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FIXED POINT THEOREMS FOR PAIRS OF SELFMAPS
ON A METRIC SPACE

S.V.R. Naidu and J. Rajendra Prasad*

Abstract. An attempt is made to find out conditions an the orbits of a pair of selfmaps
on a metric space so as to ensure the existence of (common) fixed points when the maps satisfy
a variety of generalized contraction conditions governed by a control function.

We obtain fixed points theorems for two selfmaps on a metric space and derive
certain results of Ding [1] and Fisher [2] as corollaries.

In Section 2, we provide a number of examples to give insight into the results
discussed in Section 1.

Throughout this paper:
(X,d) is a metric space;
f, g are selfmaps on X;
i, j, r, 8, m, n are nonnegative integers;
for any selfmap h on X and z in X, Op(z) = {h"z |n=0,1,2,... };
for any subset A of X, 6(A) = sup{d(z,y) | z,y € A};
for z, y in X, a(z,y) = 6(0Os(z) U O4(y)) and
B(x,y) = sup{d(fiz,g'y) | i >0, j > 0};
RT is the set of all nonnegative real numbers; and
@ :[0,00] = [0, 0] as an increasing function.
Definition. A selfmap h on (X, d) is said to be orbitally continuous at z € X
if hz = z, when {h™z} converges to z for some z in X.

Section 1. We begin with:

LEMMA 1. Iflim, o ©™(t) = 0 for every t in (0,00), then @*(t+) < ¢(t) < t
for every t in (0,00) and ¢(0+) = 0.
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THEOREM 1. Suppose that
inf B(f"z,9"y) < ¢(a(z,y)) @

1<n<co

for all z, y in X, where p(t+) < t for every t in (0,00). Suppose also that there is
an zo in X such that {d(f"xq,g"xo)} converges to zero and one of the sequences
{f"zo} and {g"xo} is bounded. Then {f"zo} and {9"zo} are Cauchy sequences
and if one of them converges, then the other also converges to the same limit.
Furthermore, if either f or g has a fized point w, then the two sequences converge
to w. Suppose that {f"xo} converges to some z in X. Then z is a fized point of
f(9) if f or f2 (g or g*) is orbitally continuous at x.

Proof. Let o, = a(f™x,9™xo) (n = 0,1,2,...). Since {d(f"xo,g"x0)} con-
verges to zero and one of the sequences {f™zo} and {g"zo} is bounded, it is clear
that ag < +00. The sequence {a,} is a decreasing sequence of nonnegative real
numbers. So it converges to some nonnegative real number «. If possible, suppose
that @« > 0. Then p(a+) < «. Hence, there exists a real number 8 > « such
that ¢(8) < a. Choose ! such that ¢(3) < 8! < a. Since {a,} decreases to a,
there exists a positive integer N such that ay < 8. For z = fNx¢ and y = gV 2o,
the right-hand side of inequality (I) is ¢(ay) which is less than 8'. Hence, from
inequality (I) for # = f¥x¢ and y = g™ mo, it follows that there exists an integer
N1 > N such that 3(fNzg, g™V 2¢) < B*. Since {d(f"zq,g"w0)} converges to zero,
there exists an integer No > Nj such that d(f"zo,g"z0) < (o — 3')/2 for every
n > Ns. For n > Na, it is now clear that a,, < 8! + (a—3')/2 = (a+ ) /2. Since
{an} decreases to a, it now follows that a < (a + 3')/2. This is a contradiction,
since 8! < a. Hence, a = 0. Hence, {f"x} and and {g"zo} are Cauchy sequences
and if one of them converges, then the other also converges to the same limit.

Suppose now that fw = w. Let v, = sup{d(w,g’zo) | j > n}(n =1,2,...)
and v = inf{y, | n > 1}. Taking z = w and y = g"x¢ in equality (I), we obtain:

v < e({w} UO,(g"x0)) < p(max{yn,d(0,4(g"x0))})-

Since {7y,} decreases to v and {g"zo} is Cauchy, by taking limits on both sides of
the inequality above as n — oo, we obtain v < ¢(y+). Hence v = 0. Hence {gnzo}
converges to w. In a similar manner, it can be shown that {f"z¢} converges to w
if gw = w.

