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SOME ESTIMATES OF THE INTEGRAL [ " Log |P(¢)|(2) ' df

Stojan Radenovic

27 . do
Abstract. We investigate some estimates of the integral / Log | P(')| Py if the poly-
z

0
nomial P(z) has a concentration at low degrees measured by the {,-norm, 1 < p < 2. We also
obtain better estimates for some concentrations than those obtained in [1].

Let P(z) = Z?:o ajz’ be a polynomial with complex coefficients and let d
be a real number such that 0 < d < 1. We say that P(z) has a concentration d of
degrees of at most k, measured by the {p-norm (p > 1), if

» w)w >a(y |aj|f’)1/p- 1)

i<k j20

Polynomials with concentrations of low degrees were introduced by B. Beauzamy
and P. Enflo; this plays an important role in the construction of an operator on

a Banach space with no non-trivial invariant subspace. We investigate here the
2w
. dO
estimates of the integral / Log |P(e’0)|2— of such polynomials. In the following,
Y3

0
we shall normalize P(z) under the l,-norm and also assume that

1/p
(Slar) =1 @)
Jj=>0

Otherwise, the concentration of polynomials is measured by some of the well-
known norms: |P|, (p > 1), |P|2 = ||P||y, |[Ploc; [|Plls> - - - - For details see [1].

Similarly, as in [1, Lemme 3] (case p = 2) and [2, Theorem 1] (case p = 1)
we have the following results:
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THEOREM 1. Let P(z) = 3 .5 ajz’ be a polynomial which satisfies (1) and
(2). Then:
27
/ Log|P(e ’9)|— > sup fqr(t), where
0

2m 1<t<3

t—1\""
tLogd — =2, 1 <2
8 (H—l) gt 1S<PS
far(t) = k+1
t—1 )
tLogd -
8 (t+1) ’ p

(see also [3, Lemma 3.2; p. 28, 29]).
THEOREM 2. Let P(z) be a polynomial as in Theorem 1. Then:

2w . de
/ L0g|P(e’9)|—Z sup  fakp(t), where
0 2T T 1<t<too

( <t+1)p )
t t—1 1
- Log dP —=t?, 1<p<2

P ¢+ 1)\ P 2
—= -1
(=)

2d
tLog 1\ P
| e|(F)

(for the case p = 1 see [2, Theorem 1]).

For proofs of the Theorems 1 and 2 we use (as in [1, Lemme 3] and [2,
Theorem 1] (see also [3])) the following well known facts

2 10
P 1
('re“) ﬁ ifo0<r<l1.
riei? 2

Il

fd,k,p(t)
) p=1

o pp—
1° a; =

1
2 lo;] < |P(z0)| . where |P(z0)| = max |P(z)].

3° The classical Jensen’s inequality and the known transformation:

2 i0 27 2
zote do 0 1—r de
Log |P(z0)| < /0 Log P(W) hd =/0 Log |P(e")| m———5 —,
where |z9| = 7.
_ 2
£ TH0<r<1 then " <127 1w

27 |1 — Zpe®|? 2
147 = |1—Ze€®]?2 — 1—r’

27 do
5° / Log |P(e®)| — / +/ , and
0 2n Log |P|<0 Log |P|>0

1 1 1 do
[ =5 o meipP<y [ Py / PR e
Log P|>0 2 JLog|P|>0 2 JLog P[>0 2 Jo

1, o 1 1 1
=Z||P|> = z|P)2 < =|P]2 = =
5I1Pll; = 5Pl < 5IP = 5
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because the [,-norm decreases with p.
Finally, we get the functions fq1(t) and fq,p(t) after the change of variables

={14+r)/1Q-="7).

Taking ¢t = 2 and 1 < p < 2, we have the Beauzamy-Enflo’s estimate from [1]:

2 " d
(3
/0 Log |P(e )| — > 2Log TR

From the following proposition and Corollaries 1 and 3, it follows that this is
not the best possible estimate.

