MULTIPLIERS OF THE VANISHING HARDY CLASSES

Miroslav Pavlović

Abstract. Let $h_0^p = \{u: M_p(u, l^-) = 0\}$ denote the "vanishing" harmonic Hardy class. We prove that a linear operator $L: h_0^p \to h_0^p$ (0 is of the form <math>Lu = v * u for some v harmonic in the unit disc, if and only if there are sequences $\{\lambda_j\}$ and $\{w_j\}$ such that $|w_j| = 1$, $\sum |\lambda_j|^p < \infty$ and

$$(Lu)(z) = \sum \lambda_j u(w_j z)$$
 for $|z| < 1$.

In other words, v is a multiplier of h_0^p if and only if v is the Poisson integral of a purely atomic measure with l^p -weights.

Throughout the paper we assume that $0 . The harmonic Hardy class <math>h^p$ consists of all the functions u harmonic in the unit disc and such that

$$||u||_p := \sup\{M_p(u,r) : 0 < r < 1\} < \infty$$

where M_p denotes the integral mean,

$$M_p^p(u,r) = \int_0^{2\pi} |u(re^{i\theta})|^p d\theta / 2\pi.$$

The class h^p endowed with the above quasi-norm is complete, and its topological structure is quite different from the structure of the Hardy class H^p . For information we refer to [5]. In the present paper we are concerned with the vanishing h^p , i.e., with the class

$$h_0^p = \{u : \lim M_p(u, r) = 0 \ (r \to 1^-)\},\$$

which is a closed subspace of h^p (cf. [5]). Our main result is a description of the algebra $Mh_0^p = \{u : u * v \in h_0^p \text{ for all } v \in h_0^p\}$. Here * indicates the convolution of harmonic functions,

$$(u*v)(re^{i\theta}) = \sum_{-\infty}^{+\infty} \hat{u}(k)\hat{v}(k)r^{|k|}e^{ik\theta}.$$

Before stating the theorem we introduce some classes of harmonic functions.

The class A^p . For an integer $n \ge 0$ let $(D^n u)(re^{i\theta}) = \partial^n u/\partial \theta^n$. The class A^p consists of those u for which

(1)
$$M_p(D^n u, r) = O((1-r)^{1/p-n-1}) \qquad (0 < r < 1),$$

where n > 1/p - 1. It follows from [6] and the classical results of Hardy and Littlewood [1, 2] that A^p is an algebra relative to the convolution. More information can be found in [7].

The class A_0^p . A function u is in A_0^p if

(2)
$$u(z) = \sum_{j=1}^{\infty} \lambda_j P(w_j z), \qquad |z| < 1,$$

for some sequences $\{\lambda_j\}$ and $\{w_j\}$ such that $|w_j|=1$ for all j and $\sum_{j=1}^{\infty} |\lambda_j|^p < \infty$. Here P denotes the Poisson kernel,

$$P(z) = rac{1 - |z|^2}{|1 - z|^2} = \sum_{-\infty}^{+\infty} r^{|k|} e^{ik\theta}$$
 $(z = re^{i\theta}).$

The following fact is proved in [7]:

$$A_0^p = h_0^p \cap A^p.$$

The class $h\Lambda^p$. For a positive integer n and a harmonic function u we define the harmonic functions $\Delta_t^n u$ (t > 0) by

$$(\Delta_t^n u)(re^{i\theta}) = (\Delta_t^n u_r)(\theta), \qquad u_r(\theta) = u(re^{i\theta}),$$

where Δ_t^n stands for the *n*-th difference with step t,

$$(\Delta_t^1 u_r)(\theta) = u_r(\theta + t) - u_r(\theta), \qquad \Delta_t^n = \Delta_t^1 \Delta_t^{n-1} \quad (n \ge 2).$$

The class $h\Lambda^p$ consists of those $u \in h^p$ for which

(4)
$$\|\Delta_t^n u\|_p = O(t^{1/p-1}) \qquad (t \to 0^+),$$

where n > 1/p - 1. It should be noted that (4), as well as (1), is independent of a particular choice of n.