Suppose that f? is orbitally continuous at z. Since {f?"x} converges to
z, it follows that f2z = z. Hence, Of(z) = {z, fz}. For any nonnegative inte-
ger k, infi<n<oo B(f"2,9™(9%T0)) = d(z, fz). Hence, from inequality (I), we have
d(z, fz) < p(a(z,g*zo)) for any nonnegative integer k. Since a(z, g¥z¢) — d(z, f2)
as k — oo, it now follows that d(z, fz) < ¢(d(z, fz)+). Since p(t+) < t for every
t in (0,00), we must have d(z, fz) = 0. Hence fz = z. In a similar manner, it can
be shown that gz = z if g2 it orbitally continuous at z.

COROLLARY 1. Theorem 1 holds with inequality (II) below in the place of
inequality (I), where p and q are fized positive integers:

d(fPz,9%) < p(a(z,y))- (IT)
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Remark 1. Theorem 1.11 of Sastry and Naidu [4] is a special case of Corollary
1 with f = g, p = ¢ and ¢(t) = at, a being a constant in [0, 1).

COROLLARY 2. Suppose that
d(fPz,9%) < p(6({f*z,9'y | 0<i<p, 0<j <g})) (111)

for all z, y in X, where p and q are fized positive integers, p(t+) < t for every t in
(0,00) andlim;_, 4 o [t—(t)] = +00. Suppose also that there is an zo in X such that
{d(f"xo, g"x0)} converges to zero. Then {f"xo} and {g"x¢} are Cauchy sequences,
and if one of them converges, then the other also converges to the same limit.
Furthermore, if either f or g has a fixed point w, then both sequences converge to
w. Suppose that {f"zo} converges to some x in X. Then the following statements
hold:

1. if f or f? is orbitally continuous at z or p =1, then fz = 2.
2. if g or g2 is orbitally continuous at z or ¢ =1, then gz = z.

Proof. We need only prove that z is a fixed point of f or g according as p
or ¢ is one; the rest of the Corollary is evident from Corollary 1 and statement 3
of Lemma 3 of [5]. Suppose now that p = 1. Then for n > ¢, from inequality (III),
we have ‘

d(fz,9"w0) > ¢(6({z, fz,9'z0 | n —q < j < n})).

Since {g"xo} converges to z, by taking limits on both sides of the inequality above
as n — oo, we obtain d(fz,2) < ¢(d(fz,z)+). Hence, d(fz,z) = 0. Hence, fz = z.
In a similar manner, it can be shown that gz = z when ¢ = 1.

Remark 2. Example 1 shows that in Corollary 2, the condition ’p(t+) < t for
every t in (0,00)’ cannot be replaced by the weaker condition "lim,, ., ¢™(t) = 0
for every t in (0, +00), even if (X, d) is a bounded, complete metric space, f and g
are continuous on X and p=¢q=1.

Remark 3. Examples 5 and 6 of Sastry and Naidu [3] show that in Corollary
2 one cannot drop the condition ’there is an z¢ in X such that {d(f™zo, g"z0)}
converges to zero’ even if X is finite and p =¢q = 1.

Remark 4. Example 2 shows that the initial hypothesis of Corollary 2 (Corol-
lary 1) cannot guarantee the existence of a fixed point for either f or g, even if
(X,d) is compact, f2 and g* are continuous on X, p=q =2 (p = ¢ = 1) and
»(t) = at, a being a constant in [0, 1).

Remark 5. Example 3 shows that the initial hypothesis of Corollary 2 (Corol-
lary 1) cannot guarantee the existence of a fixed point for f, even if it is strengthened
by assuming that (X,d) is compact, f® is continuous on X, p = 2 (p = 1), g is
continuous on X (consequently gz = z), ¢ = 1 and ¢(t) = t/2.

