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STOCHASTIC CALCULUS ON ONE-DIMENSIONAL DIFFUSIONS
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Communicated by Zoran Ivkovié

Abstract. Stochastic calculus is used for complete description of the distribution type of
diffusion processes with Lipschic coefficients. We give sufficient conditions for the solutions of
stochastic differential equations to possess an absolutely continuous one-dimensional distribution.
The probability density for stochastic differential equations with uniformly elliptic coefficients is
investigated in detail. The distribution of inverse process is given too.

1. Introduction. Let {X;,,t > 0},z € R, be a solution of the stochastic
differential equation (SDE)

¢ ¢
Xig—a= / a(Xs ;) dBs +/ b(X; z)ds (1)
0 0

defined on the Brownian motion {B;,t > 0} starting from zero. We assume that
coefficients a and b have bounded and continuous first order derivatives (a,b € C}).
Under these conditions for p > 1 there exists L, derivative DX;, of X;, w.r.t.
initial condition z, so that, as in [2, §8],

t t
DXyp—1= / 0/ (Xo2)DXs .0 dBs + / B (Xo.0)DXs.0 ds. @)
0 0
Using the Ito formula, DX; , could be explicitly computed as

DX, = exp{/ot a'(Xs,;)dBs + /Ot(b'(Xs,w) - %al(Xs,zP)ds}. (3)

The boundedness of derivatives implies that, for p > 1, DX; , as well as its inverse
(DX )" are in L,, [6], while (DX; )" satisfies the following SDE, [7, Lemma
(3.7)]:

t
(DX )t —1= —/ a'(Xsz)(DXs )"t dB;
0
t
+/ (a'(Xs5,2)? = b'(Xs,0)) (DXs,0) " ds.
0
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Also, for the Skorohod integrable process u = {u;,0 < s < T}, a directional
derivative D, X; , of the functional X} ; could be expressed in terms of derivatives
{DXz,t > 0} in the following way, [8],

t
DuXis = DXy / (DX,2) " a(X,.0) s ds. (4)
0

First we shall treat the general case. Defining process u = {u,,0 < s < t} as
u, = a(X;5,2) DX, 5, we have

t
DX, =DX;, / a(X;s ;) ds. (5)
0

Process u is Ito integrable, so for a continuously differentiable function f with
compact support, it follows, by integration by parts formula, [5], and relation (5),
that

]E{ ['(X¢2) DXt p /Ota(XM)%ls} = E{Du(f(X:2))} 6
6
= ]E{f(Xt,w) ‘/Ot a(Xs,w)DXs,z st}-

Knowing that DX;, is a.s. positive, we have to find conditions for the term
fot a(Xs,z)? ds to be positive a.s. in order to apply next Lemma.

LEMMA 1. Let X be a random variable such that there exists an integrable
and almost sure positive random variable Y and o constant C > 0 so that for each
[ € C we have | E{f'(X)-Y} |< Csup{| f(z) |: z € R}. Then the probability
law generated by the random variable X is absolutely continuous with respect to the
Lebesgue measure.

Proof. Let us define positive bounded linear functional on the space of
continuously differentiable functions with compact support, by

L(f) = B{f(X)Y } = E{f(X)E{Y | X }} = /f(ﬂf)E{YlX = 2}G(dz),
where G is the probability measure generated by X. Then, we have

\/fmmn¢¥=ﬂmw)50wmuwnmeR}

Using [4, §1] it follows that there exists a density g so that

/ﬂmmymzxwmmz/}wmmm.

Clearly, the previous relation could be extended to the space of bounded measurable
functions, so for a Borel set B we have E{I{X € B}Y'} = [I{z € B}g(z)dz. If B
is of Lebesgue measure zero then E{I{X € B}Y} = 0. Knowing that ¥ > 0 almost



Stochastic calculus on one-dimensional diffusions 121

sure, one easily gets that P{X € B} = 0, i.e. the probability law generated by the
random variable X is absolutely continuous with respect to the Lebesgue measure.
d

General case

In the next theorem we shall describe in full the first moment 7, from which
f(f a(Xs,;)%ds is positive, as well as the behavior of the diffusion process (1) up to
that moment.

THEOREM 1. Let {X;,,t > 0},z € R, be the solution of SDE (1) with
coefficients in C , and let {Y; ,,t > 0} be a deterministic process defined by

t
Yie—x= / b(Ys ) ds.
0

Denote 7, = inf{t > 0:]| a(X¢ ;) |> 0} and D, = inf{t > 0:| a(Ysz) |> 0}. Then,
with probability one, 7, = D, and X; 5, =Y; 4 fort < D, .

