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NOTE ON A PAPER BY H.L. MONTGOMERY
(OMEGA THEOREMS FOR THE RIEMANN ZETA-FUNCTION)

K. Ramachandra and A. Sankaranarayanan

Abstract. We study Omega theorems for the expression E = Re(e® log (oo + itp))
where 1/2 < 09 < 1 and 0 < 0 < 27 (oo, 0 fixed) as tg — oo. In fact we prove E > C(1 —
a0) " (logto)! 70 (log log to)~ 0 for at least one to in [1°°,T] where C is a positive constant. Note
that (1 —09)~ ! — 0o as g9 — 1.

1. Introduction. In [8] Montgomery developed a method for studying Q-
theorems for Re(e~% log ((s0)), where @ is fixed such that 0 < # < 2, the real part
oo of sg is fixed in [1/2,1), and the imaginary part ¢y tends to infinity. In fact he
gets a lower bound for the maximum of this expression in T(70—1/2)/3 < ¢5 < T,
namely

%(ao —1/2)12(log T)!~7 (log log T)~"°. (1.1)
He obtains by his method that (on Riemann hypothesis)
1¢(1/2 + it)| = Q(exp(1/20(logt/ loglog t)'/?)) (1.2)
and that
Arg((1/2 +it) = Q((logt/loglogt)*/?). (1.3)

As a passing remark, it should be mentioned that in [9] Ramachandra has an
alternative method for proving some of these results (sometimes in a stronger and
sometimes in a weaker form); for example, for o € [1/2,1)

log [¢(o + it)| = Qx((log t)' 7). (1.4)
He has also other results. (For the advantages of Ramachandra’s method see Re-

mark 1 after Main Theorem).
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The aim of this paper is (following the method of Montgomery and making
an optimal use of his parameter ) to prove the following main theorem, which is
perhaps the limit of his method. To state the main theorem, it is convenient to
make a hypothesis. Let N(u,T) denote the number of zeros p = B + iy of ((s)
satisfying 8> p and |y| < T.

HYPOTHESIS. For a fized p such that 1/2 < p < 1 and all large T, there
exists a & > 0 such that N(u,T) < T*~%, where the implied constant depends on i
and 9.

Remark. If we assume Riemann hypothesis, it suffices to take § = 1. However
the hypothesis is always satisfied by any § < 1—3(1—u)/(2— ), by the well-known
density result of A. E. Ingham.

MAIN THEOREM. Let 1/2 < 09 < 1,0 < 0 < 2m, € > 0. Lety be the
positive solution of e¥ = 2y + 1. Let | be an integer constant satisfying I > 6,
c2 =2y/(2y+1)2, 0 < c1 < ca. Then for T > Ty depending on these constants we
have

Re(e “log (oo + ito)) > (1 — 00) ‘coc1(log te)' 7 (loglogte)

for at least one ty in T¢ <ty < T, where co = (cos(2/1))(6/logl)1=70. Here § =1
if we assume the Riemann hypothesis. Otherwise we have to assume 1/2 < 09 < 1
and then we can take 6 =1 —3(1 — 0¢)/(2 — 09).

Remark 1. An advantage of Montgomery’s method is that it gives a better
Q-result for |((o + 4t)| than the result of Levinson and Ramachandra, namely

log |[¢(o + it)| = Q4 ((logt)' =7/ loglog t) for1/2< o < 1.

A disadvantage of Montgomery’s method and that of Levinson [7] is that it does not
work for short intervals. The method of Ramachandra does not assume Riemann
hypothesis, works for short intervals, yields a slightly weaker result for 1/2 < o9 < 1
than the result of Montgomery. Also Ramachandra’s method, as developed by
Ramachandra and Balasubramanian [2], works for L-series and so on. For example,
it gives (without the assumption of Riemann hypothesis, etc.)

log |L(1/2 + it, x)| = Q4 ((logt/ loglogt)'/?)

and other results (see also [10]). Continuing [2] Balasubramanian [1] has shown
that the constant can be taken to be 3/4 for ((s).

Remark 2. The positive root of the equation e¢¥ = 2y + 1 is y =
1.2564312086...; so ca = 1/4.910814964.... For example if we take [ = 10,
then cos(2n/l) > 0.809 and (logl)!=?° > 1/1.5175. So we get, on the assumption
of Riemann hypothesis,

¢(1/2 +it)| = Q(exp(cz(logt/ loglog t)!/?)) as t — oo,
where ¢3 = 1/4.60578 ... . This improves Theorem 2 of [8].
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Remark 3. If og is very close to 1, then the constant we get, is boosted up
very much because of the factor (1 — o¢) L.