Remark 6. In Corollary 1, the condition *{d(f"xq, g™zo)} converges to zero’

can be replaced by the commutativity of f and g provided {fig’zq | i > 0, j > 0}
is bounded [5]. Example 4 shows that this is not so in the case of Theorem 1 even
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if (X,d) is a bounded complete metric space, f and g are continuous on X and
p(t) =t/2.

Tt is possible to drop the condition *{d(f™zq,g™xo)} converges to zero’ from
Theorem 1 by suitably strengthening inequality (T).

THEOREM 2. Suppose that

,Jnf_a(f"z,9"y) < pla(z,y)) (Iv)
for all x, y in X, where p(t+) < t for every t, in (0,00). Suppose also that there
is an xo in X such that a(xg,xo) < +00. Then {f"zo} and {g"xo} are Cauchy
sequences and {d(f™xzq,9"xo)} converges to zero. In fact, {f"x} and {g"y} are
Cauchy sequences and {d(f™z,g™y)} converges to zero, whenever a(z,y) < +oo.
In particular, each of f and g has at most one fixed point and if either f or g
has a fized point w, then both {f"xo} and {g"xo} converges to w. Suppose that
{f"xo} converges to some z in X. Then z is fized point of f(g) if f¥(g*) is orbitally
continuous at z for some positive integer k.

Proof. Let z, y be elements of X such that a(z,y) < +oo. Let a,, =
a(f"z,g™y) (n =0,1,2,...) and o = inf{a,, | n > 1}. Then {«a,} is a decreasing
sequence of nonnegative real numbers decreasing to the nonnegative real number
a. Taking f™z in the place of z and g™y in the place of y in inequality (IV), we
obtain a < @(ay,) (m = 0,1,2,...). Hence, a < ¢(a+). Hence, @ = 0. Hence
{f"z} and {g™y} are Cauchy sequences and {d(f"z,g"y)} converges to zero. The
theorem is now evident.

COROLLARY 3. Suppose that

a(fPz,9"Wy) < p(a(z,y)) V)

for all z, y in X where lim,_,o, ™ (t) = 0 for every t in (0,00) and p and q are
functions from X into the set of all positive integers. Suppose also that there is
an xo in X such that a(zg,x9) < +o0o. Then {f"zo} and {g"zo} are Cauchy
sequences and {d(f™xq,9"xo)} converges to zero. In fact, {f"x} and {g"y} are
Cauchy sequences and {d(f™z,g™y)} converges to zero, whenever a(z,y) < +oo.
In particular, aech of f and g has at most one fixed point and if either f or g has
a fized point w then both {f"xo} and {g"xo} converge to w. Suppose that {f"zo}
converges to z for some z in X. Then the following statements hold:

1. if f*(g*) is orbitally continuous at z for some positive integer k, then fz = z
(92 = 2);

2. if p(z) =1 and {f"z} is bounded, then fz = z;

3. ifq(z) =1 and {g"z} is bounded, then gz = z.

Proof. For z,yin X, let 2, = fP®)g, 31 = g9Wy, (z) = p(x) + p(x1) and
d(y) = q(y) + q(y1). Then, from inequality (V), we have

a(fP@ g, g1®y) = a(fPE) 2, g1Wy) < p(a(z,41)) < ¢ (alz,y))
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for all z, y in X. Hence, inequality (IV) holds for all z, y in X with (? in the place
of ¢. From Lemma 1 we have p?(t+) < t for every t in (0,00). Now we need only
prove statements 2 and 3, since the rest of the Corollary is evident from Theorem
2.

