GRAPHICAL COMPOSITIONS AND WEAK CONGRUENCES

Miroslav Ploščica

Communicated by Žarko Mijajlović

Abstract. Graphical compositions of equivalences were introduced (independently) by B. Jónsson and H. Werner in order to determine whether a subset of $\operatorname{Eq}(X)$ (the set of all equivalences on the set X) is the set of all congruences of some algebra defined on X. Namely, a complete sublattice L of $\operatorname{Eq}(X)$ is the congruence lattice of some algebra defined on X if and only if L is closed under all graphical compositions. We generalize this result and prove that a similar characterization is possible for weak congruences (i. e. symmetric and transitive compatible relations).

Weak congruences were introduced and investigated by B. Šešelja, G. Vojvodić and A. Tepavčević in [2]–[4] and other papers. Let us recall basic concepts.

An algebra $\mathcal{A} = (A, F)$ is a set A (called the underlying set) endowed with some set F of finitary operations (called the basic operations of \mathcal{A}). A finitary function $f: A^n \longrightarrow A$ is called a polynomial of \mathcal{A} if it can be obtained from projections, constant functions and basic operations of \mathcal{A} by means of compositions.

Let X be any set. A weak equivalence on X is any symmetric and transitive binary relation. We denote by $\operatorname{Eq}(X)$, $\operatorname{E}_w(X)$ and $\operatorname{Rel}(X)$ the sets of all equivalences, weak equivalences and binary relations on the set X, respectively. Let $f: X^n \longrightarrow X$ be any function. We say that f preserves a relation $\rho \in \operatorname{Rel}(X)$ if $(x_1, y_1), \ldots, (x_n, y_n) \in \rho$ implies $(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)) \in \rho$. A nullary function f (i.e. a costant $f \in X$) preserves $\rho \in \operatorname{Rel}(X)$ if $(f, f) \in \rho$. A binary relation $\rho \in \operatorname{Rel}(A)$ is called compatible with the algebra A = (A, F) if every $f \in F$ preserves ρ . Such a compatible relation is a (weak) congruence of A if it is a (weak) equivalence. It is easy to see that a relation ρ is a weak congruence of A if and only if it is a congruence of some subalgebra of A. We denote by $\operatorname{Con}(A)$ and $\operatorname{C}_w(A)$ the sets of all congruences and weak congruences of A, respectively.

The domain of a relation $\alpha \in \operatorname{Rel}(X)$ is the set $\operatorname{dom}(\alpha) = \{x \in X \mid (x, x) \in \alpha\}$. For any $\alpha \in \operatorname{Rel}(X)$ we consider its restrictions to its domain $\alpha \upharpoonright \operatorname{dom}(\alpha) = \alpha \cap (\operatorname{dom}(\alpha))^2 = \{(x, y) \in \alpha \mid (x, x) \in \alpha, \ (y, y) \in \alpha\}$. It is easy to see that the

symmetric and transitive closure of $\alpha \upharpoonright \text{dom}(\alpha)$ is always a weak equivalence and we call it the weak equivalence generated by α . We stress that we form the closure of $\alpha \upharpoonright \text{dom}(\alpha)$ and not of α itself. In fact, the symmetric and transitive closure of any relation is a weak equivalence.

Lemma 1. Let α be a weak equivalence on an algebra $\mathcal{A}=(A,F)$. Then $\alpha \in C_w(\mathcal{A})$ if and only if the following conditions hold:

- (i) $dom(\alpha)$ is a subalgebra of A;
- (ii) every unary polynomial f of the algebra $dom(\alpha)$ preserves α .

