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CONVOLUTION IN COLOMBEAU’S SPACES
OF GENERALIZED FUNCTIONS
PART II. THE CONVOLUTION IN G,

M. Nedeljkov, S. Pilipovié

Abstract. We investigate various definitions of convolution and the Fourier transform in
spaces Gq which are studied in the first part of the paper.

0. Introduction

Colombeau’s theory of generalized functions [3] made on the problem of mul-
tiplication of distributions has a lot of applications in the theory of linear and
nonlinear partial differential equations; see the recent monograph [2] and the ref-
erences there. In this paper we are concerned with the convolution in spaces G,
of Colombeau’s generalized functions and the relations between the convolution
of Schwartz distributions and the generalized convolution of corresponding gener-
alized functions. For this reason some problems on the convolution of Schwartz
distributions are examined.

For the notion and the properties of the spaces G, and the a-integral we refer
to Part I. In Section 1, we give several new definitions of convolution in the space
Ga- In Section 2, the relations between different definitions of convolution and the
convolution of generalized functions which are determined by convolvable Schwartz
distributions are treated. In Section 3, we introduce the a, u-Fourier transform of
elements from G, and give the well known exchange formulae for a = t.

1. Definitions of convolution

Colombeau has given two definitions of convolution [3]: the convolution when
one generalized function has a compact support, and the tempered convolution. Let
F, G be in G, and let one of them, suppose G, have compact support. Then the
c-convolution is defined by

FiG(w):/KF(m—y)G(y)dy, z € R",
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where K is a compact set which contains supp(G) in his interior. It is proved in
[3] that this convolution exists and is a generalized function.

Let F, G be in G,. The 7-convolution is defined by
F;G(m)/ F(z —y) G(y) dy, x e R".

It is proved in [3] that this convolution exists and is a generalized tempered function.

Now, we shall introduce several new definitions of convolution. Let G, G2 be
in G and let K7, K> be their supports. We say that they have compatible supports
if for every bounded set I there exists an open bounded set J such that y € I implies
(y—K1)NK, C J. For such G, and G we define G, *G2 = [5G1(z—y) G2(y) dy,
x € I. One can prove that the definition is correct in the same way as Colombeau
has proved the correctness of the integration on a compact set [3]. In that case we
have Gl * G2 = G2 * Gl and P(D)(Gl * Gz) = (P(D)Gl) * G2. If 91,92 € D!
have compatible supports, then G; = Cd(g1), G2 = Cd(g2) also have compatible
supports. By using [1] one can prove that for such g; and g2, G1 * G2 = g1 * ga.
Let G1, G5 be in G,. We define

a il
GV G@ = [ Ge-nGud, seR
where g, € > 0, is a unit net which corresponds to a (see Part I).

PROPOSITION 1. Assume G1,G2 € Go. Then:
a) G1 a’l’ft G2 S g;

a

b) 0%(Gy ¥ Go) = (0°Gy %' G»), where o € N;

c) 5;?(G1 aiuG2) = (E?Gl)ai“Gg, where h € H, j € {1,... ,n} (see Part I);
d) Let Gy and Gs be in Ga. Then Gy 4 Gs € Ga.

The assertion in a) means the following: for G1,Gs € Ea, N1, N2 € Ny

(Gr4+N) ¥ (Go+N) =G ¥ G+ (GLF Ny+ Ny ¥ Gy + Ny ¥ N,) €,

because G 3 Gs € &y and (G @& Ny + N; W Gy + Ny 4 Ns) € N. Assertion
in d) is similar.

Proof. We shall prove only a). Let G; and G5 be in &,. We adopt the
notation for G; and 8% in (12) from part I by using symbols with subindex 1,
and for Gy with subindex . Then, for given compact set K and every 8 € Nj
let N = [y1 + 2+ N1 + Na + n] + 1. Because of Lebesgue’s theorem for the
differentiation under the integral sign, we have

\6/3 [ 6106012 =) G260 et dy\ = | [ 9610602~ 1) Galrv ) dy

< s Afabilz-yDle M- s {eb()le M b
Iy\Sa(ebI/(E)-H ly|<a(b/e)+r
xr
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where ¢ = cieaczeacsd™ 112, = min{ni, n2}; €3, €1y 11, 72 are given by 6(¢ +
a(z)) < 3z, 0(a(z)) < csx72, e = sup{|z| : 2 € K} +r, ¢ = 72T ((n + 2)/2).
Thus we have proved that G W G2 € Epr. Similarly, one can prove that if G; or
G2 belongs to Ng, then Gy e, eN.O