Theorem. $Mh_0^p = A_0^p = A^p \cap h_0^p = h\Lambda^p \cap h_0^p$.

Proof. In view of (3) it suffices to prove that $A_0^p \subset Mh_0^p \subset h\Lambda^p$ and

$$A^p = h\Lambda^p.$$

If u is given by (2), then $(u*v)(z) = \sum \lambda_j v(w_j z)$, which implies that $M_p^p(u*v,r) \leq \sum |\lambda_j|^p M_p^p(v,r)$, and this proves that $A_0^p \subset Mh_0^p$.

36 Pavlović

Before proving (5) we use it to prove that $Mh_0^p \subset h\Lambda^p$. Let $u \in Mh_0^p$. Using the fact that if $\|v_j - v\|_p \to 0$ $(j \to \infty)$, then $\hat{v}_j(k) \to \hat{v}(k)$ $(j \to \infty)$ for all k, which follows, e.g., from Hardy and Littlewood's inequality [1]

$$|\hat{v}(k)| \le C(|k|+1)^{1/p-1} ||v||_p \qquad (v \in h^p),$$

one easily verifies that the operator $v\mapsto u*v\ (v\in h_0^p)$ has closed graph. Since h_0^p is complete, there is a constant $C<\infty$ such that $\|u*v\|_p\leq C\|v\|_p$ for all $v\in h_0^p$. We choose $v=\Delta_t^n P$ with n>1/p-1. Since $P\in A^p$ [5, 7] we deduce from (5) that

$$\|\Delta_t^n u\|_p = \|u * \Delta_t^n P\|_p \le C t^{1/p-1}$$
 $(t > 0),$

i.e., $u \in h\Lambda^p$, which was to be proved.

In proving (5) we can consider real valued functions. Let $u = \text{Re } f \in A^p$, where f is holomorphic in the unit disc. Then $f \in A^p$, because A^p is "self-conjugate", by the well known result of Hardy and Littlewood [1]. Now we use the relation [3, 4]

(6)
$$A^p \cap H = h\Lambda^p \cap H$$
 (H = holomorphic functions)

to conclude that $f \in h\Lambda^p$, which implies that $u \in h\Lambda^p$, because $\|\Delta_t^n u\|_p \leq \|\Delta_t^n f\|_p$.

To finish the proof of (5) we use another well known result of Hardy and Littlewood:

(7)
$$M_p(D^1g, r) \le C(1 - r)^{-1} \|\operatorname{Re} g\|_p \qquad (0 < r < 1),$$

where g is holomorphic and C is independent of g and r. Let $u = \text{Re } f \in h\Lambda^p$ and $f_r(z) = f(rz)$. Applying (7) to $g = \Delta_t^n f$, where n > 1/p - 1, we see that

$$\|\Delta_t^n D^1 f_r\|_p = M_p(D^1 \Delta_t^n f_r) \le C(1-r)^{-1} t^{1/p-1}$$

for 0 < r < 1, t > 0. Using (6) (with equivalent quasi-norms) we obtain

$$M_p(D^n D^1 f_r, \rho) \le C_1 (1 - r)^{-1} (1 - \rho)^{1/p - n - 1}$$
 $(0 < r, \rho < 1).$

Replacing here n by n-1 (n>1/p) we conclude that u satisfies (1). Thus $u\in A^p$, and the proof is completed. \square

REFERENCES

- [1] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. für Math. 167 (1931), 405-423.
- [2] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1932), 403-439.
- [3] P. Oswald, On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc, Czechoslovak Math. J. 33 (108) (1983), 408–427.
- [4] M. Pavlović, On the moduli of continuity of H^p functions with 0 Math. Soc. 35 (1992), 89–100.
- [5] J. H. Shapiro, Linear topological properties of the harmonic Hardy space h^p with 0 , Illinois J. Math.**29**(1985), 311-339.
- [6] M. Pavlović, Convolution in the harmonic Hardy space h^p with 0
- [7] M. Pavlović, Integral means of the Poisson integral of a discrete measure, to appear.

Matematički fakultet p.p. 550

(Received 11 06 1992)

11001 Beograd, Yugoslavia