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GENERALIZED MIRON’S d-CONNECTION
IN THE RECURRENT K-HAMILTON SPACES

Irena Comié

Abstract. For the generalized Miron’s d-connection in recurrent K-Hamilton spaces, the
torsion tensor and the connection coefficients are determined. For special cases the already known
results are obtained.

1. Introduction. This paper is a generalization of [8], based on works of
Miron, Anastasiei, Janus, Kirhovits and others, in the Hamilton geometry. Here
the generalization is going in different directions:

a) The transformation of the coordinate system is given by (2.1), where (2.1b)
is more general than in former investigations in this field.

b) In the metric tensor the blocks over and under the diagnal are not necessarily
equal to zero.

c) The connection coeficients are introduced in such a way that Vx:T(E*) —
T(E*) by which we can obtain eight kinds of connection coefficients.

d) A consequence of c) is that the torsion tensor has also eight of components.

e) The field A(z, p), the vector field of recurrency is introduced.

The main result is that the connection coefficients for such a general case
are obtained explicitly. For some special cases the already known results are ob-
tained. Theorems 7.6 and 7.7 give the relations between the metric tensor and the
nonlinear connection of such K-Hamilton spaces, which allow torsion-free Miron’s
d-connection.

2. Adapted bases in T(E*) and T*(E*). Let E* be an (n + mK)-
dimensional differentiable manifold. If u is one point of E*, then, in some local
chart, u has the coordinates

u= ((wt)a (pé)a (pi)7 RN ) (pf)) = ((mz)’ (pg)) = (.Z',p).
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Generalized Miron’s d-connection 137
where (xl) = ($1’ 3225 s 7'7:”) = (.’E), (pg) = (p?a te 7p?n) = (pa), and a, b; ¢, da €, f =
lam; i:j7h’7k7l = lvna avﬂar)/:& = ]-7K

We shall consider the following coordinate transformation. If ((mi'), (pg,)) =
(z',p') are the coordinates of the same point u in the new coordinate system, then,

(2.1) (a) z* =2z (z*... 2"), rank [8mi’/8mi] =n

(a)
() p%=M2%4(z",...,2")p2,  rank[Op /OpZ] =m.

The Einstein summation convention will be used for all three kinds of indices,
except in the case when the index appears in brackets. If (2.1) is valid, then an
inverse transformation exists, i.e.

. I i (a) 7 ! !
(2.2) (@) 2" =(z',...,2") (b) p2=M2(z",...,z")p%

a’*

The natural basis B = {(8;), (8%), ..., (0%)} of T(E*) is formed by n vectors
of the type 8; = 8/dz" and m - K vectors of the type 82 = 8/0p2. Any vector field
X € T(E*) may be represented in the form
(2.3) X =X'0; + X202

With respect to the coordinate transformations (2.1) and (2.2), the basic
vectors of B obey the following law of transformation:

[ (1) &)\ ]
; oz /0t [ O;M% | pL ... (&MY | pE Oy
i’ o g
(2.4) C = 0 Me, . 0
% ' ' (K) %
0 0 .. Mo ]
T ), &)\
Oy o’ (8" |0y MYy |ppy ... |8 M} |pE | 10
8% oy
. ), .
(2.5) D= 0 Mo . 0
0% ' ' (K) %
L0 0 ... M

Substituting (2.5) into (2.4), we obtain,

ag;il ox? . () (o),

o ] a a __ sa
(26) (a) ot Hrt - 6z (b) Ma’ b b

(@) , dx? () (@),
(c) (&-:M'ﬁ > Py a9zt (&MZ,) pa My =0,
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where (2.6¢) is the consequence of (2.4) and (2.6b).

From (2.4) and (2.5) it is obvious that 9; and 9y do not transform as ten-
sors, so we introduce a new, the so-called adapted basis B = {(d;), (9%),...,(0%)}
of T(E*), where by definition

(2.7) bi = 0; = Ngi(z,p) 05,

and N%,(z,p) are the coeflicients of the nonlinear connection. These are the arbi-
trary functions, which under the coordinate transformations (2.1) and (2.2) trans-
form in the following manner:

@8 (@ Ny = Mo N ) - p 000 2
o @, 928 @) ag\?g,
(b) Nyj(z,p) =My %Nb’j’(w ,p') +pg My oz
Any vector field X € T(E*) in the adapted basis B is given by
(2.9) X = X0; + X29°.