Q a, .
COROLLARY. If ©, = O, then Gy ¢ G2 € Ggo. Particularly, let G1 and G
be in G.. Then G4 'y G4 € G;.
a,[iy a2

If for every pair of unit nets pic, p2e, G1 * G2~ G; * G2, then we say
that there exists the associated a-convolution G :GQ =Gy i G>. If for every
pair of unit nets pi., o, G1 G -GGy e N ( € Ny), then there exist
the a-convolution in G (in G,) Gy $Gy =G Gy = G E Gy,

If the equality holds in g.d. (g.t.d.) sense, then there exist g.d. (g.t.d.) a-

. a
convolution G *x Gs.

2. Relations between different convolutions

Colombeau has proved [3] that if G1, G» are from G, and one of them has
a compact support, then G ¥ Gy = Gy ;GQ. Let G1,G2 € G, and one of them
has a compact support. Then there exists G &G G and G1 ¥ Gy = G4 4G G, for
every l, € > 0; thus G iGz =G ¥ Gs.

Ezample. Let G(¢.,x) =1, z € R*, ¢ > 0. Clearly, G € G,(R). Then
G G(9n,3) = [ P@)(ex)da =200(0)fz, >0,

- 1/ea
G ¥ G(¢e, 1) = / dz = 2/ea, >0,

—1/ea

t, . . .
where p., € > 0, is a unit net. So G ¥ @ is not associated with G * G. O

Since we shall compare the Schwartz’s convolution of distribution and the
a, p-convolutions of corresponding generalized functions, we need several assertions
concerning Schwartz’s distributions.

If ¢ € Ay, then we put 6,(z) = ¢1/,(z) = v"¢(vz), z € R*, v € N. This
is a d-sequence (for the general definitions we refer to [1]). For a unit net u. we
put € = 1/v, v € N and the corresponding sequence will be called a unit sequence
and denoted by p, (instead of y;,,). Such sequences belong to the set of special
approximate unit sequences introduced in [9] (see [4]): a sequence from D, v € N,
is a special approximate unit if

(i) For every compact set K C R" there is vix > 0 such that p, (z) = 1,
€ K,v>vg;

(ii) For every m € Ny, pm() < ¢m, v € N, where p,(¢) =
sup{[0°(z)| : |o] <m, 7 € R}, 9 € D.

1)
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PROPOSITION 2. Let hy, k € N, be a sequence of distributions from D'. If
there exists m € Ny such that for every € > 0 there exist a compact set
(a) K C R™ and ko € N with the property: ¢ € D, supp(p) NK = @ =
[(he, )| < epm(p) if k> ko,
then

(b) for every special approrimate unit i, the sequence (hy,u,), converges
(when v — o) uniformly for k € N.

Proof . The proof is similar to the proof of “(b) = (c¢)” in [4, (1.1) Proposition]
with the remark that for 6, as in this proof and a special approximate unit u, we
have (hg0r, up — p1q) = 0 for p,q > vo. O

It is proved in [4] that the definitions of convolutions of Schwartz, Vladimirov,
Schiraishi, Chevalley and Mikusiiski are equivalent (see also [5]). Recall, [4, (1.1)
Proposition and (1.3) Theorem], f,g € D' are convolvable iff one of the following
equivalent conditions is satisfied:

(1) For every ¢ € D, f(2)g(y)p(z +y) € D}, z,y € R?;
an For every ¢ € D and every special approximate unit y, in D(R2"),
(f(2)g(y), p(x + y)uv(x,y)) converges when v — 0o;

(Special approximate unit means that a u, has a compact support.)

For every ¢ € D there is an m € Ny such that for every € > 0
(I11) there is a compact set K C R2" such that if ¢ € D(R?"), and

supp(¥) N K = @, then |[(f(2)g(y), p(z + )Y (2,y))| < epm(¥)-

Note that there are several other equivalent conditions.

PROPOSITION 3. a) Let f, g € D' be convolvable, and let 8y, be a delta sequence.
Then for hi(z,y) = (f *0k)(z) (9 * 0)(y), k € N, z,y € R™, the condition (a)
from Proposition 2 holds (with the same m, K as in (I1I1)). Particularly, for any
strong approzimate unit p,, v € N, from D(R?") we have that ((f * &)(x) (g *
0r) (), v (2,9)), v — 00, converges uniformly for k € N.

b) (f*g9,¢) = lim ((f *8,)() (9% 0,)(y) ¢(z +y), s (2,9)), ¢ € D(R").