Proof. Assume first that 0 < D, < oo, and let 0 < t < D,. Then, a(Y;,) =0
for s < t, hence fot a(Ys,z) dBs = 0, and consequently

t t
Vie—o= [ aVos) B, + [ b(Y.o)ds
0 0

Now the theorem on the existence and uniqueness of the solutions to stochastic
differential equations, [2, §6], implies that with probability one X =Y on [0, D,],
and hence D, < 7, a.s.

Assume now that 0 < 7, < oo, and let 0 < ¢t < 7,. Process X has almost sure
continuous paths, so 7, could be expressed also as

t
Ty = inf {t >0: / a(Xy ) ds > 0} .
0

In [1, Th. 6.3] it is proved that then 7, is deterministic time, so we can conclude
that for 0 <t < 7,

t
/ a(Xs4)>ds =0
0

with probability one, hence f(f a(Xs,)dBs = 0 almost sure, and

t
Xip—z= / b(X,.,) ds.
0

Now, using the theorem on the existence and uniqueness of solutions to stochastic
differential equations again, one can conclude that X =Y on [0, 7,,] with probability
one, and that 7, < D, a.s. so the proof is complete. [J

The following theorem describes completely the type of one-dimensional dis-
tributions of the solutions to SDE:
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THEOREM 2. Under conditions of Theorem 1 the distribution of the random
variable X; . 1is either degenerate or absolutely continuous, whether t < D, or
t>D,.

Proof. The first part when ¢t < D, is described in Theorem 1, so let ¢t > D,,.
Then fot a(Xs,z)%ds is positive a.s. and from relation (6) and Lemma 1 we can reach
our conclusion. [J

Uniformly elliptic case

Now, we shall treat an important special case when the coefficient a is uni-
formly elliptic in the sense that

inf{| a(z) |: z € R} > 0. (EL)

THEOREM 3. Suppose the diffusion process {Xy z,t > 0} defined by SDE (1)
has continuously differentiable coefficients a and b with bounded derivatives and
inf{|a(z)| : x € R} > 0. Then we have:

1° for each t > 0 and x € R the probability law of random variable X; , is
absolutely continuous w.r.t. the Lebesgue measure with transition density

Dt (.’L', ');
2° for any bounded, measurable function f and t > 0 the mapping x —
E{f(Xi,2)} is continuously differentiable and

0 -1 ! -1
SR (X)) = B (X0) [ alXen) ' DXesdBy (D

3° for each y € R and t > 0 the transition density p;(z,y) is differentiable
w.r.t. the initial condition x and

0 _ ¢ _
oo =B [ e DX dB s =y mlo) @
0

Proof. 1° Taking @5 = a(X;s,;) DX 4, one has, from (4)
DaXtﬂ; = DXt,z‘ t. (9)

Process {a} is Ito integrable, so for a continuously differentiable function with
compact support f it follows by integration by parts formula and relation (9), that

¢
E{fl (Xt,a:)DXt,z t} = E{Dﬁ (f(Xt,m))} = ]E{f(Xt,z) / a(Xs,z)_lDXs,z st} .
0
(10)
Now, DX, , is a.s. positive random variable and its inverse (DX; )" is in
L, for each p > 1. Also the assumptions we made on coefficient a assure, via

a Burgholder theorem, that f(f a(Xs,z) 'DX, , dBs is in Ls, hence by Lemma 1
assertion 1° holds.

—1
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2° First, take f € C;. Then by [2] and (10) one has

%E{f(Xt,z)} = E{fl (Xt,z)DXt,:l:)} = t_lE{f(Xt,z)/O a(Xs,z)_l-DXs,z st}

Now, for z,y € R we have

B} B} = [ B{0) [ aXeDX,eam ) 2

Both sides of (11) are continuous linear functionals on the set M; of measurable
and bounded functions, so we can conclude that (11) is valid for each f € M.
Also, for f € My and t > 0 the mapping © — E{ f(X; )} is absolutely continuous.

If we define semigroup {P;,t > 0} of operators on the space M, of bounded
measurable functions as P, f(z) = E{f(X;)}, then Markov property of diffusion
{Xt,:c} yields Pt+5f($) = ]E{P(;f(Xt’m)}, for 6 > 0.

Substituting ¢ with ¢t + § and f with Pjf, the relation (11) reads as

Y t dz
Piisf(y) — Peyof(z) = / E{Ps f(Xt,Z)/ a(Xs,Z)_lDXs,z dB.} T
T 0
Then, from continuity of the function Pjf(z) it follows that for each z € R there

exists P P
lim i+ f(y) — Pivs f(@)
y—z y—2x

’

and

0

t
SePisf(@) =t JE{ Ps(Xi.0) /0 a(Xs0) ' DX, st}

hence 2 P, f(z) is continuous function in z.
Now the relation (11) yields that, for each z

t
a%Pt fz) =t E{ F(Xea) /0 a(Xs0)" DX, st}.

