APPROXIMATION OF CONTINUOUS FUNCTIONS BY MONOTONE SEQUENCES OF POLYNOMIALS WITH RESTRICTED COEFFICIENTS

S.G. Gal

Abstract. The problem of approximation by polynomials with restricted coefficients, is considered in several papers (e.g. [7-9]). In [1-6], I have proved among other things, that every $f \in C_{[0,1]}$ can be approximated uniformly by a polynomial sequence $(P_n)_n$ such that $(P_n)_n$ is monotonically decreasing on [0, 1]. The aim of this paper is to extend the ideas of [1-6] to the case of approximation by polynomials with restricted coefficients.

1. Introduction

Let $C_0[0,1]=\{f\in C_{[0,1]};\ f(0)=0\}$ and let $A=\{A_k\}_{k\geq 1}$ be a sequence of positive real numbers and

$$P_A = \left\{ p = \sum_{k=1}^n a^k x^k; \ n \in N, \ |a_k| \le A_k^k, \ \text{for all} \ k = 1, 2, \dots \right\}.$$

The problem of approximation in the space $C_0[0,1]$ by polynomials $P_n \in P_A$, is treated in several papers, (see e.g. [7–9]), where it is proved for example [9] that P_A is dense in $C_0[0,1]$ iff there is a subsequence of natural numbers $\{k_i\}_i$ satisfying the properties

$$\sum_{i=1}^{\infty} 1/k_i = +\infty \text{ and } \lim_{i \to \infty} A_{ki} = +\infty.$$

In several papers ([1–6]) I have proved, among other things, that every $f = C_{[0,1]}$ can be approximated uniformly by a polynomial sequence $(P_n)_n$, monotonically decreasing on [0, 1].

In the present paper we will extend the ideas of [1–6] to the case of approximation in $C_0[0,1]$ by polynomials from P_A .

2. Basic Result

46 Gal

Let us consider $\{A_k\}_{k\geq 1}$ which satisfies:

$$1 \le A_1 \le A_2 \le \dots \le A_k \le A_{k+1} \le \dots, \lim A_i = +\infty. \tag{1}$$

Then, by [9], P_A is dense in $C_0[0,1]$. Now, let us denote by

$$C_0^1[0,1] = \{ f \in C_0[0,1] : f'(0) = 0 \}.$$

Theorem 2.1. For every $f \in C_0^1[0,1]$, there exists a polynomial sequence $P_n \in P_A$, $n=1,2,\ldots$, such that $P_n \to f$ uniformly on [0,1] and $f(0)=P_n(0)$, $f(x) < P_{n+1}(x) < P_n(x)$, for all $x \in (0,1]$ and all $n=1,2,\ldots$

Proof. Take F(x) = f(x)/x, $x \in (0,1]$, F(0) = 0. Since $f \in C_0^1[0,1]$ it is evident that $F \in C_0[0,1]$. Then, P_A is dense in $C_0[0,1]$ and therefore there exists a polynomial sequence $(R_n)_n$, $R_n \in P_A$, $n = 1, 2, \ldots$, such that $|F(x) - R_n(x)| < 1/[n(n+1)]$, for all $x \in [0,1]$, and $n = 1, 2, \ldots$. Hence:

$$|f(x) - xR_n(x)| \le x/[n(n+1)], \text{ for all } x \in [0,1], \text{ and } n = 1, 2, \dots$$
 (2)

Take $Q_n(x) = xR_n(x)$ and $S_n(x) = Q_n(x) + 2x/n$, $x \in [0, 1]$, n = 1, 2, ... From (2) it is evident that $Q_n \to f$ uniformly and therefore $S_n \to f$ uniformly on [0, 1]. Then by (2) we obtain:

$$|Q_n(x) - Q_{n+1}(x)| \le |Q_n(x) - f(x)| + |f(x) - Q_{n+1}(x)| \le$$

$$\le x/[n(n+1)] + x/[(n+1)(n+2)] \le 2x/[n(n+1)],$$

for all $x \in [0, 1]$ and all n = 1, 2, ..., and therefore

$$S_n(x) - S_{n+1}(x) = Q_n(x) - Q_{n+1}(x) + 2x/[n(n+1)] > 0$$

for all $x \in (0,1]$ and $S_n(0) = S_{n+1}(0) = f(0)$ for all n = 1, 2, ...

