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MULTIPLIERS OF THE VANISHING HARDY CLASSES

Miroslav Pavlovié

Abstract. Let hf = {u : Mp(u,l”) = 0} denote the “vanishing” harmonic Hardy class.
We prove that a linear operator L : h] — hf (0 < p < 1) is of the form Lu = v x u for some v
harmonic in the unit disc, if and only if there are sequences {\;} and {w;} such that |w;| = 1,
> AP < oo and

(Lu)(z) = Z)\ju(wjz) for |z| < 1.

In other words, v is a multiplier of hg if and only if v is the Poisson integral of a purely atomic
measure with [P-weights.

Throughout the paper we assume that 0 < p < 1. The harmonic Hardy class
h? consists of all the functions » harmonic in the unit disc and such that
llull, == sup{Mp(u,r) : 0 <r <1} < o0

where M, denotes the integral mean,
27 )
M2(u,r) = / lu(rei®)[? db/2x.
0

The class h? endowed with the above quasi-norm is complete, and its topological
structure is quite different from the structure of the Hardy class HP. For informa-
tion we refer to [5]. In the present paper we are concerned with the vanishing h?,
i.e., with the class

hy = {u : lim M,(u,r) =0 (r = 17)},

which is a closed subspace of h* (cf. [5]). Our main result is a description of the
algebra Mh{ = {u : uxv € hf for all v € h{j}. Here x indicates the convolution of
harmonic functions,

“+oo

(u*v)(re') = Z a(k)o(k)r * eik?

—0o0

Before stating the theorem we introduce some classes of harmonic functions.
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The class AP. For an integer n > 0 let (D"u)(re?) = 8™u/06™. The class
AP consists of those u for which

(1) My(D™u,r) = O((1 —r)t/P~ 1) 0<r<l,

where n > 1/p — 1. It follows from [6] and the classical results of Hardy and
Littlewood [1, 2] that AP is an algebra relative to the convolution. More information
can be found in [7].

The class Af. A function u is in Aj if
(2) u(z) = Zx\jP(wjz), |z] <1,
j=1

for some sequences {);} and {w;} such that |w;| = 1 for all j and > 72, |X;[P < oo.
Here P denotes the Poisson kernel,

1—|Z|2 = k| iko 0
Pl = TEL =S e o=ret)
— 00

The following fact is proved in [7]:
(3) AF = hfn AP.

The class hAP. For a positive integer n and a harmonic function u we define
the harmonic functions ATu (¢ > 0) by

(Afu)(re’) = (Afur) (@), ur(6) = u(re”),
where A} stands for the n-th difference with step ¢,
(Abur)(0) =ur (0 +18) —ur(6),  AF =AIATT (n>2).
The class hAP consists of those u € hP for which
(4) IAFull, = 0@ /P7Y) (= 0%),

where n > 1/p — 1. It should be noted that (4), as well as (1), is independent of a
particular choice of n.

THEOREM. Mhj = Aj = AP N hy = hAP N k.
Proof. In view of (3) it suffices to prove that A5 C Mhb C hAP and
(5) AP = hAP.

If u is given by (2), then (u * v)(2) = > Ajv(w,z), which implies that
MPE(uxv,r) < 3 |Aj[PME(v,r), and this proves that Af C Mhg.
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Before proving (5) we use it to prove that Mhf C hAP. Let u € Mhf. Using
the fact that if [lv; — |, = 0 (j = oo), then 9;(k) — 9(k) (j — oo) for all &,
which follows, e.g., from Hardy and Littlewood’s inequality [1]

[6(k)| < C(IKI+ DY ll, (v e h?),
one easily verifies that the operator v — u xv (v € h}) has closed graph. Since hf
is complete, there is a constant C' < oo such that |[u x v||, < Cllv||,, for all v € hg.
We choose v = APP with n > 1/p — 1. Since P € AP [5, 7] we deduce from (5)
that
1AYull, = llux AFPIl, < CH/P71 (¢ >0),
i.e., u € hAP, which was to be proved.

In proving (5) we can consider real valued functions. Let u = Re f € AP,
where f is holomorphic in the unit disc. Then f € AP, because AP is “self-
conjugate”, by the well known result of Hardy and Littlewood [1]. Now we use
the relation [3, 4]

(6) APNH=hA"NH (H = holomorphic functions)
to conclude that f € hAP, which implies that u € hAP, because ||Afull, < [[AFf]],-

To finish the proof of (5) we use another well known result of Hardy and
Littlewood:

(7) My(D'g,r) <C(1—7r)""|Regll, (0<r<1),
where g is holomorphic and C is independent of g and r. Let u = Re f € hA?P and
fr(z) = f(rz). Applying (7) to g = A f, where n > 1/p — 1, we see that

|AFD! fo]l, = Myp(D' A7 f,r) < C(1—7)~ /P~

for 0 <r < 1,t>0. Using (6) (with equivalent quasi-norms) we obtain
My(D"D'f,,p) < C:(1—r)"t1—p)t/P "1 (0<rp<l).

Replacing here n by n — 1 (n > 1/p) we conclude that u satisfies (1). Thus u € AP,
and the proof is completed. O

REFERENCES

[1] G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. fiir Math. 167
(1931), 405-423.

[2] G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34
(1932), 403-439.

[8] P. Oswald, On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc, Czechoslovak
Math. J. 33 (108) (1983), 408-427.

[4] M. Pavlovi¢, On the moduli of continuity of H? functions with 0 < p < 1, Proc. Edinburgh
Math. Soc. 35 (1992), 89-100.

[5] J.H. Shapiro, Linear topological properties of the harmonic Hardy space h? with 0 < p < 1,
Illinois J. Math. 29 (1985), 311-339.

[6] M. Pavlovi¢, Convolution in the harmonic Hardy space h? with 0 < p < 1, Proc. Amer. Math.
Soc. 109 (1990), 129-134.

[7] M. Pavlovié, Integral means of the Poisson integral of a discrete measure, to appear.

Matematicki fakultet (Received 11 06 1992)
p.p- 550
11001 Beograd, Yugoslavia