The coordinates of the vector X given by (2.9) and the elements of basis B
transform as tensors in the following manner:

8$i, (@) ’
2.1 i = 04 2 =M% e
(210) b= S 0% = M)
. i (a) ,
xi=9% xi xe = 3 (g xe,

oz?

From (2.3) and (2.9) we obtain the relation between coordinates of the field X,
in the bases B and B. They are connected by the relations X* = X', Xo =
X+ N2.X'. The subspace of T(E*) spanned by {8;}, shall be denoted by T (E*)
(the horizontal part) and the subspace spanned by {92}, by (a)Tv (E*) (the vertical
a-part). So, we have T(E*) = Ty (E*) & Ty (E*), where,

K
Ty(E*) =Y (Tv(E*), dmTu(E*)=n,  dimg)Tv(E*)=m.
a=1
Here, X%§; is the horizontal and X 20% the vertical part of the field X. Now (2.9)
may be written in the from

X=Xyg+Xy, Xgp=X%  Xy=X2%".

Let us consider the dual tangent space of E*, the space T*(E*). The natural
basis in T*(E*) is

F* = {daﬁl,,da:",dpi,,dp:n,,dp{{,,dpﬁ} = {dxz,dpé,,dpf}
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From (2.1) we obtain

, ()
., L Me, (@)
211)  (a) dz' =?,;;i dzi  (b) dpﬁz%pﬁdm’-{—M@(w)dpﬁ.

From (2.11Db) it is obvious that dp? do not transform as tensors, so we in-
truduce a new basis B* = {(dz'), (0pl), ..., (0pX)}, where,

(2.12) p; = dpg + Ng;(z, p)dz’.

Through the coordinate transformation (2.1) the bases B and B* are related
by (2.11a) and
(o) , (o)
(2.13) (a) opg = Mg (a")opg  (b) OpG = MG (x)dp.

The proof of (2.13) is obtained by using (2.12) and (2.8). Any field w € T*(E*)
can be written in the bases B~ and B* in the following manner:

(2.14) w = Widz' +Widp? = widx’ + weop2
where w; = w; — N§wl, wl = ws.

The subspace of T*(E*) spanned by {(dz*)} shall be denoted by T} (E*) and
the subspace spanned by {(6p3)} by ()73 (E*). So, we have

K
T*(E*) = Ty(E*) ® Ty(E*), where Ty(E*) =) &Tv(E").
a=1
Now, (2.14) may be written in the form
w=wy +wy, wy = w;dz!, wy = waops.

If {(dz?), (6pL), . .., (6p%)} and {(dz?), (3pL,),. .., (6pK)} are two bases in T*(E*),
related by (2.11a) and (2.13), then any w € T*(E*) satisfies the relation

(2.15) w = widz’ + wep® = wydzs? + w‘;: opd;.

Substituting dz’ from (2.11a) and dp2, from (2.13b) into (2.15) and comparing the
coefficients of the basis vectors, we obtain

’

" ) ()
(2.16) w; = wyOx' [0, wé =M wd .
By a straightforward calculation, we can prove the following

PROPOSITION 2.1. The adapted bases {(5;),(8%), ..., (0%)} and {(dz?), (6pL),
.oy (0pE)} are dual to each other, i.e.

(2.17) (6;,da?) = 6, (i, 0p3)

(0%, da?) =0, <ag,5p§’>

0,
5248,
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3. Tensor Fields on E*. a) A horizontal tensor field ¢ty has the local
representation:
ty =t je(z,p)6i, @ ® 6, ®dr ® - -+ ® dae;
it is defined on
Ta(E")®---@Tu(E") 9 Ty(E) ® --- @ Ty (E")