2. Suppose that p(z) = 1 and {f™(z)} is bounded. Let a(z) = 6(0¢(z)).
Then 0 < a(z) < +oo. Let 21, = g?®-1g;_; and v, = sup{d(z,g"zs) | u =
0,1,2,...} (k=1,2,3,...). Since {z}} is a subsequence of {g"z¢} and the latter
converges to z, it is clear that {a(fz,zx)} and {a(z,zr)} converge to a(z) and
{Yk} converges to zero. Since p(z) = 1, for k > 2, from inequality (V), we have

a(fz,zr) < pla(z,75-1)) < p(max{a(fz, zk-1), a(2), Tk-1})
S go(max{cp(a(z,:vk_g)), a(z), ’Yk—l})-
Hence, a(fz,zr) < max{p?(a(z,zr—2)), ¢(a(z)), vk—1} for k > 2. Taking
limits on both sides of the inequality above as k — o0, we obtain a(z) <

max{¢?(a(z)+), ¢(a(z))}. Now from Lemma 1 it follows that a(z) = 0. Hence,
fz==z

3. The proof of statement 3 is analogous to the proof of statement 2.

Remark 7. Example 5 shows that none of the conclusions of the first part of
Theorem 6 (or Corollary 3) of Ding [1] is true even if (X, d) is a bounded (complete)
metric space, ¢(t) = t/2 and the functions m and n (mentioned in the results of
Ding) take the constant value one troughout X. Corollary 3 is an improvement
over the second part of Theorem 6 of Ding [1].

THEOREM 3. Theorem 2 holds with the following inequality in the place of

inequality (IV):
inf "x,g"y) < .
Sk B, g™y) < e(B(e,y))

Proof. Let z, y be elements of X such that (z,y) < +o0o. Proceeding as
in the proof of Theorem 2, it can be shown that inf{8(f"z,¢"y) |n =1,2,3,...}
is zero. Hence, {8(f"z, g"y)} converges to zero. In particular, {d(f"z, g"y)} con-
verges to zero. Since d(f"x, fMx) < d(f™z,g"y) + d(f™x,g"y) < 28(f"x, g"y) for
all m > n, it is clear that {f™z} is Cauchy. Similarly it can be shown that {g"y}
is Cauchy. The theorem is now evident.

Remark 8. Example 6 shows that either in Theorem 1 or in Theorem 2 or in
Theorem 3, the condition ’p(t+) < t for every ¢ in (0,00)’ cannot be replaced by
the weaker condition ’lim,,_,, ¢™(t) = 0 for every ¢ in (0,00)’, even if (X,d) is a
bounded, complete metric space, f = g and f is continuous on X.

COROLLARY 4. Corollary 3 holds with inequality (VI) below in the place of
inequality (V):

B(fP Dz, g"Wy) < p(B(x,y))- (VI)

Proof. Corollary 4 can be proved along the lines of the proof of Corollary
3 with obvious modifications, such as the replacement of a with § except in the
definition of a(z) which is to be defined here as sup{d(z, f"z) |n =1,2,3,...}.
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Remark 9. Example 7 shows that the initial hypothesis of Corollary 3 or 4
does not guarantee the existence of a fixed point for f even if (X,d) is compact,
g is continuous on X (consequently, g has a fixed point), p takes the value one
troughout X, except at a single point where it takes the value 2, ¢q(y) = 1 for all y
in X and p(t) = t/2. It also shows that the condition ’p(z) = 1’ cannot be dropped
from statement 2 of Corollary 3 or 4 even if p(z) =1 for all z in X \ {z}.

COROLLARY 5. Corollary 4 holds with inequality (VII) below in the place of
inequality (V1), the statement ’p and q are fized positive integers’ in the place of
the statement ’p and q are functions from X into the set of all positive integers’, p
in the place of p(z) and q in the place of q(z):

d(fPz,9%) < o(B(z,y)). (VD)

Proof. The validity of inequality (VII) for all z, y in X implies that of
inequality (VI) with p(z) = p and ¢q(y) = ¢ for all z, y in X.

Remark 10. Example 8 shows that in statement 2 of Corollary 3, or 4, or
5, one cannot drop the condition '{f™z} is bounded’ even if (X,d) is complete,
p =¢q =1 and ¢(t) = t/2. In fact, the example shows that the remark is true
whether g is continuous on X (and therefore g has a fixed point) or f = g.