PROPOSITION 1. Let P(z) be a polynomial as in Theorem 1. Then there
exists a ty, € |1,3] such that

2L0g 1<p<2

d
27
o do k1’
| LosIPE) 5 2 faultn) 2 3
0 2Log

Proof . First observe that tlir1n+ fa1(t) = —oo and the function fg(¢) has the
—
form
far(t) =tLogd +t(k+1)Log(t — 1) —t(k + 1) Log(t + 1) —t?/2, 1<p<2.
We find derivatives:

fix =Logd+ (k+1)Log(t — 1) — (k + 1) Log(t + 1)

(- )

" (k+ ) (k+ ) 1 1
kST T it _1+t(k+1)((t+1)2_(t—1)2>

mo 3(k+1) 3(k+1) 1 1
bk 412 (t—1)2 + 2t(k + )((t—1)3_(t+1)3>'

It is clear that tlirln+ fir = —oo and f},(3) < 0. Since f}(t) >0, t € ]1,3], it
— ? 9
follows that f} ,(t) < 0, hence f} ,(t) decreases. We also observe that tlir1n+ foe® =
9 9 — 2

+o0. Hence, there exists exactly one ¢ € |1, 3] such that fj ,(tx) = 0 or f§ () >0
for each ¢t € ]1,3]. This proves the proposition. The case p = 1 can be treated
similarly.

COROLLARY 1. Let P(2) be a polynomial as in Theorem 1. Then for every
d€]0,1] and k € {0,1,2,3,4,5,6 7} there exists a t, € 1,2, such that

27
o df d
Log |P(e¥)| — > t 2Log ———, 1 <2.
/0 0g|P(e™) 5~ 2 far(te) > 2Log ——py, 1<p<

For the case p =1 a similar result does not hold.
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Proof . Since

4 2
far(3) = gk —3~ (k+1)Log3+ Logd = 0.235k — 1.773 + Logd, Log3 = 1.098

it follows that fé’k(2) <0, for each d €]0,1] and k € {0,1,...,7}. Hence,
fau(®) > far(2) = 2Log —ert
12isy IOk dR\E) = 208 g

If p=1, we have

for(2) = (4/3 —Log3)k + (4/3 — Log 3) + Logd = 0.235k + 0.235 + Logd 2 0.

COROLLARY 2. Let P(2) be a polynomial as in Theorem 1. Then for every
d € 10,1] and k > 7 for which Log(3**1/d) is a rational number, there exists a
tr €11,3], tx # 2, such that

2m . dé
| Lo 5 > faxlte) > fax®,  1<p2
0

Proof. In both cases (1 < p < 2, p = 1) we have that f;,(2) = 0 iff
4. 2 3kt 4, 4 3k +
—k—-=Log——, thatis -k+ - =L
3¢ T3 T e Ty thatls gz =Ly

COROLLARY 3. Let P(2) be a polynomial as in Theorem 1. Then for every
d €10, 1] there exists a k; € N such that for k> ky :

d
27 3Log -7, 1<p<2
oo df ’ =
| LosIPE) 57 2 fauld) = €22
0 27T ’ d .
3L0g QkT’ p= 1
d
2L0g 6-37’9"'1’ 1< p S 2
> d
2 LOg W’ p= ].
Proof . Since
, 3 9
fd,k(?:) = Zk —1” (k+1)Log2+ Logd = 0.057k — 2.943 + Log d,

we have that maxi<i<s fa,x(t) = far(3) (1 < p < 2) iff f;,(3) > 0. Hence, it
follows that
(9/4) + Log2 — Logd

k= (3/4) — Log?2

= [51.634 — 17.543 Log d).

