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FRAGMENTS OF COMPLETE EXTENSIONS OF PA
AND McDOWELL-SPECKER’S THEOREM

Ilijas Farah

Abstract. We generalise Theorem 1.4 of [2] and prove that for every complete extension
T of PA and any n € w there exists a model for X,—fragment of T that is not extendable (that
is, a model with no proper strong elementary end-extension.) This is accomplished using a model
called ¥, -atomic. This result can be interpreted as “McDowell-Specker’s Theorem does not hold
for ¥, -fragments of PA”.

Basic definitions and notation. The notation is the same as in [2]. PA
stands for the axiom system of Peano arithmetic (e.g. as described in [1, p. 40]). A
formula is ¥,, (II,,) iff the string of quanitifiers in one of its prenex normal forms,
begins with 3 (V), and has no more than n — 1 quantifier alternations. A sentence
is A, iff it is both ¥,, and II,,. T, stands for the 3, -fragment of the theory T,
that is a theory consisting of all the consequences of T that are 3,, sentences.

The notations & (A), B (B), ... denote models (their universes), and the
notations M (M) and N (N) denote models of PA (their universes.) The let-
ters z, ¥, 2, . . . denote variables, while the letters a, b, c, ... denote constants. For a
model A of some language £, the theory of 2 (denoted Th(2l)) is the set of all the
sentences ¢ of £ such that 2 |= ¢. Models 2 and B are elementarily equivalent iff
Th(A) = Th(B) (denoted A = B.) For some set of sentences & (some model 2A),
L5 (Ly) denotes the language of ® (of 2.) If z codes an ordered pair {z,y) we
write (z)o for z and (2); for y.

Definition 1. A model 2 is said to be a ¥,-elementary extension of a model 8B
(B <, A) iff for any ¥,-formula ¢ with m free variables and any m-tuple a € B™,

AEpa) i Bl pa)

A ¥, -elementary extension is a ¥,-elementary end-extension iff it is also an end-
extension. We say that a complete theory T contains some formula schemata iff T
contains it as a set of formulas.
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In [2, Theorem 1.6] it is shown that for some complete theory T with binary
relational symbol p the existence of w;-like models for a first-order theory T and
extendability of all (or any) countable models for T are equivalent to the same
first-order property, certain scheme denoted by RT. It consists of the following
sentences:

Cl. VzIy—p(z,y)
C2. VaVy3z(p(z,z) A p(y,2)),

and for all formulas p(z,u) of £:
C3. Vu[VzIyVu(p(z,v) = (o(z,u) = p(u,y))) -
IVaVu(p(z,v) = (o(z,u) = p(u,y)))]-

These axioms first appeared in [3], where a proof is given that every countable
model satisfying C1, C2 and C3 is extendable. In [2, Theorem 1.4] it is shown
that for every n € w the theory PA,, does not contain the scheme R*. Actually, a
somewhat stronger result is given — any X,-fragment of True Arithmetic (that is,
Th(w, S, +,,0)) does not contain R+.

In that proof a kind of definable ultraproduct is used. It is ¥,,-definable ultra-
power of a model 9t of PA, a model that consists of X,,-definable functions modulo
some ultrafilter G of ¥,,-definable sets. This model is denoted by Fx_ (M)/G, and
for such models a variant of Fundamental Theorem for Ultraproducts holds, namely
N <, Fx, (M/G.

We will prove that the scheme R* is not contained in any 3,,-fragment of T
(from now on, T stands for some (fixed) complete extension of PA.) From this we
have our

MAIN THEOREM. For any theory T, (T is some complete extension of PA)
there is a model that is not extendable.

Let 99t be a model for PA. An element a € M is said to be X,,-definable in
the model 9 iff there exists a ¥,,-formula ¢, of £pa such that the following holds:

M = pa(a) AVz(pa(z) > o =a)

(We will usually say “Y,-definable” instead of “X,,-definable in a model 9” when
no ambiguity occurs.)

By 7 we denote a countable submodel of 9 that consists of exactly those
elements a that are %,,-definable in 9. Tt is easily verified that X is closed under
the operations + and -.

LEMMA 1. For any model M = PA the following holds:
M <, 22
so T2 = Th, (IM).
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Proof. Suppose that ¢(z,y) is ¥,-formula and a € £ is such that
M = Jzp(z,a).

It is enough to show that there is a ¥,,-definable b € M such that 9t = ¢(b, a).
Note that for some ¥,,-formula ¢,(z) the following holds

M = Fz3y(e(z,y) A 0a(y))

If we encode the pair {z,y) by z, then the formula above becomes:

M = 32(¢((2)o, (2)1) A pal(2)1))

It is clear that the formula 1(z) defined as

P((2)o, (2)1) AVz < 279((2)o0, (2)1)

is again ¥,,, and that 9 |= Jy(y). So there is some ¥,,-definable ¢ € M such that
M = ¢(c) and M = p((c)1,a), and we just set b = (c¢);. O

Remark. Tn ©2 every element is ¥,,-definable, so we may say that ¥2° is
Y ,-atomic. It can easily be shown that this model is also X,-prime (that is, 3,,-
elementarily embeddable in every model for T,,), so this construction might be of
interest in its own right.

LEMMA 2 (cf. [2, Lemma 1.1]). For any n € w there exists a Apy1-formula
o(z,y) in Lpa and a model My =T, U{-R(p)}.

Proof . Let M be a model for T. By Lemma 1 we have £2* = T,,. Let G be
a nonprincipal ultrafilter in D,, (), the set of ,,-definable subsets of £2*. Now
we construct a model M; = Fx, (¥7)/G. By Lemma 1 this is also a model for
T,. Fix some b € M;. It is a =g-equivalence class of some function f that is
¥,-definable without parameters (remember that %2 is %,,-atomic) in 2. So we
have a ¥,,-formula ¢ (z, y) such that fm = n iff 82 = ¢ (m, n) for all m,n € T2,
And now,

B = {n € z:nsnlzngﬁ |: SATEn( ren ,TL,f’fl)}
= {n e SYIT  0(n, fn)}
=y;
and My = SATs, (767,ig,b), where ig stands for the =g-equivalence class of the

diagonal i of anm. We conclude that for every b in M, there exists some e € w such
that

9)?1 '= SATEn (e, ig, b)
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It remains to show that wanted A, formula is ¢(z,y), defined as
SATEn (.CL', iG, y) A (VZ < 'Z.)_'SATEn (Z, iG, y);

“r is the least Godel’s number of a formula that defines y”. From the previous
discussion it is evident that M |= ¢¥(z,y) only if z is standard, and that the set
of all z € w such that M; = Jyy(x,y) is cofinal in w. Now we check that ¢ is not
regular in 9y, i.e. that the following holds:

M = [VzIyVu(z < v = (¢(z,u) = u < y))A
Vy3zIu(z < v A d(z,u) Ay < u)].

For v we fix some nonstandard element v of M;. To prove the first part of
the statement, fix any x < v. The set {u € M1|9; = ¢¥(x,u)} has at most one
element, thus it is bounded by some y. To check the second part, note that for any
Y€ M there is an x € w (thus x < v) and u >y such that M, E ¢(x,u). O

Note that the minor modification of the proof that ¢ is not regular in 9t gives
the following semantical characterization of C3 for every model 9t with built-in
Skolem functions:

M =C3 iff there is no definable (in M) function mapping a bounded subset
of M cofinally into M.

Proof of the Main Theorem. The model 99t; from Lemma 2 is not extendable.
O
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