COROLLARY 6. Suppose that
d(fPz,9%) < pmax{d(f'z,g’y) [ 0<i<p, 0<j<q}) (VII)

for all x, y in X, where p and q are fixed positive integers, lim,, o, ©"(t) = 0 for
every t in (0,00) and lim;_, 4 o[t —@(t)] = +00. Then for all z, y in X, {f"x} and
{g"y} are Cauchy sequences and {d(f™z,g"y)} converges to zero. In particular,
each of f and g has at most one fized point. Suppose that there is an xg in X such
that { f™xo} converges to z for some z in X. Then for all z in X, {f"z} and {g"x}
converge to z. Furthermore, the following statements hold:

1. if either p = 1 or f* is orbitally continuous at z for some positive integer k,
then fz = z;

2. if either ¢ = 1 or f* is orbitally continuous at z for some positive integer k,
then gz = z.

Proof. Let z in X. Let M = max{d(¢9°z,g%z) | 0 < s < ¢} and v, =
max{d(f"z,¢9%z) | 0 < r < n}(n =0,1,2,...). For p < i < n, from inequality
(VIII), we have

d(f'z, g'z) < p(max{d(f"z,g°z) | i—p <71 <i, 0<5<q}) <o(yn + M).

Hence, v, < ¢(yn + M) + 7, (n = 1,2,3,...). Hence (v, + M) — (v + M) <
M+ (n=1,23,...). Since lim;_,4 o[t — ¢(t)] = +0o0, it now follows that {v,}
is bounded. Hence {f™z} is bounded for each z in X. Similarly it can be shown
that {g"z} is bounded for each z in X. Hence B(z,y) < +oo for all z, y in X.
Now the corollary is evident from Corollary 5.
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Remark 11. Theorem 2 of Fisher [2] is a special case of Corollary 6 with
»(t) = at, a being a constant in [0,1). Example 9 shows that Corollary 6 is a
proper generalization of Fisher’s theorem.

Remark 12. Example 10 shows that in Corollary 6 one cannot conclude that
the sequence {f™z} is bounded (and therefore Cauchy) even if (X, d) is complete,
f =g and p=q =1 if the condition ‘limy_, [t — ¢(t)] = +00’ is dropped. From
the example it is also evident that a similar remark holds in the case of Corollary 2.

Remark 13. Example 11 shows that, when p = ¢ = 2, the initaial hypothesis
of Corollary 6 (and therefore that of Corollary 5) does not guarantee the existence
of a fixed point for f even if (X, d) is compact, f = g and ¢(t) = t/2.

Remark 14. Example 12 shows that when p = 2, the initial hypothesis of
Corollary 6 cannot ensure the existence of a fixed point for f even if (X,d) is
compact, g has a fixed point and ¢(t) = /2.

Remark 15. Example 13 shows that in Corollary 6 it is not possible to take
p and ¢ even as bounded functions from X into the set of all positive integers and
replace p with p(z) and g with ¢(y) in inequality (VIII) even if (X, d) is a bounded,
complete metric space, f = g and (t) = t/2. In fact, the example shows that it
is not possible to take even p alone as a bounded function and ¢ = 1. It is evident
that similar remarks hold also in the case of Corollaries 1, 2 and 5.

2. Examples. 1. Let X be the set of all integers with a metric d defined
on it by d(m,—m) = 1/m if m > 0, d(0,m) =1 if m > 0, d(0,—m) =1+ 1/m if
m >0, d(m,n) =d(-m,—n) =14+1/nif 0 <m < n and d(m,—n) =1if m > 0,
n >0 and m # n. Define f,g: X — X by:

—z if 2 <0, 0 ify>1,
fr= gy = -2 ify=1,
14z if >0, y—1 if y <0.

1 ift>1,

0 if t<1.
metric space; f and g are continuous on X; ¢ is increasing on R*, ©2(t) = 0 for
every t in Rt, and

Define ¢ : Rt — RT by ¢(t) = { Then (X,d) is bounded, complete

d(fz,gy) < o(0{z, fz,y,9y})

for all z, y in X. The sequence {d(f™0,¢g"0)} converges to zero. But there is no z
in X for which either { "z} or {g"x} is Cauchy. In particular, neither f nor g has
a fixed point.

