 0 with € > 0 given.

Proof. (Cf. also [3].) Letu € H be fixed. Then there exists an w € y(Nu)
such that

(4.15) —0Nu+w+ ANu=wuin Q.

Since 3 and v are monotone and 0 € (3(0) N (0)), we have that
(=ONu/0n, Nu)p,5¢) >0
and (w,Nu)g > 0. Multiplying (4.15) by Nu and using the Green theorem it
follows that
Xo|[Nu||? = /(ANu—i—u —w)Nudz = —/|VNu|2 dz + / %(NU) Nudo+
Q Q 0Q
+/(u —w)Nudz < —/|VNu|2d:c+/uNuda:.

Q Q Q
Hence, Ao||Nul[” + [[VNul[* < [[ul[[[Nu]| < [[u]* or,

[INull3,1 < (1= X0) [[Nul[* + [[ul* < (2 = Xo) [Jull%,

so that || Nul|2,1 < (2 — Xo)/?||ul| for each u € H.
Next, it follows from (4.10) and Proposition 4.1 that for a given € > 0

||V ul

22 < cllu —wl| < c([lull + (a + &) [INul| + Cc) < (1 +a+e)lul| + Cc). O

Next we shall prove the existence of a linear mapping A to which N is asymptotically
close.

PROPOSITION 4.3. Suppose that satisfies condition (+) and 7 is bounded and
asymptotically close to y(oco) = +'. Let N be defined by (4.11)—(4.12) and a linear
mapping A : H — H be given by

AAu+~'"Au + MpAu=u in Q
Au =0 on 0Q.

Then the conclusions of Proposition 4.2 hold for A and for each € > 0 there exists
R. > 0 such that ||Nu — Aul|2,1 < c(a +¢€) ||u]| for each |[u|| > R..

Proof. (See also [3].) Since A is defined involving maximal monotone graphs
that are special cases of those ones defining IV, the first assertion of the proposition
is valid.

Next, let € > 0 be given and u € H fixed. There exists an w € y(Nu) such

that
—ANu+w+ ANu=uin Q; —ONu/dn € B(Nu) on 9Q.
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Therefore, Nu— Au = A(Nu— Au) ++' Au—w, and, after multiplying this equality
by Nu — Au and using the Green theorem, we obtain that

9
I Nu — Aul]? :—/|V(Nu—Au)|2d;v+/%(Nu—Au)Nuda+
Q 0Q

+ /(w'Au —w)(Nu — Au) dz
Q

since Au = 0 on 9Q. Since 0 € $(0), B is monotone and —ONu/On € B(Nu),
(—=ONwu(z)/0n, Nu(x)) > 0 on Q) and therefore,

[|[Nu — Aul|3 4 :/%(NU—Au)Nuda+/(’y'Au—w)(Nu—Au)dx

2Q Q

S_/%Nuda—fy'HNu—Aqu+/(7'Au—w)(Nu—Au)dx
Q
oQ

< l0Au/0n]| L, 00) lINUllLs 00) + 1Y Nu — wl| [|Nu — Aul|.

Moreover, [|94u/9nl1,(0q) < cllull, ||Nu — Aull < [|[Nu - Aullz1 < clful] and, by
Proposition 4.1 (a)—(b) for 8 and v respectively, for M > 0 and & > 0 there are
Ry and C. such that

INullLo0q) < e(Rar +M7H[ONu/0n||Ly(00), IV Nu—wl| < c((a+é&)llull + C).

Since ||[Nul|2,2 < ¢((1 + a + ¢) ||u|| + C¢), it follows that

INu— Aull3 ) < e(Bar + M~ (1 +a+e)[lul| + c(a +é) |[ul|[C-M ™ +1).
Hence, for a fixed € > 0 we can choose M and R, large enough so that

[|[Nu — Au||§’1 < c*a+e) ||u||2 for ||u|| > R.. O

Our first result now for (4.2) is

THEOREM 4.3. Suppose that 3 satisfies condition (+) and 7 is bounded and
asymptotically close to y(o0) = ' with |y —+'| = a sufficiently small. If X\ > 1 is
not an eigenvalue of

— ! — )
(4.17) { Au+~'u=Au inQ

u=00ondQ,

then (4.2) is solvable in W3 (Q) for each f in H.