Remark 4. By the method of this paper, it follows that for 1/2 < o < 1,
|log ¢ (a0 + ito)| > 2(1 — 00) ™" cocr (log to)' ~7° (log log to) ~°
for some tg satisfying T° < to < T, where ¢g and ¢; are as in the main theorem.

Remark 5. The method of Montogomery is to start with

1 1+i00 ) o5 _ g5 2 . '
2mi (e log ((s + s0)) (f) 2+ 2% + 2% ) ds
1—ioco
= Z p~% (20 — |log(p/z)|) + terms of smaller order,
[log(p/z)| <2cx

break off | Im s| > 7 = (logtp)? and then, move the line of integration in the rest of
this integral to Re s = 0. Notice now that ds/i = dt and the quantity multiplying
e~ log ((s + sp) is non-negative and hence we can take the real part of both sides
and take out the maximum of the real part of e~ log((s + so) in |t| < 7. This
leads to a lower bound provided the real part of right-hand side is big. This is
provided by the Dirichlet box principle. We work out the details in Sections 3 and
4. To get the result of Remark 4, we have to consider

1+ico

as —Qas 2
(log ¢(s + s0)) (%) z® ds

21 )1 ico

and treat it similarly.
Remark 6. The extension of the results to zeta functions of algebraic number

fields presents no difficulties. It is verbatim the same as that for ((s). Some remarks
will be made in Section 5 and the appendix.

2. Notation. Let

1
2
3
4

A B,C,...,Cy,C1,C5,... denote positive constants;
f < g denote that |f| < Ag, where A is some positive constant;
||8]] denote min, |§ — n|, where n runs through all integers;

(
(
(
(

—_— — ~—

[z] denote the integral part of x.

3. Some lemmas. LEMMA 3.1. [8] Let 61,02,...,0r be distinct positive
real numbers and suppose that | > 6, where | is an integer constant. Then there
exist at least R integers r} such that 1 < rf, < J = IMR and ||r}6,,| < 1/l for
1<m< M.

Proof. For the sake of completeness, we give the proof of this lemma. Con-
sider the M-dimensional cube (0 <z; < 1,i=1,2,...,M) in the M-dimensional
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Euclidean space. Let [ > 6 be an integer constant. Divide each side of the cube
into [ equal parts:

[0,1/0), [1/L,2/0), ..., [(I-1)/1,1).

to get M small cubes. Put Jo = MR+ 1. Let z;, = rf; — m;,, where m; . = [r6;],
1<j< Mand1l <r < Jy. Then clearly 0 < z;, < 1. Consider the points
% = (Z1,0, %27, ... ,Tn,r) in the unit cube. At least one small cube contains R + 1
such points. Otherwise, since there are I* small cubes and if each of them contained
at most R points, then the total number of points would be < IMR, which is a
contradiction because of the fact that 1 < r < Jy. Choose that particular small
cube which contains R + 1 points.

The set of these points is a subset of [1,.Jy]. Let the corresponding values
of r bery,...,rrpy1 and 1y < 7rp < ... < rpy1. We see that there exists an A;
(independent of k) such that 0 < A; <I—1and 4/l < zj,, < (A;+1)/lfor every
k=1,2,... ,R+1,j=1,2,...,M. This implies that for suitable integers m} we
have —1/1 < (rg —r1)0; —mj < 1/IVk =2,3,... ,R+ 1, ie. [[(re —r1)0;] < 1/,
Vk=2,3,...,R+1.

Also we have 1 < r} <IMR where r, = r; —r1, Vk = 2,3,... ,R+ 1. This
proves the lemma.

LeEMMA 3.2. Let 61,02, ... ,0y of Lemma 3.1 be Plogp where P is a fixed
positive integer and p runs through o finite set of primes containing those p satis-
fying |log(p/x)| < 2, where z > 10 is fized and « is a positive constant which will
be fized later. Letl_1 = r,P for every k =2,3,... ,R+1. Then we have

(i) cos(2rwlylogp) > cos(2w/l) Vk =1,2,... ,R.
(i) P<l <IMRP,Vk=1,2,... ,R.

Proof. (i) From Lemma 3.1 we have ||l logp|| < 1/I, Vk = 1,2,3,... ,R.
This proves (i).

(ii) From Lemma 3.1 we have 1 < ri < IMR, Vk = 2,3,... ,R+ 1. This
implies that P < I, <IMRP,Vk=1,2,... ,R.

LEMMA 3.3. For 1/2 < 0g < 1, we have
. 2 1 4
Z = (20 — |log( 2 ~ (2sinh(a(l — 00)) z! .
x 1—o09 log =

|log(p/z)|<2cx
Proof . The proof uses the fact that 7(z) ~ z/logz and also Stieltjes integral
and integration by parts.