Now, let $n \in N$ be fixed and $R_n(x) = \sum_{k=1}^{j_n} a_k x^k \in P_A$; therefore $|a_k| \le A_k^k$, for all $k = \overline{1, j_n}$. Then $xR_n(x) = \sum_{k=1}^{j_n} a_k x^{k+1} = \sum_{i=2}^{j_n+1} a_{i-1} x^i$. We have:

$$|a_{i-1}| \le A_{i-1}^{i-1} \le A_i^{i-1} \le A_i^i, \ i = \overline{2, j_n + 1};$$

therefore, it is evident that $xR_n(x) = Q_n(x) \in P_A$, $n = 1, 2, \ldots$ But $S_n(x) = \frac{2}{n}x + \sum_{i=2}^{j_n+1} a_{i-1}x^i$ and it is evident $2/n \le A_1$ for all $n \ge 2$. Hence $S_n \in P_A$ for all $n \ge 2$ and therefore it is evident that $P_n(x) = S_{n+1}(x)$, $n = 1, 2, \ldots$, satisfies the conclusion of Theorem 2.1.

Remark. If in the previous proof we consider $S_n(x) = Q_n(x) - 2x/n$, then it is easily seen that $(S_n)_n$ is monotonically increasing on $(0,1], n=2,3,\ldots$

3. Some Extensions

Let us consider $m, r_k \in N$, $k = \overline{1, m}$ and the numbers $D_i^{(k)} \in R$, $i = \overline{0, r_k}$, $k = \overline{1, m}$ satisfying

$$\sum_{i=0}^{r_k} D_i^{(k)} = 0, \ \sum_{i=0}^{r_k} |D_i^{(k)}| > 0 \text{ for all } k = \overline{1, m}.$$
 (3)

Also, let $A = \{A_k\}_{k\geq 1}$ satisfy (1). We will prove result analogous to Thereom 1.2 of [4]:

Theorem 3.1. If there is a sequence $(\alpha_n)_n$, $\alpha_n \in R$, $\alpha_n \searrow 0$ satisfying

$$\sum_{i=0}^{r_k} D_i^{(k)} \alpha_{n+r_k-i} > 0 \text{ for all } k = \overline{1,m} \text{ and } n \in \mathbb{N}$$
 (4)

then for every $f \in C_0^1[0,1]$, there exists a polynomial sequence $P_n \in P_A$, $n = 1, 2, \ldots$, such that $P_n \to f$ uniformly on [0,1] and

$$\sum_{i=0}^{r_k} D_i^{(k)} P_{n+r_k-i}(x) > 0, \text{ for all } x \in (0,1], \ k = \overline{1,m}, \ n \in \mathbb{N}$$

$$P_n(0) = f(0), \text{ for all } n = 1, 2, \dots$$
(5)

Proof. By Lemma 1.1 of [4] we can write:

$$\sum_{i=0}^{r_k} D_i^{(k)} \alpha_{n+r_k-i} = \sum_{i=0}^{r_k-1} C_i^{(k)} (\alpha_{n+r_k-i} - \alpha_{n+r_k-i-1})$$
with $C_i^{(k)} = \sum_{i=0}^{i} D_j^{(k)}, i = \overline{1, r_k - 1}, k = \overline{1, m}.$

Then, as in the proof of Theorem 1.2 of [4], take:

$$a_n = \min \left\{ \sum_{i=0}^{r_k - 1} C_i^{(k)} (\alpha_{n+r_k - i} - \alpha_{n+r_k - i - 1}); \ k = \overline{1, m} \right\},$$

$$D = \max \left\{ \sum_{i=0}^{r_k - 1} |C_i^{(k)}|; \ k = \overline{1, m} \right\} > 0, \ \gamma_m = a_n / (2D), \ n \in \mathbb{N}$$

and let us consider $\beta_n < \gamma_n$, $n \in \mathbb{N}$, $\beta_n \searrow 0$. Now, for F(x) = f(x)/x, $x \in (0, 1]$, F(0) = 0, $F \in C_0[0, 1]$, there exists a polynomial $(R_n)_n$, $R_n \in P_A$ such that $|F(x) - R_n(x)| < \beta_n$, for all $x \in [0, 1]$, and all $n = 1, 2, \ldots$. Hence $|f(x) - xR_n(x)| \le x\beta_n$, for all $x \in [0, 1]$ and all $n = 1, 2, \ldots$

Take $Q_n(x) = xR_n(x)$ and $P_n(x) = Q_n(x) + x\alpha_n$. Then, reasoning exactly as in the proof of Theorem 1.2 of [4], (5) follows immediately. Also, as in the proof of Theorem 2.1 (because there is an $n_0 \in N$ such that $\alpha_n \leq A_1$, for all $n \geq n_0$), $P_n \in P$, for all $n \geq n_0$ and therefore the sequence $P_{n+n_0}(x)$, $n = 1, 2, \ldots$, satisfies the conclusion of Theorem 3.1.