~~ ~~
p times q times

By the coordinate transformations given by (2.1) and (2.2) the coordinates
of the field tg have the following transformation law
Y dzt  Oz'r dxit  Dsia
thete o= — ... ... -
Jida T gpin T Qe 9xdt T §ada

b) The a-vertical tensor field (a)tv has the local representation

..o ai...an

@ = (@) 4y, e O @0 ®Op .. 0D,
(not summing over «); it is defined on

(@) \Tv(E*) R...Q (a)TV(E*Z®(a) \T{;(E*) ®...Q (a)T‘t(E*)J

~~ ~~

s times 7 times

By changing of coordinats of kind (2.1) and (2.2) the coordinates of the field (4)tv,
given above, have the following transformation law

t‘lll“-"'lro‘ " a t A1..QrQ ...t (o) ay (]\02)' a, Saw) b1 (o) bs
(@Y o..a by..b, T ()Y a..a by...bs ar " ar by bl -

¢) A vertical tensor field ty on Ty (E*) ® Ty, (E*) has the form
ty =t :? 0" @dp bf (summing over o and 3).

The coordinate transformation of the tensor ¢y is given by

, (@) 4, B)
aby _ , ab a1 b
tallﬁ _talﬁ allei.

d) A tensor field ¢t on
Ta(E*)®@ % ... Tu(E*)@TH(E") @ ... TH(E*) ®

' v

p times q times
Ty(E*)® - @Ty(E*) x Ty (E*)® --- @ Ty (E*),
st;rrnes rt;rrnes

is given by
t = ¢fte . Prfsar.an (x:p)(sh ®...0 6ip

J1---Jq by1...bs a1...an

Rdr" ®..®dl @I} ®..00% @dp, @...00p, .
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The summation is performed over all indices. The coordinate transformation of the
above tensor is given by

. ﬁl...ﬁsa'l...a'r — t’il...’ip‘ 3 61...,6‘sa1...ar
J1--J4 b'l.“b; a1...0p J1---Jq by...bs a1...0tn

0rts | Owtebak | Bat(@)y G Ghw G
Oz ox'e Qi1 Oxla by B ai anr
The order of spaces Ty (E*), TH(E*), (o)Ty(E*) and Ty (E*) can be taken

arbitrarily. It has the influence on the order of the indices of the tensor ¢, which is
defined on their tensor product.

4. The Metric Tensor. In the space T*(E*) @ T*(E*), the metric tensor G,
with respect to the basis = {(dz?), (6p}), ..., (6pK)}, has the form

(4.1)
[gij] I:gzi] [gzg(] dmi

6 = s oyt | 73] L] o 61?" =
] foit] - o]l B

g;;d" ® da’ +gzj5pz ® da? +gigdxi ® 6p” +9225pz ® 6ph.
The matrices [g;;], [g Zg], [g Z]} and [g 22] have the formats n x n, n x m,
m X n and m X m. As G is a tensor, its coordinates in the new coordinate system
(z',p") transform in the following manner:

Ozt Ozt ) o (@), 9gd
(4.2) giljl = gz]WW7 gaa]' — ga] aa W;
o b 83:’ B) B o't _ ab (a) o' (B3 b

955 =9ip5,7 My Gag =9apM M7,

We shall suppose that G is a symmetric, positive definite tensor field of rank
. b b b b
n + mK. From the symmetry, it follows that g.ij =95i» 9.5 = 9pi> gzﬁ = gﬁ’;.
The “covariant” coordinates of the field X = X*§; + X Z 82 are given by
j i b
Xi=g;; X' +9,, X5, nggZin+gZﬁXi'

The inverse matrix of G (appearing in (4.1)) is given by
ik J1 JK
o] [o%t] o [0

b)) ]

o] o] - [o%E]
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The matrices [g7¥], [gj;'], [g Zk] and [gi;’] have formats n x n, n x m,
m x n and m x m. Now we have:

j b
gz-jg"“rgwg"{,’“ =3 g.;97 +gaﬁg‘” = 0203,
95977 +9,,9591 =0, 9a; 9" + 925958 =0.

The contravariant coordinates w = w;dz® + w2dp% are given by
. y , , ol b
w'=gw; + 9wl wi=g"%w;+ 9w
Using (2.10), (2.16) and (4.2) the validity of the following transformation laws can
be shown:

Oxt , (o) , , Ot ()
Xz'l :XlaTwll’ Xg :XZMZ, U)z :wl%, wg/ :ngZI

Definition 3.1. The differentiable maniflod E* (in which the coordinate trans-
formations of type (2.1) are allowed) supplied with arbitrary nonlinear connection N
(which satisfies (2.8)) and the metric tensor G (given by (4.1) is called a K-Hamilton
space and is denoted by (E*, N, Q).