2. Let X = {0ju{2™ —-2"|n=0,1,2,...} with the usual metric.
Define f,g: X > X by f0=1, fl=-1, f(-1) =0, fr==z/2if £ = 27" and
nisoddorz = -2"", niseven and n # 0, fr = —z/2 if x = 27" n is even
andn # 0or z = —27" and n is odd, g0 = 27!, g1 = g(-1) = g(-271) = 0,
g(271) = =271 and gz = fz for all z in X \ {0,1,—1,—271}. Then f2 and ¢°
are continuous on X; f30 = ¢%0 = 0 = lim,_, o g"2 = lim,,_,o, fPz for all z in



72 Naidu and Prasad

{27, —27% |k =2,3,... } and | fa—gy| < (4/5) max{d{z, f=, >z}, 6{y,gy,9°y}},
|2z — g%y| < (3/4) max{d{z, fz, f*x}, {y,9y,9°y}} for all z, y in X. In fact, for
all integers p,q > 2, we have

[Pz — g%yl < (3/4) max{d{w, fx, f*z}, 6{y,9y,97y}}
for all z, y in X. But neither f nor g has a fixed point.

3. Let X ={-1,0,1}U{27" | n=1,2,...} with the usual metric. Define
f,9: X > Xby f(-1)=0,f0=1, fl=—1, f2 ") =2"(n=1,2,...) and
gx = 0 for all z in X. Then f3 and g are continuous on X, lim,_,o fz = 0 =
g(0) =lim,, , g"z for all z in {27% |k =1,2,...} and
|fz — gy < 8{=, fz, f*z,9y}/2,
|f*z — gy| < {z, fz, f*x, gy}/2

for all z, y in X. In fact, for all positive integers p, ¢, we have

|fPx — g%y| < 27" max{d{z, fz, f*z}, d(z,gy)}
for all z, y in X. But f has no fixed point.

4. Let X be the set of all positive integers with a metric d defined on it by
d(z,z+1) =2for all z in X and d(z,y) = 1 if z and y are distinct nonconsecutive
positive integers. Define f : X — X as fo = 2+ 1 for all z in X. Let g be
the identity map on X. Then (X,d) is a bounded, complete metric space with no
accumulation points, and

inf B(f"z,g"y) =27"d(z, fz) =27 a(z,y)

1<n<oo
for all z, y in X. But, for no z in X, {f™z} is Cauchy.

5. Let X = {3,4,5,...} with a metric d defined on it as in Example 4.
Define f,g: X = X by

n+1 if niseven, 2n if n is even,

f(n) = g(n) =
2" +3 if nis odd, n+1 if nis odd.

Then (X, d) is a bounded, complete metric space with no accumulation points and
8(04(fx) U Oy(gx)) = 27" max{d(z, fz), d(z,g2)} = 27'86(0y(z) UO,(x))

for all z in X. But there is no = in X for which either {f"z} or {¢g"z} is Cauchy.
In particular, neither f nor g has a fixed point in X.

6. Let X be the set of all positive integers with a metric d defined on it by
d(z,y) =1+ 1/yif x <y. Define f: X - X by fr =z + 1. Define p: Rt - R*
by o(t) = 1ift > 1 and ¢(t) = 0if ¢ < 1. Then (X,d) is a bounded, complete
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metric space with no accumulation points, ¢ is increasing on Rt, ©?(t) = 0 for
every t in Rt and

inf  §(07(f"z) UOf(f"y)) < p(min{max{d(z,y), d(fz,y)},

1<n<oco

max{d(z,y), d(z, fy)}, max{d(fz,y), d(z, fy)}})

for all z, y in X. But, for no z in X, the sequence {f"z} is Cauchy. Clearly, f has
no fixed point.

