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A COMPLETENESS THEOREM FOR AN INFINITARY
INTUITIONISTIC LOGIC WITH BOTH ORDINARY
AND PROBABILITY QUANTIFIERS

Miodrag Raskovié

Abstract. Our main result is a proof of the completeness theorem for an infinitary intu-
itionistic logic with both ordinary and probability quantifiers with respect to the Kripke semantics.

1. Sometimes it is not enough to prove that formula ¢(z) is satisfied by an
element a € A in the interested model 2 or not. It may happen that we are looking
for the quantity of those a € A for which ¢[a] is true. Of course, the mathematical
discipline for this kind of considerations is probability theory.

The logic suitable for this kind of reasoning was introduced by H.J. Keisler
in 1976. This logic has formulas similar to those of L4 C L, (A is a countable
admissible set), except that the quantifiers (Pz > r) (r € AN[0, 1] is a real number)
are used instead of the usual quantifiers (Vz) and (3z). A model for this logic is a
pair (2, u), where 2 is a classical structure and p is a probability measure defined in
such a way that definable subsets of the universe A are measurable. The quantifiers
are interpreted in the natural way, i.e.

@) (Pz2r)p@) i plac A: @ p) b plal} > 7.

This logic, denoted by L 4p, is essentially infinitary. That means that if we allow
only finite formulas we still must have an infinite rule of inference in order to prove
even the weak form of the completeness theorem (see [4]).

Our aim is to build an intuitionistic logic with probability quantifiers. How-
ever we do not want to miss ordinary quantifiers therefore we include them in our
logic, too. In our logic, (denoted by L 4pr) which allows the conjunction and dis-
junction of countable sets of sentences, all conectives and quantifiers are treated
intuitionistically. Therefore, all of the following three classically valid equivalences
are not valid in our logic

(Pz <r)p < —(Pz>r)-p,
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(Pzx<r)p < (Px>1-r)g,
(Px>r)p < ~(Pxr>1-—r)"p

We try to find motives for introducing some particular axioms in intuitionistic
mathematics and in the intuition of Kripke semantics as well.

Let us say something briefly about Kripke models in the classical case. A
Kripke model consists of an ordered tree (Tp, <) with a single root ¢y and at each
node t of the tree we have a classical model 2;. The nodes satisfy the following
condition: s < t implies A, C 2, (i.e. for each n-ary relation R, R¥: C R¥%: N A").
In essence, a classical model for predicate calculus is attached to each node, with the
restriction that true atomic sentences are preserved in extensions. We can interpret
this kind of model as representing the growth of knowledge. We want to extend this
intuition to L 4pr logic. So in each node of Ty we have a triple (2, uf, ul), where !
is a superadditive inner measure and p! a subadditive outer measure. Also, uf is
increasing and p! is decreasing, i.e. pf < pl < pb < pg for s < t. (For the precise
definition see 2.6 and 2.7).

The logic L 4py is infinitary for two reasons. First, this logic is much more ex-
pressive than the same first-order version, so many important notions of probability
theory can be expressed, as for example: convergence almost surely, convergence
in probability, random variables X7 and X, have the same distribution, etc.

Secondly, in order to prove the completeness theorem we need infinity in a
similar way as in the classical case. The full finiteness (this means finite formulas
and finite rules of inference) can be ensured only for some logic with finite number
of quantifiers of the type Pz > r, Px > r, Px < r, Px < r. The infinitary
intuitionistic logic has already been treated in [6] and [7], of course for ordinary
quantifiers.

Finally, we shall make some remarks. We work in an admissible fragment A
and all relevant facts about admissible sets can be found in [1].

The present paper written by a model theorist is intended as a work in model
theory which may be of interest to both model theorists and intuitionists.

2. We can now introduce L 4p logic and prove the completeness theorem.

2.1. Convention. We shall assume throughout that A is an admissible set
(possibly with urelements) such that w,@ € A (Q is a set of rational numbers)
and each a € A is countable (that is A C HC, where HC' is the set of hereditarily
countable sets).

2.2 Definition. We shall assume throughout that L is a countable A-recursive
set of finitary relation and constant symbols (no function symbols).

The logic has the following logical symbols:

(a) a countable list of individual variables v,,, n € N,
(b) the connectives A,V,=, -,
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(¢) the quantifiers Px > r, Px > r, Px < r, and Pr < r, where = is a
variable and r € AN[0,1] N Q,

(d) quantifiers (Vz) and (3z),

(e) the equality symbol =.

2.3. Definition. The set of formulas of L(AP) is the least set such that:
(a) Each atomic formula of first-order logic is a formula of L4p;y.

(b) If ¢ and ¢ are formulas of L4pys, then —p and ¢ = ¢ are formulas of
L apr.

(c) If ® € Aisaset of formulas of L 4 pr with only finitely many free variables,
then A ® and \/ @ are formulas of L 4py.

(d) If ¢ is a formula of Lapy and Px > r, Px > r, Pr < r and Pz < r
are quantifiers of Lapy, then (Px > r)p, (Px > r)p, (Pr < 1)¢ and
(Pz < r)p are formulas of L apj.