As in immediate corollary (analogous to Corollary 1.3 of [4]) we obtain the following:

COROLLARY 3.2. For any $f \in C_0^1[0,1]$ and any $r_0 \in N$, there exists a polynomial sequence $P_n \in P_A$, $n = 1, 2, \ldots$, uniformly convergent to f on [0,1]

48 Gal

which satisfies

$$(1-)^{r_k} \sum_{i=0}^{r_k} (-1)^i \binom{r_k}{i} P_{n+r_k-i}(x) > 0, \text{ for all } x \in (0,1], n \in \mathbb{N},$$

$$r_k \in \mathbb{N}, r_k \le r_0, k = \overline{1,m} \text{ and } P_n(0) = f(0) \text{ for all } n = 1,2,\dots$$

Remark. (1) If $r_0 = 2$, from the previous inequality we obtain that $P_{n+1}(x) < P(x)$ and $P_{n+2}(x) - 2P_{n+1}(x) + P_n(x) > 0$, (namely $(P_n)_n$ is "convex" on [0,1]), and $P_n(0) = f(0)$ for all $n = 1, 2, \ldots$

Added in proof. (2) These results do not remain valid for all $f \in C_0[0,1]$. One such example is the following. Let us denote D(f;x) = [f(x) - f(0)]/x, $(D^*f)(0) = \limsup_{x\downarrow 1} D(f;x)$ and let $f:[0,1] \to R$ be defined by f(0) = 0, $f(x) = -1/\ln x$ if $x \in (0,1/2]$ and $f(x) = 1/\ln 2$ if $x \in (1/2,1]$, where $\ln(x)$ represents the hyperbolic logarithm of x. We have: $\lim_{x\downarrow 0} f(x) = -1/-\infty = 0$ and $\lim_{x\uparrow 1/2} f(x) = 1/\ln 2$ wich implies $f \in C_0[0,1]$, but f does not satisfy Theorem 2.1.

Indeed, if Theorem 2.1 held for the function f so defined, it would follow that there exists a sequence $P_n \in P_A$, $n \in N$ such that $P_n \to f$ uniformly on [0,1] and $0=f(0)=P_n(0),\ f(x)< P_{n+1}(x)< P_n(x),\ \forall x\in (0,1],\ \forall n\in N.$ Hence we would obtain $D(f;x)=f(x)/x< P_n(x)/x=D(P_n;x)\ \forall x\in (0,1],$ therefore $(D^*f)(0)\leq (D^+P_n)(0)=P_n'(0),\ n=1,2,\ldots$ But $D(f;x)=-1/[x\cdot \ln x]\ \forall x\in (0,1/2)$ which immediately implies $(D^+f)(0)=+\infty$ choosing for example $x_m\searrow 0,\ x_m=e^{-m},\ m\in N)$ contradicting the inequalities $(D^+f)(0)\leq P_n'(0),\ n\in N.$

REFERENCES

- [1] S.G. Gal, Sur le théorème d'approximation de Stone-Weierstrass, Studia Univ. Babes-Bolyai, ser. Math. 4 (1981), 33-39.
- [2] S.G. Gal, Sur les théorèmes d'approximation de Weierstrass, Mathematica (Cluj) 23 (46) (1981), 25-30.
- [3] S.G. Gal, Sur l'approximation par des polynômes dans $C_{[0,1]}^p$, Studia univ. Babes-Bolyai ser. Math. **27** (1981), 57-60.
- [4] S.G. Gal, Sur les ensembles denses quelques espaces de fonctions réelles, Mathematica (Cluj) 26 (49) (1984), 45-51.
- [5] S.G. Gal, On the approximation by polynomials in C^q_[0,1], J. Approx. Theory 42 (1984), 27-29.
- [6] S.G. Gal, Dense linear subspaces in $L^p(E)$, Rend. Mat. (Roma) (to appear).
- [7] M.V. Golitschek, Permissible bounds on the coefficients of generalized polynomials, in Proc. Conf. Approx. Theory (Austin, Texas, 1973) (ed. G.G. Lorentz), Academic Press, 1973.
- [8] D. Leviatan, Approximation by polynomials with restricted coefficients, in: Approximation Theory II (Editiors G.G. Lorentz, C.K. Chui, L.L. Schumaker) Academic Press, 1976, 417– 422
- [9] J.A. Roulier, Restrictions on the coefficients of approximating polynomials, J. Approx. Theory 6 (1972), 276-282.

Computer Center "Infrătirea" (Received 20 08 1987) Romania (Revised 21 07 1988) 37000 Oradea