Proof. It is easy to see that any weak congruence satisfies (i) and (ii). Conversely, suppose that (i) and (ii) hold for $\alpha \in \text{Eq}(A)$. Let $f: A^n \longrightarrow A$ be any of the basic operations of the algebra \mathcal{A} . Suppose that $(a_i,b_i) \in \alpha$ for $i=1,\ldots,n$. Then clearly $a_i \in \text{dom}(\alpha)$, $b_i \in \text{dom}(\alpha)$ for every i. Let us consider the unary polynomial $f_1(x) = f(x,a_2,\ldots,a_n)$. Because of (ii), $(a_1,b_1) \in \alpha$ implies that $(f_1(a_1),f_1(b_1)) \in \alpha$ and therefore $(f(a_1,\ldots,a_n),f(b_1,a_2,\ldots,a_n)) \in \alpha$. Similarly, $(f(b_1,\ldots,b_i,a_{i+1},\ldots,a_n),f(b_1,\ldots,b_{i+1},a_{i+2},\ldots,a_n)) \in \alpha$ holds for any $i=0,1,\ldots,n-1$. From the transitivity of α we infer that $(f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)) \in \alpha$. \square

Lemma 2. Let α be a compatible binary relation on an algebra $\mathcal{A}=(A,F)$. Then the weak equivalence generated by α is also compatible. (And hence it is a weak congruence.)

Proof. Let $\beta \in \mathcal{E}_w(A)$ be generated by α . We prove that β satisfies (i), (ii) from Lemma 1.

It is easy to see that $dom(\beta) = dom(\alpha)$. Let $f: A^n \longrightarrow A$ be any of the basic operations of A, let $\{a_1, \ldots, a_n\} \subseteq dom(\beta)$. Then $(a_i, a_i) \in \alpha$ for every i and since α is compatible we obtain that $(f(a_1, \ldots, a_n), f(a_1, \ldots, a_n)) \in \alpha$, hence $f(a_1, \ldots, a_n) \in dom(\alpha) = dom(\beta)$.

To prove (ii), let f be a unary polynomial of the algebra $\operatorname{dom}(\beta)$. (That is, the constants used in f belong to $\operatorname{dom}(\beta)$.) Let $(x,y) \in \beta$. Then we have a finite sequence $x = z_0, z_1, \ldots, z_k = y$ such that, for every $i = 1, \ldots, k, \ (z_{i-1}, z_i) \in \alpha \upharpoonright \operatorname{dom}(\alpha)$ or $(z_i, z_{i-1}) \in \alpha \upharpoonright \operatorname{dom}(\alpha)$. Since $\operatorname{dom}(\alpha)$ is closed under f (the first part of this proof) and the relation α is compatible, it follows that $(f(z_{i-1}), f(z_i)) \in \alpha \upharpoonright \operatorname{dom}(\alpha)$ or $(f(z_i), f(z_{i-1})) \in \alpha \upharpoonright \operatorname{dom}(\alpha)$. Now $f(x) = f(z_0), f(z_1), \ldots, f(z_k) = f(y)$ is the sequence showing that $(f(x), f(y)) \in \beta$. \square

Now we recall the definition of graphical compositions. A (undirected) graph is a pair (V, E) of sets V and E, whose elements are called vertices and edges, together with a map $\nu: E \longrightarrow \mathcal{P}_1(V) \cup \mathcal{P}_2(V)$, where $\mathcal{P}_1(V)$ and $\mathcal{P}_2(V)$ are the sets of all one element subsets and of all two element subsets of V, respectively. If $\nu(e) = \{x, y\}$, we say that e is an edge between x and y. If $\nu(e) = \{x\}$, we say that e is a loop on x. Hence, we admit several edges with the same endpoints. (In [5] Werner excludes loops, but in the case of weak congruences they are useful.)