(e) If ¢ is a formula of Lapr and Vz and 3z are quantifiers of L 4ps, then
(Vz)p and (3x)¢ are formulas of L 4p;.

It is understood that the formulas are constructed set theoretically so that

Lapr C A. Wedenote Lapr, where A = HC, by L,, pr. Thus, Lapr = ANLy,, pr.

Al
A2

A 3.

A4

A5,

A6.

If O is a contradiction, ¢ = O is shortened by —p.
L 4pr has the following set of axioms, where ¢ € Lapsr and r, s € AN[0,1]NQ.

2.4. Definition. The Axioms for L 4p; are as follows:
All axioms of finitary intuitionistic first order logic.

Infinitary axioms

N\ ® = ¢ where ¢ € O, v =\ ® where p € ¥,

pV(Ve) <= V (pV9), pA (V) <= V (pAY),
ped ped

oA (NB) = A (en), eV (NG <= A (pVy),
ped peD

¢/6\¢(so=>w):>(so=>/\<1>), Npca @ = 0) = (V&= ¢).

Monotonicity:

(Px >r1)p = (Px > s)p, where r > s, (Pzx>r)p = (Px >r)p,

(Pr <r1)p = (Px <s)p, wherer <s, (Pzx<r)p=(Pzx<r)p.

(Pz 2 71)p = (Py 2 1)p, (Pz <r)p = (Py <)y,

(Pxz > r)p = (Py > r)p, (Pz <r1)p = (Py <r)p.

Finite additivity:

(i) (Pz<r)pA(Pz<s)p= (Pz<r+s)(pV)),

(ii) (Pz 2 1) A (Pz 2 s)p A(Pr <0)(p AY) = (Pz 21+ s)(p V),
(Pz > 0)¢p.
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The Archimedean property:

i) Pz>nr)p <= V (Pz>r+1/n)p,
neN

(i) ( é\N(Pm >r—1/n)p) < (Pz >r)p.

(Vz)p = (Pz > 1)p.
2.5. Definition. The rules of inference for L 4pr are as follows.

Modus Ponens: ¢,p = ¢ F 9.

Conjunction: {p = | € D} => A D.

Disjunction: {p = ¢ | € P} F\/ & = ¢.

Generalization: ¢ = 9(z) F ¢ = (Vz)p(z) provided z is not free in .

2.6. Definition. A Kripke model is a (complex) structure

K= <(Qlt, llzf;; .ug)a (To, S)>t€To7

a) (To, <) is an ordered tree with the least element tg

b) A, C A, fort < s

b<ps <ps <pb,fort<s

¢ is subadditive, i.e. ut(A) + ut(B) > pt(AU B)

! is superadditive, i.e. ut(A4) + pt(B) < pt(AU B) for pt (AN B) = 0.

2.7. Definition. Let K be a Kripke model. The relation p IF ¢, where p € Ty

and ¢ is a sentence, is defined by induction on the formation of ¢ as follows:

(i) If ¢ is an atomic formula, then ¢ I ¢ iff 2A; F .

(if) If ® is a set of formulas, then

tl- \® iffforeach €@, ko
tl-\/ @ iff for some @€ ®, tlo

(iii) If o is ¢ = 0 then p Ik ¢ iff for each ¢ > p, if ¢ IF ¢ then ¢ IF 6.
(iv) If o is -, then p IF ¢ iff for no ¢ > p, ¢ I+ 9.

(v) If pis (Pz >r)p, then t Ik (Pzx > r)p iff ui{zx € A; : t Ik p(z)} > r and
similarly for other quantifiers. K = ¢ iff to IF .

In order to prove a completeness theorem we need the notion of saturated

theory.
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2.8. Definition. The theory A is saturated if:

(i) Cn(A)=Aie. ArpifpeA

(i) ANPeAiffforeach pe @, pe A

(iii) V@ € A iff for some ¢ € ®, p € A

(iv) (3z)p(z) € A iff there is a ¢ € Ind(A) such that ¢(c) € A.

Here, Ind(A) is the set of all constants which appear in some formula of A.

We now derive the necessary Rasiowa-Sikorski type result. The proof is
very much in the spirit of an elementary proof of the Rasiowa-Sikorski Lemma
for Boolean algebras, except that certain simplifications for Boolean algebras are
not, permissible in the more general setting.

2.9. LEMMA. If T I/ ¢ = 1), then there is a saturated theory A D T such that
peAandy ¢ A.

Proof. Let 1¥1,12,13, ..., be a sequence of all formulas from L 4py, such that
Ysnir = V05" ange = N; 0", and Ysnys = (3z;) ¢* 3 (25).

We will recursively construct sequences T'C To C Ty C ... and Ay C 4; C
.... At each stage we will have T, — T" and A,, finite and if o™ = A(T, — T') and
" =\ A, at stage n, then T I/ o™ = . Let Top = T U {¢} and A, = {¢}. A
typical stage falls into one of the following six cases.