Proof . a) By using the condition (IIT) and the notation from there, we have

(F@)gW)p(z+y),v(z,y)) = (f(2)9(y), o(x+y)¢(z,y)) = (0'F(2)0*G(y),6(x,y)),

where 6(z,y) = p(z+y)¢(z,y) € D(R*™), supp(8) C I, x I;; I, and I, are bounded
intervals in R* and f = 6'F in I, and g = 9°G in I, for some [, s € N and some
continuous functions F' and G. Thus we obtain

(7 (@)9®), oz + 9)b(@, y)] = \ / / | F@G()(~04)(-0)8(r,y) da dy

< epm(¥).
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Assume now that (a) from Proposition 2, with ¢ replaced with 2e, does not
hold. Since on I, respectively on I, we have f 8, = 0'(Fxdy), g% = 0°(G x4y,
k € N, after the same procedure we get that there is a subsequence 7, k € N, of
natural numbers such that

// (Fx8,)(@) (G % ,)) (~04)(=0p)0(a ) dedy) > 2epua(), k€N

This is in a contradiction with the fact that F' % §,, — F uniformly on I, and
G % 6;, — G uniformly on I, when k — oco. The assertion a) is proved.

b) The previous part implies that for every k € N, f % d; and g * ), are
convolvable. Put
akw = ((f % 0k)(z) (9 * k) (y) p(z + y), 1 (2,y)),  k,veEN
We have

k—o0

ary =3 ak = ((f *0k) * (g% 0k), 0) =3 (f *9,9),

Vr—o0

aky 25 a, = (F(2)9(W)e(e + y), o (,9)) =3 (f * 9,0).

Since Proposition 3 implies ay,, "Z3 aj, uniformly for k € N, from the well
known properties of a double sequence we have

lim ag, = lim lim a;, = lim lim a;, = lim a,,.
k—oco k—oco v—oo v—00 k—oo v—oo
V—00

All above implies the assertion b). O
By [8] we have (for ¢ € D(R"))

(fxg,9) = lim (f(z) (9% ¢)(2), pi(2)) = lim {f(z)g(z)p(z +y), u(2)),

where g, k € N, is a strong unit sequence from D(R™).

In the same way as Proposition 3 one can prove

PROPOSITION 4. lim (fm(2)gm (), tm (€)p(z +y)) = (f * 9:¢), ¥ € D(R?),
where fr, = f *0m, gm = 9 *0m, m € N and pp,, m € N, is a strong unit sequence
from D(R™).

PROPOSITION 5. Let f,g be in D', G1 = Cd(f), G2 = Cd(g). If there exists
f * g in the distributional sense and for some a € A, G1 and G2 are in Gq, then

there exists G W G, and G, & Gy =~ f xg, for all unit nets p., € > 0, and thus
G iGQ ~fxg.

Proof. Proposition 1a) implies Gy 4 G> € G for every unit net u., € > 0,
and Proposition 4 implies that

m // G1(¢e, 7 —y) G2(0e,y) pe(y) () dx dy = (f * g, ).

li
e—0

This implies the assertion.
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COROLLARY. With the same notation as in Proposition 5 we have Gy ¥Gy =
Gy % Gi.

Proof . Tt follows from fxg=g=« fin D'.0O

COROLLARY. If g1, g2 are in Dy and g1 * g» ezists in D; then there exists

an a € A such that for any u, Gy 3 G- exists. Thus G iG’z & g1 * g2, where
= Cd(g1), G2 = Cd(g2).

3. Fourier transform

We shall define the a, u-Fourier transform of elements from G,. Let G € G,.
We define F, ;, : Go — Gt by Fo ,(G)(z) = fa’“ G(y)e v dy, x € R™.

PROPOSITION 6. F, ,, : Go — Gy.

Proof. Let G € N,. For ¢ > 0 we have

‘ [ e dy‘ </ G y) dy
ly|<a(b/e)+r

< e DN < o1 4 |z|)e*( DN,

This means that Fg ,(N,) C M. Similarly, we have Fy, ,,(€q) C &.0

If for every two unit nets pul, 2, € > 0, which correspond to a, F, ;1 (G) =
F,,2(G) (g.t.d.), then we say that there exists the a-Fourier transform in g.t.d.

sense F,(G) = F, 1 (G). In the sequel, we shall consider ¢-Fourier transform.