Let G = (V, E) be a graph and let $\varphi : E \longrightarrow \operatorname{Rel}(X)$ be a mapping. A function $f : V \longrightarrow X$ is called a φ -compatible labelling if, for every $e \in E$,

 $e = \{x, y\}$ implies that $(f(x), f(y)) \in \varphi(e)$. (The case x = y is included.) For every two distinguished vertices $0, 1 \in V$ we define a relation

 $S_{G,0,1}(\varphi) = \{(a,b) \in X^2 \mid a = f(0), b = f(1) \text{ for some } \varphi\text{-compatible labelling } f\}.$

Thus, $S_{G,0,1}$ is a mapping $Rel(X)^E \longrightarrow Rel(X)$. We define a mapping

$$P_{G,0,1}: E_w(X)^E \longrightarrow E_w(X)$$

by the rule that $P_{G,0,1}(\varphi)$ is the weak equivalence generated by $S_{G,0,1}(\varphi)$. Hence, every graph with two distinguished vertices determines a |E|-ary operation on the set $E_w(X)$. Any such operation is called a graphical composition.

As an illustration, let us present two simple examples. (More examples can be found in [5].)

First, let G and φ be as follows.

(In pictures like this, each edge e is labelled by $\varphi(e)$.) It is easy to see that $S_{G,0,1}(\varphi) = \alpha \cap \beta$. If α and β are weak equivalences, then $S_{G,0,1}(\varphi)$ is also a weak equivalence and therefore $P_{G,0,1}(\varphi) = S_{G,0,1}(\varphi)$. Hence, this graphical composition is the usual intersection of two relations. By adding more edges between 0 and 1 we obtain a graphical composition that describes the intersection of arbitrarily many (even of infinitely many) relations.

As the second example we consider the following graph.

$$0 - \frac{\alpha}{} v - \frac{\beta}{} 1$$

Suppose that $\alpha, \beta \in E_w(X)$ and denote $Y = \text{dom}(\alpha) \cap \text{dom}(\beta)$. The restrictions $\alpha \upharpoonright Y$ and $\beta \upharpoonright Y$ are equivalences on the set Y. We claim that $P_{G,0,1}(\varphi)$ is the least equivalence on Y containing $\alpha \upharpoonright Y$ and $\beta \upharpoonright Y$ (the join in the lattice Eq(Y)). First, it is easy to see that $S_{G,0,1}(\varphi)$ is equal to the relational product

$$\alpha \cdot \beta = \{(x, y) \in X^2 \mid (x, z) \in \alpha, (z, y) \in \beta \text{ for some } z \in X\}.$$

Since α and β are weak equivalences, it follows that $\operatorname{dom}(P_{G,0,1}(\varphi)) = \operatorname{dom}(S_{G,0,1}(\varphi)) = Y$, hence $P_{G,0,1}(\varphi) \in \operatorname{Eq}(Y)$. Further, $\alpha \upharpoonright Y \subseteq P_{G,0,1}(\varphi)$. Indeed, if $(x,y) \in \alpha \upharpoonright Y$, then $(y,y) \in \beta$, which shows that $(x,y) \in \alpha \cdot \beta \subseteq P_{G,0,1}(\varphi)$. For similar reasons, $\beta \upharpoonright Y \subseteq P_{G,0,1}(\varphi)$. On the other hand, if θ is any weak equivalence containing both $\alpha \upharpoonright Y$ and $\beta \upharpoonright Y$, then also $S_{G,0,1}(\varphi) \upharpoonright Y = \alpha \upharpoonright Y \cdot \beta \upharpoonright$

 $Y \subseteq \theta$. Since $P_{G,0,1}(\varphi)$ is, by the definition, the least weak equivalence containing $S_{G,0,1}(\varphi) \upharpoonright Y$, it follows that $P_{G,0,1}(\varphi) \subseteq \theta$.

If $\alpha, \beta \in \text{Eq}(X)$, then Y = X and $P_{G,0,1}(\varphi)$ is the usual join of equivalence relations. Hence, this graphical composition can be regarded as a generalization of the join operation for weak equivalences.

Lemma 3. Let $\mathcal{A} = (A, F)$ be an algebra, let G = (V, E) be a graph, $0, 1 \in V$. Suppose that $\varphi : E \longrightarrow \operatorname{Rel}(A)$ is such that $\varphi(e)$ is a compatible relation on \mathcal{A} for every $e \in E$. Then $S_{G,0,1}(\varphi)$ is also a compatible relation on \mathcal{A} .