Case a). We consider n = 3k, ¥n41 =V @it and T (V; et Aa™ = B

Now, since a™ A (V;95%h) = V(@™ A}t it follows that for some jo,

THa™A QO;LOH = 0" and we put Ap41 = A, and Ty =T, U {90?0“}.
Case b). We consider n+3k, {11 = V; ¢"+' and T' - (VJ cp;”“) Aa™ = B,
In this case put Tp41 = T, and Appy = A, U{V i 90?“}. We must verify that

THa"=pg"vV (V] cp?'H). If not then

THa" = 8"V (VJ cp?“), whence
TrHa"Aa™ = (8"V (V; eIt Aam, so by assumption
THa" = (B"AQ™)VE", and so

TkFo" = p" contradiction.

o Case c). We consider n = 3k+1, 1 = A\, jH and T ¥ o A (A, 97 H) =
Case d). We consider n = 3k+1, pni1 = A; cpg‘“ and T F a"/\(/\j et =

J
B™. In this case we claim that for some jo, T I/ a™ = (8" V go?oﬂ). If not

Tka"=p"Vey, for each j, whence
n +1
Tha" = A8V o))

THa" ="V (/\] go?“), therefore
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Tka™= (B"V (A\;¢)) Aa®

Tka™= (B"Aa™)V ((A; it Aam), whence, by assumption
T+a"= (8" Aa™)V B"
THQ" = g7, a contradiction.

Now put Tn+1 =T, and An-i-l =A,U {(,D;H_l}.

0

Case e). We consider n = 3k + 2, ¥p11 = (Iz;) " (z;) and T I/ (a" A
(3z;) " (z;)) = B™. In this case we claim that T I/ (o™ A " (c;) = B") for
some c;,. If not

T+ (Vz;)((a™ A "t (z;)) = ") x; new variable
T+ (@™ A 3z;)e"(z;)) = B contradiction.

Let us put Apy1 = Ap and Tpy1 = T, U {1 (ck) }-

Case f). We consider n = 3k + 2, ¢py1 = (Iz;) ¢"™ and T F (a™ A
(3z;) " (x;)) = B". In this case we claim that T' I/ o™ = (8" V (3z;) ¢" T (x;)).
If not,

Tra™= (6" V (3z;) o™ (z5))

Tra™= (6" Aa™) vV ((3z;) 9" (z5) Aa™))
TrFa™= (" Aa™) V3"

TEHa" = (" contradiction.

Now put Tpy1 =T, and Apy1 = A, U {(3z;) " ()}

We will show that a set A = {¢ : (In € N)(T + a™ = 1)} satisfies the
conditions of the Lemma. It is easy to see that T C A, ¢ € A and AN(U,,en 4n) =
.

We will show that A is deductively closed for two rules only (for other rules
it is similar).
Rule 1. Suppose that ¢, = 1 € A. Then there is an o™ such that T +
a™ = pand T Fa™ = (¢ = ¢). So by rules and axioms:
TH(@"ANp) =9
TH@"V(@"Ap)=1¢
Tka"= (a"V(a™Ay))
THQ" =9 ie. ¥ e A.

Rule 2. Suppose that ¢ = 1 € A for each ¢y € ®. So by construction of the
theory A, Ao = ) € A. By axiom p = A @ € A.

The properites 2), 3) and 4) of Definition 2.8 follow by construction.
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2.10. COROLLARY. (1) If T i/ ¢ then there is a saturated theory A such that
TCA and A .

(2) Let A be a saturated theory. Then ¢ = 1 € A iff for each saturated
theory A’ D A, if p € A’ then ¢ € A'.

(3) Let A be a saturated theory. Then (Vx;) p(x;) € A iff for each saturated
theory A' O A and each a € Ind(A'), p(a) € A'.

Now, we are going to prove our main result.

2.11. EXTENDED COMPLETENESS THEOREM. If ¢ is a sentence and T is a
theory of Lapr, then T+ ¢ if and only if T = .

Proof. The trivial part is to prove that T' + ¢ implies T |= . In order to
prove the theorem in the other direction we will make a Kripke model K such that
K [£ ¢ and K |= T, where T I/ . By corollary 1) there is a saturated theory A,
such that T C Ag and Ay I/ .

Let K have the tree Ta, = {A D Ag : Ag saturated}. Also, let Ax =
(Ind(A), RJ.A, ...) be a model which corresponds to saturated theory A.

If R; is an n-ary relation symbol and ¢i,... ,c, € C, then R]-A (c1y... ,0p) iff
Rj(c1,... ,cn) € Al

Define p2 by p{c € Ind(A) : p(c) € A} = sup{r : (Pz > r)p € A} and
define 12 by ps{c € Ind : p(c) € A} = inf{r : (Pz < r)p € A}. It is easy to see
that p{c € Ind : ¢(c) € A} > r iff (Pz > r)p € A and similar for (Pz > r),
(Pz < r) and (Pz < r). From this and the properties of a saturated theory, it
follows that A IF ¢ iff ¢ € A.

Finally, K = ((a, #5415, (Tag, <)) acr, i the model we want.
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