Similarly, for p = 1 there exists the corresponding number k;.
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COROLLARY 4. Let P(2) be a polynomial as in Theorem 1. Then, for every
d€]0,1] and k € {0,1,2,...,51}, there exists a t, € |1,3], such that

27
/0 Log |P(e')] % > far(tr) > fa,r(3) = 3Log PEYCTTIEE l1<p<2

Proof. This is clear from the equality

fax(3) = Zk — Z — (k+1)Log2 = 0.057k — 2.943 + Log d, l<p<2

Since for p = 1 we have that f;,(3) = 0.057k + 0.057 + Logd, it follows that the
conclusion is not the same as in the case 1 < p < 2.

2m
o, d0
We shall now analyse the estimate of the integral / Log |P(e?)| py with
0

the function fgrp(t) as in Theorem 2. The following results can be compared with
[2, Th. 2, Lemmas 3 and 4]. Firstly, we represent fgr p,(t) in the form:

1 -1 p(k+1)
fd,k,pzhd,p(t)"rgk(t)_;'t'LOg[l_ (t+1) ]’

where (see [2])

1 t
hap =tLogd — §t2 + ’ Log[(t + 1)? — (t — 1)7]
gr(t) = kt Log(t — 1) — (k + 1)t Log(t + 1).
It is clear that fqr ,(t) > hap(t) + gk (t), t > 1. We shall now prove the following.

PROPOSITION 2. The function hqp(t) + gi(t) takes its mazimum value at a
point (unique) ty such that t, — +oo, when k — +o0.

Proof. We essentially use the same argument as in [2]. From [2] it follows
that g/ (t) <0, ¢t > 1. Now, we find derivatives for hgp(t)

R e (e
t+1)p—(t—-1)p °

L (6)=Logd—t + % Log[(t + 1)P — (t — 1)] + £ -
t+1)pt—(@t-1)pr!
GrP—(t=1)p

+ t(ﬁiﬂl : (I + 1772 = (£ = 1P=2A) - pl(t + 177" = (¢ = 171 2),

where A(t) = (t +1)? — (t — 1)P.
Since p € ]1,2], t > 1, it is clear that

Q,’,p(t) =—-1+4+2-

(t+1)P~t —(t—1)p1

" : _ .

<0.
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But, this is true iff ,(t) < 0, where ¢, (t) = 2(t + 1)P71 = 2(t —1)P=! — (t + 1)P +
(t — 1)P. Hence, we find that

Ppt) =2(p = D[E+1)72 = (¢ = 1P ] +p[(t - )P = (t+1)P ] <.
This shows that hy; () + g;(t) < 0. Since

tlir{l+(h37p(t) +g(t)) =400 and tiigloo( ap(t) + g5 (1)) = —o0,
equation hg ,(t) + g5, (t) = 0 has exactly one solution ¢;. From the equality hy () +
9,.(t) = 0 we get with ¢t = t,

(t* — 1) Log(t + 1) + t* —t — (> = 1)h}; ()
" 2t+ (2 —1)Log(t —1) — (t2 — 1) Log(t + 1)’

wherefrom we eagsily deduce that ¢t — +00.

Remark 1. From the Proposition 1 it follows that the function fq ,(t)
(1 < p < 2) has the same behaviour as the function fq;(¢) from [2]. If p = 2

we get
2d t 1
fak2(t) = tLog \/ ~t?,

t—1\ (t+1)/t-1)%*+2 -1 2
which is the answer to the remark from [2, p. 223].
For the function fgr2(t) we have the following results

PROPOSITION 3. Let fq1.2(t) be the function from Theorem 2 (p = 2). Then,
when k — 400

4k
1° = =1,
3t; ’

te—1 2(k+1)
2° tpLog|l — — 0;
aaft- (335) ] -0

3° far2(tr) and hqa(ty) + gr(tr) are asymptotically equivalent.

1 t
Namely, f4r2(t) = tLogd — §t2 + 2 Log 4t + gx(t), where gg(t) is same as

in [2]. The proof is similar as in [2], i.e. it uses the Taylor expansion of log(1 + x),
z — 0.
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