Proof. Let $(a_i, b_i) \in S_{G,0,1}(\varphi)$ for i = 1, ..., k. Let $g : A^k \longrightarrow A$ be any of the basic operations of \mathcal{A} . For every i we have a φ -compatible labelling $f_i : V \longrightarrow A$ with $f_i(0) = a_i, f_i(1) = b_i$. Define a function $f : V \longrightarrow A$ by $f(x) = g(f_1(x), ..., f_k(x))$. Then $f(0) = g(a_1, ..., a_k), f(1) = g(b_1, ..., b_k)$. It remains to show that f is a φ -compatible labelling.

Let $e \in E$, $e = \{x, y\}$. Then $(f_i(x), f_i(y)) \in \varphi(e)$ for every $i = 1, \ldots, k$. Since, by the assumption, the relation $\varphi(e)$ is compatible, we obtain that $(f(x), f(y)) = (g(f_1(x), \ldots, f_k(x)), g(f_1(y), \ldots, f_k(y))) \in \varphi(e)$. \square

As a consequence of Lemma 2 and Lemma 3 we obtain the following assertion.

Lemma 4. Let $\mathcal{A} = (A, F)$ be an algebra. Then $C_w(\mathcal{A})$ is a subset of $E_w(A)$ closed under all graphical compositions (i.e. for any graph G with two distinguished vertices, if $\varphi : E \longrightarrow C_w(\mathcal{A})$ then also $P_{G,0,1}(\varphi) \in C_w(\mathcal{A})$). \square

Now we show that closedness under all graphical compositions is not sufficient for characterization of those subsets of $\mathcal{E}_w(X)$ that are equal to $\mathcal{C}_w(\mathcal{A})$ for some algebra \mathcal{A} defined on the set X. (Similarly as in the case of usual congruence relations.)

To see this, let A be an algebra whose congruence lattice looks as follows.

Such an algebra \mathcal{A} certainly exists, since the lattice is algebraic. We can assume that all elements of \mathcal{A} are nullary operations (constants), so that $C_w(\mathcal{A}) =$

 $\operatorname{Con}(\mathcal{A})$ and our example serves both the case of usual and weak congruences. Let us consider the family $\mathcal{F} = \{\Delta, \nabla, \theta_1, \theta_2, \dots\} = \operatorname{Con}(\mathcal{A}) \setminus \{\psi\}$. This family cannot be the set of all (weak) congruences of any algebra, since it is not a complete sublattice of $\operatorname{Eq}(\mathcal{A})$. (It is not closed under infinite joins.) However, we claim that \mathcal{F} is closed under all graphical compositions.

To see this, let G = (V, E) be a graph, $0, 1 \in V$, $\varphi : E \longrightarrow \mathcal{F}$. Without loss of generality we can assume that $\nabla \notin \varphi(E)$. Indeed, if $\nabla \in \varphi(E)$, then we consider the graph G' = (V, E'), where $E' = \{e \in E \mid \varphi(e) \neq \nabla\}$, and the restriction $\varphi' = \varphi \upharpoonright E'$. It is easy to see that $S_{G,0,1}(\varphi) = S_{G',0,1}(\varphi')$.

Thus, suppose that $\nabla \notin \varphi(E)$. We distinguish two cases. First, suppose that there is a path (e_1, \ldots, e_k) in E connecting 0 and 1. Then $P_{G,0,1}(\varphi)$ cannot be greater (in the sense of set inclusion) then the greatest relation among $\varphi(e_1), \ldots, \varphi(e_k)$. Hence, $P_{G,0,1}(\varphi)$ is equal to Δ or to some θ_i .

The second possibility is that there is no path between 0 and 1. Then it is not difficult to see that $P_{G,0,1}(\varphi) = S_{G,0,1}(\varphi) = A^2 = \nabla$.