LEMMA 3.4. If x > 0, ¢ > 0, then we have

1 [etioo xsd _{log:c, ifx>1,
0, if0<x<1.

— 5
270 Jojoo S
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Proof. The proof follows by moving the line of integration to the extreme
left and the extreme right respectively.

LEMMA 3.5. If a > 0, z > 0 and ¢ > 0, then we have
1 c+io0

(eas—e_“)Z 5 g { 2a — |logz| if |logz| < 2a,
— — ) £%ds =
278 J o ioo 2 0 if |logz| > 2a.

Proof . Follows from Lemma 3.4.

LEMMA 3.6. Let 0 < 6 < 27, a > 0 and 1/2 < 0g < 1 be constants and let

s =0 +it, so = g9 + itg. Then for all x, with 10 < z <K (logto) loglogte we have
1 1+ic0

as _ ,—as\ 2 ) )
: (efia log C(s + 80)) (i) (2 + .Z'se'9 + :L,fsefza) ds
271 1—ioco S

= > p (2 |log(p/z)|) + O((logz)?).

[log(p/z)| <20

Proof . Follows from Lemma 3.5.

LEMMA 3.7. Let 7 = (logt)?. If {o > 0,|t| < 27} is zero free for ((s + so),
then in 0 < o < 1 we have log ((s + so) = O((logto)(log(2/0))).

Proof. See Theorem 9.6 (B) of [12].

LEMMA 3.8. Let 6, a, g9 and ty be as in Lemma 3.6. The contribution of
[t| > (logto)? to the integral in Lemma 3.6 is O((logz)?). Also the contributions
from the integrals over [iT,1 + 7] and [—it,1 —iT] are O((logz)?).

Proof . Follows from Lemma 3.7.

LEMMA 3.9. With 7 = (logty)?, we have,

1 i . eds _ g—as 2 . .
Re{ 3 [iT (e"*1log ((s + %0)) (f) (2 + z%e? 4 %) ds}
Y 5o cos(to logp)(2a — | log(p/x)]) + O((log 2)?)

[log(p/z)| <2

Proof . Follows from lemmas 3.6, 3.7 and 3.8.

LEMMA 3.10. We have

" 1 e _ g—as 2 9 9
max(Ree " log((s + s —/ (7) 24+ %" +x7%e"V)ds
ItIST( &((s +50)) 5~ tromo p ( )
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> > p cos(tologp)(2a — |log(p/x)|) + O((log 2)?).
[log(p/z)|<2c

Proof . Follows from Lemma 3.9.

LEMMA 3.11. For 7 = (logto)? and 2a < |log x| we have

1 eas — e—as 2 . .
i (f) (2+2%€¢” + 7% ") ds = 4a + O(1/7).
|t|<T,0=0

Proof . Since the integrand is O(¢~2) for [t| > 7, we have

— 2
i M (2 + xsezo + w_se_ia) ds
2mi [t|<7,0=0 $

1 100 as _ ,—as\ 2 . . 1 1
= — (i) (2 4 2% + z7%e ) ds—}—O(—) =4a+0(—)
27 o s T T

by using Lemma 3.5 and continuity.

LEMMA 3.12. Let ¢ be a positive constant to be chosen later. Let p be the set
of primes satisfying

ce 2*(log Ploglog P) < p < ce**(log T loglog T')

where we now refer to Lemma 3.2 and put T = IMRP. M will be greater than
or equal to the number of primes satisfying the inequalities just stated. We put
M = [(ce®® + €)logT] where € > 0 is an arbitrary but fived constant. Let z =
clogto loglogto where ¢ is a small positive constant and to = 2nly, (k =1,2,...,R)
for any k. Then for all primes p satisfying | log(p/z)| < 2a, we have cos(ty logp) >
cos(2m/l). Thus

> p 7 cos(tylogp)(2a — |log(p/)])
|log(p/z)| <2a

. 2 o
> cos 21 1o, (2sinh(a(l — 00)) (logtg)' —7° ‘
l 1—o0p (loglogtg)7o

Proof. The lemma follows from Lemma, 3.3.