7. Let X = {0}u{27" | n =0,1,2,...} with the usual metric. Define
frg: X > Xby f0=1, fo =2/2 for z # 0 and gz = z/2 for all z in X. Then
X is compact, g is continuous on X, g0 = 0, {f"z} and {g"z} converge to zero for
each z in X,

a(fz,gy) <27 B(z,y)
for all z in X \ {0} and for all y in X, and

a(£70,9y) < 27'8(0,y)

for all y in X. But f has no fixed point.

8 Let X ={2"|n=0,1,2,...} U{0,-1,-2,-3,...} with the usual
metric. Define f: X - X by fr=z—-1ifz € {0,-1,-2,-3,...} and fz = z/2
ifze{27"|n=0,1,2,...}. Let g be the constant map zero on X. Then

a(fz,gy) <2710(0;(z)) = 27" B(z,y),
8(05(fx) UOs(fy)) < 2" 'sup{|f'z — fy| |9 >0, j >0}

for all z, y in X. For z > 0, {f"z} and {g"z} converge to zero. But {f"0} is
unbounded. Clearly, f has no fixed point.

9. Let X ={0,1,1/2,1/3,...} with the usual metric. Define f : X — X as
f0=0,f(1/n)=1/(n+1)(n=1,2,...). Define p : Rt — R* by ¢(t) = t/(1+%).
Then ¢ is an increasing function on R*, p(t) < t for every t > 0,

lim [t —(t)] = +00 and |fz — fy| < p(max{|z — fyl,|fz —y[})

t—+oco

for all z, y in X. But there is no constant « in [0,1) such that

|fz = fyl < amax{[z —yl,|fz —yl, |z - fyl}
for all z, y in X.

10. Let X =[1,00) with the usual metric. Define f: X — X by fz = 2z
and ¢ : Rt — Rt as p(t) = 2t2/(1 + 2t). Then ¢ is an increasing continuous
function on R*, ¢(t) < t for every t > 0, lim;_, o[t — ¢(t)] = 1/2,

|fz — fy| < p(max{|z —yl, |fz —yl, |z — fy|})

for all z, y in X, and, for each z in X, f"z — +00 as n — oo.
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11. Let X ={-1,0,1}U{27" | n =1,2,3,...} with the usual metric. Define
f: X > Xby f(-1) =271, f(0)= -1, f(2=") =2-""1(n = 0,1,2,...). Then
|f*z = f*y] <27 max{|z —y|, |z - fyl,|fz —yl}
for all z, y in X. But f has no fixed point.

12. Let X = {-1,0,1}U{27" | n =1,2,3,...} with the usual metric. Define

fi9: X = X by f(=1) =g(-1) =271, f(0) = -1, g(0) =0, f(27") = g(27") =
27"1(n=0,1,2,...). Then

|f°z — gy| < 27" max{|z — yl|,|fz — y[}

for all z, y in X. Then g has a unique fixed point, namely, zero. But f has no fixed
point.

13. Let X = {0}U{2,3,4,...}U{-1/n|n=2,3,4,...}. Define a metric d
[z =yl if [z —y| <2,
on X by d(z,y) = Define f,g: X — X by g(z) = 0 for

2 if |x—y|>2.
all z in X and
~1/2 if 2 =0,
flz)=< =1/(z+1) if z€{2,3,4,...},
-1/z if ze{-1/n|n=2,3,4,...}.

Define p: X — {1,2,3} by p(0) =3, p(z) = 1if z € {2,3,4,...} and p(z) = 2 if
z€{-1/n|n=2,3,4,...}. Then (X,d) is a bounded, complete metric space and

d(fP Dz, gy) < 271d(f7) "z, gy),
d(fP@ g, frWy) < 271q(fr@) =1y, fP)—1y)
for all z, y in X. But, for no z in X, the sequence {f"z} is Cauchy. In particular,

f has no fixed point. Furthermore, (X, |-|) is an unbounded complete metric space

and . .
|fP@z — gy <271 POy — gy,

|fP@g — W)y < 97| @)=ty _ pp(u) -1y

for all z, y in X, where | - | denotes the modulus function. For any z in X, {f"z}
is unbounded in (X, ] -|).
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