PROPOSITION 7. Let G1, G2 be in Gt and p., € > 0, be a unit net. Then:

a) (F,u(GQ),9) = (G, F(p)). Particularly, for every G € G, there exists
Fi(G) (in g.t.d. sense);
)

b If Ft(Gl) Ft(GQ) (gtd}, then G1 = G2 (gtd),

c) Fy(G1 ¥ Gs) = F(G1)F(G2) (9-t.d.);
d) Fi(0°G) = (iz)*Fy(G) (9.t.d.), o € NI

Proof. a) We have
(Fun@)9) = | ( " e dy) @do= [ G)F()w)dy
/ G(y dy = (G, F(p)).

b) This assertion follows from Proposition 7 a) and the fact that the Fourier
transform is a bijection of S onto S.
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t7
¢) The corollary of Proposition 1 implies G by G2 € Gi. For any p € S we
have

(Fu(Gh ¥ Ga), ) = (Gr ¥ G, F(9))

= // (/t Gi(z1 —y) Ga(y)p(2) dy) e~ 1% dy dx
= [[([ et -0 Gatwpgtre e oy ) az .

Ifweputx—ml—y,y_y,z—z we obtain

(Ft(Gl // (/ G1(2) Ga(y) p(2)e e~ > dy) dz dx

2/(/Ft(G2)(z) G1(z)p(z)e” " dz) dz = /Ft(Ft(Gz‘P))(JU) Gi(z)dz
= / ’ Fy(Fy(Ga))(z) G1(z) dz = / t ( / Fy(G2)(2) Gi(2)p(2)e"* dz) dzx
- / Fu(G1)(2) Fy(Ga)(2)(2) dz.

This follow from Proposition 7 a), since F3(G)y is a rapidly decreasing function for
fixed € > 0.

d) We have

(F:(0°G), ) = (0°G, F(y)) = (G,0*F(p)) (-1)"*!

= (G, F((iz)*¢)) (-1)* = (=1)!* ((ix)* F.(G), »). D

Proposition 7 implies the following one.
PROPOSITION 8. If G1,G2,G3 € Gt and p., € > 0, is a unit net, then:
Q) G ¥ Gs=Gy ¥ Gy (gt.d):
() (G1 % Go) ¥ Gy =G ¥ (G Y Gy) (gt.d);
(iii) 8(Gy ¥ Go) = 8°Gy ¥ G (g.1.d), a € Np.

Let us define the inverse a, u-Fourier transform of elements from G,. Let
G € G,. We define Fa,_,;l; :Ga = Gt by

a,l
—1 _ —n T n
Fab@@ =0 [ Gedy,  ser,
All the facts which hold for F, ,, hold also for F,;},. Furthermore, we have

<Ft(Ft_1(G))7<p> = (Ft_l(G)rF(SD)) = <G790>7 G € gt: ® € Da
ie. Ft_1 is the inverse of F; in the g.t.d. sense. For unit nets yi ¢, po., € > 0, we
have

(Gh ¥ Ga,) = (Fi(F, (G ”“Gz)) ) = (B (F; Y(G1)F, Y(G2)), ¢)
— (F(F;7 (G H7 G)),0) = (Gh %2 G, ).
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This implies that there exists the g.t.d. t-convolution for every Gy, G5 from G;:

G1 iGz == G1 t,i“ Gg.

PROPOSITION 9. Let G be in G such that G = g, g € S'. Then z;G =~ x;g;
Fi(G) = F(g), and Fy(0"G)(x) ~ ix; Fy(G)(x), for he M, j € {1,... ,n}.

Proof. One can easily prove the first two assertions by using Proposition 8 of
Part I. So we shall prove only the last one. Let ¢ € D. Then, by Proposition 7d),

<m@®wwa=/n@m@n*mmwmmw

B / (#) iz F(G)(9e, 7) Fi(dn(-)) (2) o(7) da.

We shall use the fact that for any compact set K |1 —F(¢p(.))(x)| < ch(e)”, z € K.
Since for g € §', F(9;9)(x) = iz;F(g)(x), x € R* and (i) and (ii) hold, we have
that there exists a function B € L', which depends on ¢, and there exist an N € N,
and an 1 > 0 such that

liz; Ft(G)(¢e, z) o(z)| < B(z), reR", 0<e<n, ¢ € An.
Let A(¢:) = ((F:(9}G),¢) — (iz;F¢(G),¢)) (¢:). Then
A0 = [ B@)1-Fue)(@) da.
supp(p)

and lim. 0, gc Ax |A(@<)] = 0, because h(e) -+ 0 ase — 0.0
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