It is a generalization of the K-Hamilton space defined in [9], [10] etc., be-
cause here the metric tensor G is not necessarily obtained from the K-Hamiltonian
H(z,p). If the K-Hamilton function H(z,p) is given in the space (E*), then the
metric tensor G can be defined in the following way:

b a
9:;(z, p):gij( z), s = 0; 945 =0,

gaﬂ ——8 6[3H2(x D), for every a,3 =1, K,

where g;;(z) is some metric tensor defined on M and M is the 7* projection of E*:

T(E) =M, (@), pn)---,(05)) = ().

We can not define gig (z,p) = 56:05H(x,p), g;;(x,p) = $6:6;H*(z,p), because
the above quantities do not transform as tensors. Using the metric tensor G' de-
termined by (4.1), we define the scalar product (X,Y) of fields X,Y € T(E*)
by

(4.3) (X,Y) = g, X'V + g, XYY + g0, XaVT + 92 X2V,

The length of X, |X| is defined by |X|? = (X, X) and cosé, where 6 is the
angle between X and Y by

(4.4) cosf = (X,Y)/(X] - [Y1).

When cosf = 0, we say that X and Y are mutually orthogonal. For the
horizontal field Xg we have Xy = X'9;, |Xu|*> = g;; X' X7 and for the vertical
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vector Xy we have Xy = X209, |Xy|? = gZZXng. For the field () Xv €
(a)Tv(E*) we have

() Xv = X505 l(Xv|* = g;“(; XoXy (not summing over ).

THEOREM 4.1. The subspaces Ty (E*), 1)Tv(E*), ... ,(x)Tv(E*) are mu-
tually orthogonal with respect to the metric tensor G, if and only if [gi?j] =0,

[g;lj] =0, [922] =0 for every a, 3 =1,K, a # B.

The proof follows from (4.3) and (4.4).

5. Generalized Miron’s d-connection in T'(E*). The distinguished
connection V, or the d-connection, in the K-Hamilton space in [15], [9], [16] and
others is defined as a function V : (X,Y) - VxY X,Y,VxY € T(E*) for which,
beside the usual conditions for the linear connection, the following restrictions are
valied:

VxVYy € Tu(E*),  VxYy € Ty(E*)for all X € T(E*),
all Yg € Tu(E*), and all Yy € Ty (E™).

For the generalized linear d-connection in T'(E*) in he K-Hamilton space the
above restrictions need not be satisfied.

Definition 5.1. The generalized linear Miron’s d-connection in T'(E*) is de-
fined by

Vs, 05 = F‘;kiék + ngiafr,

Ve = Cj kZ‘Sk +C jea 05,

Voy 0 = C "4 0+ C 515,05,

ProposITION 5.1. If X, Y € T(E*), where X is given by (2.9), and Y =
Yis; + Yf@b, then

(5.2) VxY = (YhX+YHaxe) 6 + (VX +Y1aXe) 65,
where,
(5.3) vk =6k + FRv7 4+ ngi v

k 1 bk
vHe =oavk+ o fivi+ oy,
Y =6Y)+F ;Y + FY7,
YIls = 05Y 7+ CLaY7 + 0 glayy.
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Proof. (5.2) and (5.3) are proved by using the linearity of the connection V
and (5.1).

PROPOSITION 5.2. If (%), (p)) and ((z" ), (p%)) are two coordinate systems
connected by (2.1) and (2.2), then

iff Y’“, Yk|e , Y and YY|% transform as tensors, i.e. if

/ . / (a)
YE = VE(0e)@at),  YH |3 =Yg (6 )M
() ) , (a) ,

Y00 =Y ,MS (02, Y |Y = Yg|;;Mg,Mg ,

or, equivalently, iff the connection coefficients have the following transformation
law

(5.5) (a) Fj*; = Fy¥ 4 (927 ) (0 a*) (Bia’) + (8:0;2* ) (B o*),
(7)
(b) Fy2; = Fyly (9529 ) M (9ia),

" (ﬂ 7
(c) Fik, = Fh¥* , M} (O a*)(8iz?),

B, (), , (M, ),
(d) FY1,Yy = Fy7, Mb M (027 )Y + (M%) MY,

(@)

(e) Cj*2 = Cp* @ (8;27") (O x*) M,

a'?