Proof. Let N be defined by (4.11)—(4.12) with Ay > 0 small and u = A + Ao.
By our discussion above it suffices to solve (4.14) in H for each f and this will be
done using Theorem 4.2. The second inequalities in Propositions 4.2 and 4.3 imply
that A, N : H — H are compact and continuous, respectively. Hence, I — uN and
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I—pA are A-proper w.r.t. a projection scheme I' = {X,,, P, } for H. Moreover, the
null space of I — puA is trivial since X is not an eigenvalue of (4.17) and consequently
(4.8) holds. Since a is sufficiently small, we see that (4.9) holds by Proposition 4.3
with € = Ag and therefore (4.14) is solvable for each f by Theorem 4.2. O

A similar result holds if condition (+) is replaced by the asymptotic one. We
have

Theorem 4.4. Suppose that 8 and « are bounded and asymptotically close to
B" and ~' respectively with 8 — 8’| and |y —+'| sufficiently small. If A > 1 is not an
eigenvalue of

—Au+~'u=Auin Q
_Ou =f'uonQ
on
then (4.2) is solvable in W2(Q) for each f in H.

The proof of Theorem 4.4 is similar to that of Theorem 4.3 and is based on
the following result.

PROPOSITION 4.4. Suppose that B and y are bounded and asymptotically close
to B' and y’ respectively. Let N be defined by (4.11)—(4.12) and a linear mapping
A:H — H be given by

— AAu +v'Au+ MAu=u in Q

— 0Au/dn = B Au on Q.
Then Proposition 4.2 is valid for A and for each € > 0 there exists Re > 0 such
that ||Nu — Aull2y < (|8 = B'| + |y = +'| + 3¢)l|ul| for each ||u]| > R..

Proof. As in Proposition 4.3, the conclusions of Proposition 4.2 are valid for
A. Since 8/0n(Nu — Au) = ONu/0n + ' Nu, as in the proof the Proposition 4.3
we obtain for each u € H that

[|[Nu — Aul|3 4 :/Q(Nu—Au) (Nu—Au)dtr-}-/(’y'Au—w) (Nu — Au) dx

on
oQ Q

’ ’ 2 ONu

= ~FlINu— Aullraoq) =7 IVu = Aull® + [ (S5 +BNu) (Nu— Au)do+
2Q

! 6Nu ’

+ [ (W Nu—w) (Nu— Au)dz < ‘ — -I—,BNU‘ [|Nuw — Aul|L,00)+
on 2(0Q)

Q
+ 117 Nu — w|| || Nu — Aul|.

Moreover, ||[Nu — Aul|r,5q) < cllul, ||[Nu— Au|| < [|[Nu — Aul|2,1 < c|u|| and, by
Proposition 4.1, for a given € > 0 there is a C. > 0 such that
lONu/0n + B'Nul |1y00) < e((ar + ) [|Nul|L2(0Q) + Ce) < c((a1 +¢) [|ul[ + Co).
Hence, there exists an R. > 0 such that for each ||u|| > R,

INu — Aulf3 5 < C?|Jull((a1 + &) ||ull + Ce) + C* [Jul| ((a2 + e)u + C7)

< 02(a1 + as + 3¢) ||u||2, where a; = |3 — 3| and az = |y —9/|. O
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Remark 4.1. Theorems 4.3 and 4.4 extend the corresponding results of Dias-

Hernandez [3] involving asymptotically zero maximal monotone graphs 3 and -+,
ie. |8—p'l =0, |y—7'| =0, respectively. Their proofs are based on the generalized
first Fredholm theorem of Netas [11] for compact asymptotically zero mappings.

(1]
(2]
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