3° Let us denote
Wie=t" /0 ta(Xs,w)*IDXS,w dB;. (12)
Then (10) reads as E{f'(X;,,)DX¢ 4} = E{f(X},.)W¢,, }, or, having in mind 1°,
/_Z F (W) E{DX; | X; . = u}pi(z,u) du = /_O; f(w) E{W; | Xt » = u}pe(z,u) du.

Taking, for e > 0 and y € R,

fo) = / T m(tmyyy2e_dE

2me
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we get, using partial integration

o 2 du
/ e*(ufy) /2€ ]E{DXt,w |Xt,z = U}pt(ma u) '\/T_’]Te

[ee) u 2 dt
= 7(t7y) /26— |/I/ =
~/—oo (/—ooe \/%)]E{ t’m|Xt,z u}pt(w’U) du (13)

= _/00 e~ (t—v)*/2€ (/t E{W} | Xt.o = u}pe(z, u) du) dt .
— 0 ’ ’ V2me

From (11) it follows, via [3, Theorem 1.28], that E{DX, ,|X;, = y}pi(z,y) is a
continuous and bounded function so letting € | 0 one can conclude that

y
E{DX, | X, =y}pe(x,y) = —/ E{W; 2| Xt.2 = ulpe(z, u)du (14)

= _E{Wt,zH{Xt,z S y}}

Now, it is obvious that there exists limy 100 E{DX; ;| Xtz = y}pe(2,y).
Since E{DX; | Xt = -}pt(x,-) is non-negative, integrable function it follows that

Jim E{D X0 Xeo = ylpe(,y) = 0.
The relation (7) implies that
E(WoI{X0s < u}} = S B(I{X,0 <33} = ZP(X,0 <y},
’ ’ Oox ’ Oz ’
so (14) read as
B{DX el Xie = y}mu(z9) = — 5o P{X0e <y} (15)

Now, since P{X; , < y} is continuously differentiable in x, we have for z; < z»

T2
P{Xtz, <y} — P{Xie, <y} = —/ E{DXy,.|Xt,» = y}pi(z,y) dz
:/ / E{W; .| X¢,2 = u}lpi(2, u) dudz,
Tr1 —0o0
and by Fubini theorem for almost all u, BE{W;.|X;. = u}p(-,u) is integrable and

z2 Yy Yy T2
/ / E{W; .| X, = ulpe(z, u)dudz = / / E{W; .| X¢,» = u}pi(2,u)dzdu.

Finally, as P{X; , <y} = ffoo pe(x,u) du we have, for each y € R,

Y Y Yy Z2
/ Pe(x2, ) du—/ pe(w1,u) du =/ E{W;,.|X¢,. = u}pe(2,u) dzdu

—00 —0o0 o0 J T
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so for almost all y we have

pe(x2,y) — pe(w1,y) = / E{W;,.| X¢,. = u}pi(2z,u)dz,

Z1

hence p;(z,y) is an absolutely continuous function in z and
0
%pt(x,y) =E{Wie | Xt =y}t pe(z,y). O

Remark. As mentioned previously, it was proved in [1], through different as-
pects of the Malliavin calculus, that the first moment, when fot a(Xs,z)%ds becomes
positive is deterministic. Also, from that moment the distribution of diffusion pro-
cess is absolutely continuous. But that approach does not allow insight into the
regularity properties of the underlying semigroup. On the other hand, Theorem 3.
in points 2° and 3°, fills that gap, expressing derivatives of the expectation operator
and the density of the diffusion process in terms of such a proces. Let us note that
the point 1° and its proof is included here for the sake of completeness.

As an appendix to the previous theorem we shall study in detail partial de-
rivative %pt(m,y). Precisely, we shall show that the process

t
t7E {/ a(Xsz2) ' DX; st|Xt,w}
0

is a backward martingale.
As {X; ,,t > 0} is a Markov process, for an f € M, and s < t we have

E, {f(Xt)} =E, {E{f(Xt)lfs}} =E, {EXs {f(Xt—s)}}a

where {F;,t > 0} is a standard filtration generated by {By,t > 0}, and E, is the
expectation operator generated by the initial value Xy = z. Now, 2° of Theorem 3
yields

0

%Ez{f(Xt)} =E, {f(Xe)Wi} = E, { f (X )E{W;|X;} } as well as

O B (00} = 2B {Bx Af(Xeo)}) = B {Ex, (£(Xo )} W)
= B { Ex, (/X)) EOW,1X,) ) = B { FXO E(WIX.) ),

hence B{W; | Xt0} = E{E{W,,|Xsz} Xt} for s < t. If we put Wy, =
E{W; 5| Xt }, then the previous relation could be rewritten as