() (@)
() Cjzg:CJ ’a(am] )MCMZ’:
7.0 I( (a)
(8) Ch*a = C4¥ ¢ M3 (Ot M
bva b, (ﬂ) () ()
(h) Cpla = ay chMa,.

As Y’f and Y} are the coordinates of the arbitrary vector Y, from (5.5d) it
follows that:

7 (@) (@) @, @),
(55d) F(a)dlzl _F(a)d'LM Md,(ai/:lf ) B,IMd Md'
) (@) ,(7) )
(5.5.d") F¥%.=F . MY Mg, Gz,  a#n.

Proof. The proof is obtained by a direct calculation, using (5.2)—(5.4), (2.7)
and (2.10).
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The formulae (5.5) may be obtained by using the transformation law of the
basic vectors and the linearity of the connection V.

If one nonlinear connection N¢; is given, we have an adapted basis and using
this basis, we define the linear connection V. Another nonlinear connection N7;
may be obtained from (5.5d). If we take Y2 = pZ, and introduce the notation

p
Fbczpb N7;, then (5.5d) becomes
_ () M\ 0.
NY; =N, M¢ (0ix") + | ;MY Mpd,
which, compared to (2.8), shows, that N 7; transform as a nonlinear connection.
The torsion tensor T'(X,Y) is, as usual, given by
(5.6) T(X,Y)=VxY —VyX — [X,Y].

THEOREM 5.1. The torsion tensor T'(X,Y) for the connection V has the
form

T(X,Y)=Tuun +Tuav + Tave + Tavv + Tvaa + Tvav + Tvva + Tvvy,

where, for instance, Tyyvg = [T(Xv,Yv)|a, Tvar = [T(Xv,Yu)|a. The compo-
nents of the torsion tensor are

(5.7) (@) Twuan = (Fj FAX YIS, = T XYy,
() Tunv = (Fjli— Fl;+6N] j —6;N] )XY, =T;0: XY 9
(€ Tuvm = (F4 )X Yﬂd = TH* XY} o,
d) Tuvv = (F4; - C;1% - 84N, )X’Yﬁﬁc = T4, XY} 0
(e) Tvmm =(C;*& — FeF)X3YI6), = TR XSV 6
() Tvav =(C;la — Fol; + 0oN1 )Xawac =T;0a XY 95
(9) Tvvm = (CHFe —Cokh)X2Y )6, = THHE XYY 6
(h) Tyvy =(Ch zz%)XzYé’az = T} X Y05,

Proof. The proof is obtained by a direct calculation by using (5.2), (5.3)
and (5.6).

Definition5.2. The K-Hamiltonian space (E*, N,G), supplied with the linear
connection V defined by (5.1) and an arbitrary torsion tensor T', given by (5.7) is
denoted by (E*, N,G,V,T).
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6. Generalized Miron’s d-connection in 7™*(E*) Using the duality of the

bases B and B* of T(E*), and T*(E*), respectively expressed by (2.17) one can
obtain

THEOREM 6.1. The connection on T*(E*) acts in the following way:

(6.1) Vg da? = —FyJ da* — F<I,0p], Ve,0py = —Fyysda* — F<76p],
Voada! = —Cif%da® — CSI%6pY, Ve dpy = —Ciyoda® — C2)%8p].

Using the properties of the linear connection V and relations (4.1) and (6.1),
we see that the following relations are satisfied:
VxG = (giﬂka + gij|§XZ) dz* @ do? + (gj%“ch + g,%ﬁXZ) dz* ® 6p€+
(9656 X" + gaj15X7) 003 © da? + (g8 kX" + gabls X2) 0p; ® bpp,
where,
(6.2) gijin = Okgij — 9niFi"y — 955 Fi%k — ginF5™ . — i3 F3n,
95515 = 059:; — 9n;Ci"S — 93;Ci%5 — 9inCi™ — 9:4C505,
9iglk = Okgily — gnyFik — 935 Fi%k — 9inFh" ), — 9§ F 40,
9il = 929i = gnpCi" = 935Cia5 — g Gt — 98 Chas
9ehik = 0kgel — gngFaly — 955 Faon — 9anF 5"y — 983 F han,

gasl; = 05955 — gnpCa"s — 935CEY — 9anCh — 9a3ChY-

Definition 6.1. The space (E*, N,G,V,T) is called the recurrent K-Hamilton

space and denoted by (E*, N,G,V, T, )), if tensor fields Ax(, p) and A5 (z, p) exist,
so that