We have proved that $P_{G,0,1}(\varphi)$ cannot be equal to ψ , which means that \mathcal{F} must be closed under all graphical compositions.

The example above suggests what we should add to graphical compositions. A family $\mathcal{F} \subseteq \mathrm{E}_w(X)$ is called up-directed if for every $\alpha, \beta \in \mathcal{F}$ there is a $\gamma \in \mathcal{F}$ with $\alpha \cup \beta \subseteq \gamma$. It is easy to see that if \mathcal{F} is such an up-directed family, then the set-theoretical union $\bigcup \mathcal{F}$ is a weak equivalence. Further, if all relations in \mathcal{F} are compatible with some algebraic structure on X, then $\bigcup \mathcal{F}$ is also compatible (and hence a weak congruence). We obtain the following assertion.

Lemma 5. For any algebra \mathcal{A} , the set $C_w(\mathcal{A})$ is closed under unions of up-directed families $\mathcal{F} \subseteq C_w(\mathcal{A})$. \square

Now we are going to prove the converse of Lemmas 4 and 5. Let us suppose that $\mathcal{F} \subseteq E_w(X)$ is closed under all graphical compositions and up-directed unions.

First notice that \mathcal{F} is closed under intersections. (See the example preceding Lemma 2. In accordance with this example, the intersection of the empty family of relations is equal to the greatest relation X^2 .) Hence, for every $\alpha \in \operatorname{Rel}(X)$ there is a smallest $\beta \in \mathcal{F}$ with $\alpha \subseteq \beta$. We use the notation $\beta = \alpha^{\mathcal{F}}$.

We shall use some special graphs. Let G be the graph, whose set of vertices is X and the number of edges between vertices x and y is equal to the number of all $\alpha \in \mathcal{F}$ containing (x,y). (This applies also to loops.) Formally, the set E of edges can be expressed as $E = \{(\{x,y\},\alpha) \mid x,y \in X, \ \alpha \in \mathcal{F} \text{ and } (x,y) \in \alpha\}$ and the map ν is defined by $\nu((\{x,y\},\alpha)) = \{x,y\}$.

Similarly we define the graph G^n (the *n*-th power of G). The set of vertices of G^n will be X^n and we put an edge $(\{\overline{x},\overline{y}\},\alpha)$ between $\overline{x}=(x_1,\ldots,x_n)$ and $\overline{y}=(y_1,\ldots,y_n)$ whenever $(x_i,y_i)\in\alpha$ for every $i=1,\ldots,n$. Hence, $G=G^1$.

The importance of the graphs defined above lies in the following easy fact.

LEMMA 6. Let $\varphi: E \longrightarrow \mathcal{F}$ be defined by $\varphi((\{\overline{x}, \overline{y}\}, \alpha)) = \alpha$. A function

 $f: X^n \longrightarrow X$ is a φ -compatible labelling on G^n if and only if f preserves all $\alpha \in \mathcal{F}$. \square

Now we are ready to define an algebra on the set X whose set of all equivalences equals \mathcal{F} .

Lemma 7. Let $\mathcal G$ be the set of all finitary operations on X that preserve every $\alpha \in \mathcal F$. Let $\mathcal A$ be the algebra with X as the underlying set and $\mathcal G$ as the set of basic operations. Then $\mathcal F = C_w(\mathcal A)$.

Proof. By the definition, every basic operation of \mathcal{A} preserves all relations in \mathcal{F} , hence $\mathcal{F} \subseteq C_w(\mathcal{A})$.

To prove the other inclusion, let $\alpha \in C_w(\mathcal{A})$, i.e. α is a weak equivalence on X that is preserved by all $f \in \mathcal{G}$.