4. Proof of the theorem. Consider the rectangles o > oy, |t; —t| <
2(logto)?, (j = 1,2,..., R). These rectangles are disjoint and their number is R. If
R > DT'~% +2, where D is the constant coming from the hypothesis, then at least
two of these rectangles are zero-free. We select the rectangle for which tg + 7 < T
(T to be defined) and we fix P = T¢1, R = T'~%+%2 where €1, 5 are small positive
constants. Then we put M = [(ce?® + ¢)logT] and I RP = T. If we choose

1) €3
~ e2alogl  e22logl
3.11 and 3.12 we get (by putting 2a(1 — g¢) = )

for a small positive constant €3, then from lemmas 3.10,
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max Re(e~% log ((so + it))

lt|<7

1 2 §1-00  (2sinh(a(l —09))\ > (logte)t
> =" 7(170'0)
2 1a cos( ] )(logl) o2a(l—00) ( 1— oo ) (log log o) 70

_ 1 cos(2m/1)' "0 (1—e™F % (logto)!—70
~ 2(logl)'=0(1—09) \ VB (loglogto)oo
By choosing 8 > 0 such that (1 — e™?)/4/B is maximum we see that this
expression becomes
cos(2m/l) §1=o0 (log tg)t=o0
(logh)'=70 1—0go ' (loglogto)?o

where c; is a positive constant independent of §, [ and o9, and ¢ = 2y/(2y +1)% >
c1, where y is the root of the equation e¥ = 2y + 1. This proves the theorem.

5. Generalizations. Let K be an algebraic number field. The Dedekind
zeta-function of K is defined for Res > 1 by (k(s) = D go(IN™)~*, where N2
denotes the norm of the ideal 2 and the sum is extended over all non-zero integral
ideals of the ring of integers of the field K. We know that (x(s) can be continued
analytically in ¢ > 0 and there we have |(s — 1)(x (s)| < ([t| +4)P°, where Dy is
some positive constant.

Let log (k () = > o2, enn™* for o > 2. We notice that e, > 0, Vn. Also it is

well-known that :z:
Zen~26p~ Z 1N10ga: (5.1)

n<z p<e Np<e

holds, where the third sum from the left of (5.1) is extended over prime ideals. Let
Nk (p,T) denote the number of zeros p = §+iv of (k(s) where 8 > pand |y| < T.
We make the following hypothesis.

HYPOTHESIS (x). For a fized p such that 1 > p > 1/2, there exists a 6 > 0
satisfying Ni (u, T) < T'~°, where the constant depends on K, j and §.

Assuming () we can prove

THEOREM. Let u < o9 < 1, T > T(0g). For any real 0, there is a to such
that T <tg <T and

cos(2m/l) §1—o0 . (log to)t—70
(log)i=o0 1—0y - (loglogte)o°

Re(e *“log (k(s0)) >

where c1 is a positive constant independent of §, 1 and oo and ca = 2y/(2y+1)%2 > c1,
where y is the positive root of the equation e¥ = 2y + 1.

Remark. For the special cases see the appendix. The proof of this theorem
is verbatim the same as that for ((s).
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Appendix. Let K be an algebraic number field abelian over K'. Let the
degrees of K and K' be n and k respectively. Then (x(s) splits in the following
way into abelian L-functions of K

Cr(s) = Li(s) - ...  L;(s), (A1)
where j = n/k. Let N(L;,0,T) denote the number of zeros p = 8 + iy of L;(s) in
(A1) such that 8 > o and |y| < T. We distinguish the following two cases.

Case i. Suppose for every L;(s) in (A1) we have

|Li(1/2 +it)| < tF/6Fe ¢ >1.
(This has been proved by Peter Sohne following the method of [5]. We are thankful
to Professors D. R. Heath-Brown and W. Schaal for this information). In this case,
it is not hard to prove by the standard methods that N(L;,0,T) <« TA1-o)+e
where A = (2k + 6)/3. So, we get N(L;,0,T) < T'=% if 0 > 1 — 3/(2k + 6). Since
the number of zeros is additive, we get

Ng(o,T) < T*° if o>1-3/(2k+6).

In our hypothesis (x), we can take any pu > 1 — 3/(2k + 6).

Case ii. Let p' be the smallest real number such that
T
/ Li( + i) dt <. T,
0

(a) ' = 1/2 happens when K’ = Q or Q(v/d), where d is an integer, not a
perfect square. Then by the standard methods (see [4] or [6] or [11]), it follows

that
4(1—0)

N(Li,0,T) €T *7%°
In fact this is known uniformly for ordinary L-functions to the modulus ¢ < T (see
[4]). Since the number of zeros is additive, we have
Ng(o,T) < T'7%  for o>1/2.
In our hypothesis (x), we can take any pu > 1/2.
(b) If ' > 1/2 then by standard methods (see [4] or [6] or [11]), we get
N(Li,0,T) € T*79 for o>y
Since the number of zeros is additive, it follows that
Nk(o,T) < T'7%  for o> '
In our hypothesis (*), we can take any p > pu'.

+e
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Added in proof. Independently of us J.-P. Kahane has some results in his
paper: Produits de Riesz et séries de Dirichlet, in: Analysis and Partial Differential
Equations, Marcel Dekker, New York and Basel, 1990, p.p. 231-238. However, his
point of view is different and his methods are also different. We proved our result
earlier.
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