(6.3)  gijik = MeGijs 9515 =XGi50  Gik = MeGif  GiplS = ASgip
9ailk = Aedais 954l = N5985, 9ablk = Mgah, 9apls = ASgap-
Definition 6.2. The recurrent K-Hamilton space will be called the metric
K-Hamilton space and denoted by (E*,N,G,V,T,0), if
9ijik =0, 9i;l5 =0, 9i5k =0, 9i5lS =0,
9%k =0,  gil5 =0, gihk=0,  gapl5=0.

THEOREM 6.2. In the recurrent K-Hamilton space, the coordinates of the
inverse metric tensor satisfy the following relations

(6.4) gt =-xg"®,  g'Pn="Mg"y, 93 n=—ngls,
35 3
g*15==xsg™, V==X, il = A%
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Proof. Tt follows, from (4.4), that

(6.5) (a) AndY + gijgj\kh + gi%gf\kh =0
(0)  Anb26Y + 95597 Lin + 95595 jn = O
(c) 9:;9° c|h + gi%QfZlh =0
(d) 959"+ 955y =0
The sum of (6.5a), multiplied by g%, and (6.5d) multiplied by ¢'¢, yields
glf » = —Ang'*. The other relations in (6.4) may be obtained in a similar way.

The raising and lowering of the middle index of the connection coefficients

are given by the following formulae
o (8] Ll - (-
Fiw 9angad | | Fign Fign

EAREY IR AR A
Foar 961953 | | Fagr F&on 9%ig% | [ Fapr]’

[ zﬂ] [gahga(s ] [Czc] PN [C"?] — [ghjgha] [sz]

ngz—cy gahga(S Cldfcy Cidfcy gd da Clgz’cy

5Lt (] - (6 43115
Cags 9pnaps | [ CL5S Cads g5ia% | 1Caks

By using (6.1) and the above notations, (6.2) may be written in the following
form:

(6.7)  9ijjk = k9i; — Fiji — Fliki, 9ijl5 = 509” Cij5, — Cjas,

Jivyo
gifﬂk = 6kgipy — Filyr — Flyin, 9iplS = 0591 — Cip, — Chisy

gaﬁlk = 5k9aﬂ Fagk Fﬂak; gZ%li = 6293%’ C‘;%fr - C%Zﬁ'

7. The Connection Coefficients in Recurrent k-Hamilton Spaces.

THEOREM 7.1. In a recurrent K-Hamilton space (E*,N,G,V,T,)\), the
connection coefficients are determined by

(7.1) (a) 2Fijk = (0kgi; +0igjk — 0;gki) — (Mkgij + Xigjk — Njgki)
+ (Frij + Fikj + Frji)s
(b)  Fgij = Frij — Fyur, = gih(Fkhj — F") + g:i4(FLy — Fi%)
= ginTe"; + 9§ Thds s (see 5.7)
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(7.2) (a) 2Figk = (0k9ic + digar — 0a9ik) — (Megia + Aigak — Aagir) + A
(b) A= (Figr — Frai) = (Fori — Cika) — (Faik — Crig)
= g2 T, + 9535k — 9in T2 — grn TS,
— 9i§(T&%k + 0LNG) — gr§ (Tagi + 0L N3:)
+9%3(6:i Nk — 6k N %),
(7.3)  2FQik = (Okgai + 0a9ir — digrg) — (Akgai + Ao gik — Aigra) — A,