Let $\beta = \{(x_1, y_1), \dots, (x_k, y_k)\}$ be an arbitrary finite subset (subrelation) of α . Consider the graph G^n with n = 3k. We distinguish the vertices

 $0 = (x_1, \ldots, x_k, y_1, \ldots, y_k, x_1, \ldots, x_k),$

 $1=(x_1,\ldots,x_k,y_1,\ldots,y_k,y_1,\ldots,y_k).$

Let φ be defined by $\varphi((\{\overline{x},\overline{y}\},\alpha)) = \alpha$. By our assumption, the relation $P_{G^n,0,1}(\varphi)$ belongs to \mathcal{F} . It is easy to see that for every $i=1,\ldots,n$ the i-th projection $f_i:X^n\longrightarrow X$ (i.e. $f_i(z_1,\ldots,z_n)=z_i$) is a φ -compatible labelling. For $i=1,\ldots,k$ we obtain that $(f_i(0),f_i(1))=(x_i,x_i)\in S_{G^n,0,1}(\varphi), \ (f_{i+k}(0),f_{i+k}(1))=(y_i,y_i)\in S_{G^n,0,1}(\varphi), \ (f_{i+2k}(0),f_{i+2k}(1))=(x_i,y_i)\in S_{G^n,0,1}(\varphi)$. Consequently, $\beta\subseteq S_{G^n,0,1}(\varphi)\upharpoonright \mathrm{dom}(S_{G^n,0,1}(\varphi)), \ \mathrm{hence}\ \beta\subseteq P_{G^n,0,1}(\varphi).$

Further, for every $(x,y) \in S_{G^n,0,1}(\varphi)$ there is a φ -compatible labelling $f: X^n \longrightarrow X$ with f(0) = x, f(1) = y. By Lemma 6, $f \in \mathcal{G}$ and by our assumption, f preserves α . Since for every $i = 1, \ldots, k$ we have $(x_i, x_i) \in \alpha$, $(y_i, y_i) \in \alpha$, $(x_i, y_i) \in \alpha$, it follows that $(x,y) = (f(0), f(1)) \in \alpha$. We have shown that $S_{G^n,0,1}(\varphi) \subseteq \alpha$. Since α is a weak equivalence, we obtain that $P_{G^n,0,1}(\varphi) \subseteq \alpha$.

Hence, for every such β there is $\gamma \in \mathcal{F}$ with $\beta \subseteq \gamma \subseteq \alpha$ (namely, $\gamma = P_{G^n,0,1}(\varphi)$, where the number n and the vertices 0, 1 depend on β). Then clearly $\beta^{\mathcal{F}} \subseteq \alpha$. The family

$$\{\beta^{\mathcal{F}} \mid \beta \text{ is a finite subset of } \alpha\}$$

is an up-directed subset of \mathcal{F} and its union is α . Since \mathcal{F} is closed under up-directed unions, we obtain that $\alpha \in \mathcal{F}$, which was to prove. \square

From Lemmas 4, 5 and 7 we obtain our main result.

THEOREM. A family $\mathcal{F} \subseteq E_w(X)$ is the set of all weak congruences of some algebra if and only if \mathcal{F} is closed under all graphical compositions and up-directed unions. \square

REFERENCES

- [1] B. Jónsson, Topics in Universal Algebra, Lecture Notes in Math. 250, Springer-Verlag, 1972.
- [2] B. Šešelja, A. Tepavčević, Infinitely distributive elements in the lattice of weak congruences, in: General Algebra 6, Elsevier (North-Holland), 1990, 241-253.

- [3] G. Vojvodić, B. Šešelja, On the lattice of weak congruence relations, Algebra Universalis 25 (1988) 121–130.
- [4] G. Vojvodić, B. Šešelja, The diagonal relation in the lattice of weak congruences and the representation of lattices, Review of Research Fac. Sci. Univ. Novi Sad 19 (1989), 167-178.
- [5] H. Werner, Which partition lattices are congruence lattices?, Coll. Math. Soc. J. Bólyai 14 (Lattice Theory), North-Holland, 1976, pp. 433–453.

Mathematical Institute Slovak Academy of Sciences Grešákova 6 04001 Košice Slovakia (Received 03 08 1994) (Revised 07 02 1995)