(7.4)  (a) 2Fa5k = ((Skgag + aaggk 6,%9193)
- ()\kgag + A%ghk — Abgil) + B,
(b) B = (Fape — Crpa) — (Fhar — Cklh) + (Corly — Chr)
= g530% Nk gagmw+gmﬂ““k+gﬁ7;M
- gahT,a kT agT,@dk + grnTEM, gt 9§ adﬂ;
(7.5) (a) 2Cyq = (959:; + 0igja — 0594:) — (A9 + Aigia — Aigas) + C,
(b) C = (Fia; — Fjai) + (Faij — Cjia) — (Faji — Cija)
—gwnﬂ+%gﬂ%+5N — i N%) + ginTe",
— ginT8"; + 9id(Ta%; + 0LNY) — 9;§(Toh4i + O4N)
(7.6) (a) 2Ckap = (Opgrd + Okgll — 0aghr) — (Nagrs + Mgl — Aoghn)
—-D-—-E,
(b) D = (F&h — Cihl) + (Faor — Crlh)
= 9onTa" +gath k968 (Taqe + 03 Nk)
+ 924(T} Bdk + 8ﬁNdk)
(¢) E=C%lh — Chit = grnTe % + gr§To %5,

(T.7)  2C%:5 = (0%9%k + 0%grly — Skghl) — (Naglr + A%grp — Akghe)
+D+E,

(7.8) (a) 20455 = (95905 + 04955 — Opg5a) — (\ygas + Aagphs — Apg5a)

+(058h + 005 - Ok,

(0) C5al=Cal — Chas = ganTsh + gadTsol.

Proof. The proof follows from (6.7), (6.6), (6.3) and (5.7).

Definition7.1. The recurrent K-Hamilton space, in which T'(X,Y) = 0, for
all X, Y € T(E*), is called torsion free recurrent K-Hamilton space and is denoted
by (E*,N,G,V,0,)).
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THEOREM 7.2. In the forsion-free recurrent K-Hamilton space (E*,N,G,V,
0, ), the connection coefficients are determined by

(7.9) 2Fiji = (0kg;j + 0igjk — 05gki) — (MeGyj + NiGik — Ajgki)s
2Fior = (Orgia + 0igak — 9a9ik) — (Akgia + Migak — Aaik)
— (9:305 Nk + gk§OGNGi) + 965 (0iNge — 0N gi),
2Fqik = (0kgai + 0agik — 0i9q) — (Akgai + Aagik — Aigka)
+ (9:305 N3k + 9§05 N3i) — 923 (6: N gk — 05 N3s)
2F%%1 = (Orglh + Giggh — Ohgr) — (Akgll + Aoghn — Ngrl)
+ 95308 Ny, — g2 404 Nk,
2Cij5 = (0595 + 0igja — 05964) — (Aagi; + Aigja — Ajgai)
+9a§(0iNY; — GiN%) + 9i§05Ngj — 9,05 N i,
2Ckaﬂ = (aﬁgka + 5k9ag 6agﬁk) ()\g!}ka + )‘kgaﬁ - )‘agﬁk)
(ggaaaNdk + ga§3gN k)
20%k% = (0%59%k + 9%9x5 — Okgss) — (ABg%r — Aokl — Aeghl)
(gﬂéaaNdk + gagaﬁN k)
20455 = (05955 + 04955 — 9h958) — (N985 + Naghs — A3e5a)-

Definition 7.2. The metric K-Hamilton space in which T'(X,Y) = 0 for
all XY € T(E*), is called torsion-free metric K-Hamilton space and denoted
by (E*7N7 G7 v7 07 0)'

THEOREM 7.3. In the torsion free metric K-Hamilton space (E*,N,G,V,0,
0), the connection coefficients are given by (7.9) if we substitute in them A; = 0,
Aj =0, Ae =0, A% =0, \ =0 and X = 0.

Definition 7.3. The torsion-free, metric K-Hamilton space, in which [gx2] = 0
for all = 1,K (i.e. Ty(E*) is orthogonal to (o)Tv(E*), for all @ = 1, K, or
equivalently, Ty (E*) is orthogonal to Ty (E*)), will be denoted by (E*,N,Gg,
Gv,V,0,0).

THEOREM 7.4. In (E*,N,Gg,Gv,V,0,0) the connection coefficients are
determined by

(7.10) 2Fijk = 0r9;; + 0igjk — 05 Gkis
2F;5k = —0agik + 954 (6:i N3k — 6k N i),
2Fgir = 04gik — 945 (0:Nax — 0N 3s),
2F%hk = Okglly + 9p30e NG — 95304 N,
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2C;;8 = 0%9,; + 9a§ (0N — 6;N%),

2Ck%0 = kgap — (95500 Nk + 92§05 N k),
208kl = —0rghe + (9h30aN G + g2a05N ),
20455 = 05945 + 0495 — 9pg5a-

It is obvious that in (7.10), F%;, = —F;%, C’kg% = —C‘ék%. In the recurrent
K-Hamilton space in which Ty (E*) is orthogonal to Ty (E*), i.e. where the metric
tensor has the property [¢;2] = 0 for alla € 1, K (in space (E*,N,Gx,Gv,V,T, \))
we obtain from (6.6):

h hj § § h hi
(7.11) F*, = 9" Fijk, Figr = gaaFiak, Fo''r=9"Fgir,
ad _  6Bpab hc _ _hj c dc _ dapvac
Foar =gay Fagre, Ci"5=9"Cij5,  Cigy = 934 Ciass
akc _ _kirva c adc _ 6B vabe
Ca v = g Coﬂ'y’ Cad’y - gdbcaﬂ’y'

The connection coeffcients, which appear on the right-hand side of (7.11) for
(E*,N,Gg,Gv,V,0,0), are determined by (7.10).

THEOREM 7.5. The necessary and sufficient conditons that in (E*,N,Gq,
Gvy,V,0,0) the connection coefficients satisfy the relations

(7.12) F% =0 & Fj=0  Fl=0 & Fb =0,
Clt=0 & Citc=0, Cui=0 & Ci=

(for the nonlinear connection N) are
7.13) 8%gik — 953 (6iNGk — 6k NG:) =0,  6rgps — (95505 Nk + g2§05Nok) = 0
(' ) a9ik ga6( 14V gk k dl)_ ’ k93a (g,@6 alVak T 9o B dk)_ .

Equations (7.12) and (7.13) should be satisfied for all a,b,d € 1,m, all h,i € 1,n,
all a,3,6 € 1,K.

Proof. The proof follows from (7.10) and (7.11).

THEOREM 7.6. In (E*,N,Gg,Gv,V,0,0) the generalized connection V, de-
fined by (5.1), reduces to the Miron’s d-connection defined by

(714) V(Sidj = ijiéka Vdiag = Fi’cyiafcy,
Voad; = Ci*adk, Voadp = Ch1%05,

iff the nonlinear connection N and the meric tensor G are connected by (7.13).
The connection coefficients of the d-connection are determined by

(7.15) 2F" ) = " (0rgy; + 6igjn — 0; ki),
2F2Y ) = gYy kgl + 924 (95305 N — 94BN Gk),
2C"% = g"(0%g,; + 953(6:NGi — 8;N§,)),
20445 = 9y a(05950 + Oagh’, — 0495%)-
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Proof. (7.14) follows from Theorems (7.5) and (5.1). (7.15) follows from
(7.10), (7.11) and (7.13).

From (7.14) it is obvious that the d-connection is the linear connection, for
which Vx: Ty (E*) —» Ty (E*) and Vx: Ty (E*) — Ty (E*) for all X € T(E*).

THEOREM 7.7. The space (E*,N,Gg,Gv,0,0), with integrable nonlinear
connection N :

(7.16) 8Ny — 0N =0,
allows a d-connection iff

(7.17) (@) 0% =0, (b) Orghl = g4d0eN) + g2 2L N

(e

((7.17a) means that the horizontal metric tensor is a function only of x).

The connection coefficients of such a d-connection are given by

F* = 279" (Orgy; + 0igjn — 03 9ki), Folk = 0gN 7k,
Cady =270y uB5055 + 040p5 — 0g5a). GG =

Proof. From Theorem 7.6, it follows that the space (E*,N,Gpg,Gy,0,0)
allows a d-connection iff the relations (7.13) are satisfied. (7.13) and (7.16) result
(7.17). Relation (7.17b) can be obtained if in (5.7d) we substitute Tyy = 0
(torsion equal to zero) and C,-Z’Z, = 0 (for the case of a d-connection).
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