Wie =E{W; ;| X502}, s <t
Let us define the backward flow of o-algebras as

-
Fip=0{Xyz,u>t} t>0, z€R,
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and let ¢(x1,...,2,) be n-dimensional bounded Borel function. For s <t < t; <
--- < t, we have

EoAWs00(Xtr,0s- - s Xtn,2)} = Bo { E{Ws,0 $(Xtr 05 - Xt )| Fe} }
=By { Wao B{¢(Xts 5, - - -» X1 )| Fi} }
=E { Wi Ex, . {¢(Xti—ts---» Xtn—t)} }
=E, {E{W,.|Xt2} Ex, . {0(Xty—ts-- s Xtn—t)} }
=Eo { B{W, 0| Xt 2} 6( Xt 25- - Xtn2) }

~ — ~ ~
hence E{W; o |Fio} = B{W; 5| Xt 2} = Wiy, i.e. the process

t
Wi = tllE{ / a(Xsz) *DX, 0 st|Xt,z}
0
is a backward martingale, relative to the flow of o-algebras
—
Fip=0{Xygz,u>t} t>0, z€R
Recalling the definition of W; , and 3° of the Theorem 3, we deduce
| ety = (||} < o
oo O ’ ’
Moreover, for s < t
®© 5 B B —
/ |6_Pt($ay)|dy = E{|Wt,w|} = ]E{ |E{Ws,w |ft,w}| }
oo O
~ — ~
< E{ E{|Ws,z||ft,z} }= E{ |Ws,z| }

* 9
=[m|%ps(w,y)|dy-

We have proved the following Corollary:
COROLLARY 1. For each t > 0 and z € R the process

t
Wi = t—lE{ / a(Xs,w)—IDXs,deAXt,x}
0
is a backward martingale relative to the flow of o-algebras

-
Fip=0{Xyz,u>t} t>0, z€R

oo
0
Consequently, the function / |6—pt(x,y)|dy is finite and decreasing with t. O
—oo' O



Stochastic calculus on one-dimensional diffusions 127

Point cut as spatial homeomorphysm

It is well known [7, Theorem 2.20] that, for each ¢ > 0, the mapping z —
Xtz is a.s. homeomorphysm of R onto R, hence we can define the inverse random
transformation X; '(-) : R — R so that X; '(X;,) =2, z€R

In the next theorem we shall investigate the distribution of the random vari-
able X;'(y), i.e. the random function X; *(-) applied to the point y.

THEOREM 4. Suppose the diffusion process {Xy z,t > 0} defined by SDE (1)
has continuously differentiable coefficients a and b with bounded derivatives and
inf{la(z)| : = € R} > 0. Then:

1° for each t > 0 and y € R function E{DX,.|X:. = y}p:(-,y) is integrable

and oo
/m E{DX, ;| Xt = ylpe(z,y) dz = 1; (16)
2° for eacht >0 and z,y € R
PO <o) = [ BDXIX: = i) d a7)
3° the probability density
pt(yam) = E{DXt,z‘ Xt,z = y}pt($7y) (18)
of the random variable X{l(y) satisfies Chapman-Kolmogorov equations:
+oo
Pits(y,x) = / ps(y, ) pe(z,x) dz (19)

fort,s>0 and z,y € R.

Proof. 1° As for each t > 0, X}, is a.s. homeomorphysm of R onto R and
DX, , partial derivative in Ly(Q) sense of the random variable X; , w.r.t. z, is a.s.
positive, we have liI:Ttl X¢,z = t00, and from (15) we have, for 1 < z3

— o0

T2
]P{Xt,:cz < ?J} - P{Xt,zl < y} = _/ ]E{DXt,z |Xt,z = y}pt(zyy) dz. (20)
Z1

Now, letting ;1 - —oo and 22 — 400 one can conclude that

+o0
/ E{DX,.|X.. = y}pi(z,y) dz = 1,

—oo
what was to be proved in 1°.
2° From the fact that a.s. X; , is a homeomorphysm and that X; ' (y) is its inverse,
we have the following equivalence X; '(y) < z & X, > y, so, using (20), with
1 = —o0 and 3 = z, we get:
P{X, '(y) <o} =P{X;, >y} =1 -P{X;, <y} =

=/ E{DX;.|Xt,. = y}pi(z,y)dz.

—0o0
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3° Let us denote by P, {-} the probability measure generated by the Markov process
{Xi,z,t > 0} starting from x. Then for ¢,s > 0 the Markov property yields

+oo
P{Xt—i-s,:c < y} = ]Pw{Xt—i-s < y} = / IFI:z{AXs < y}pt(a:,Z) dz =

—00

= ]E{]P)Xt,a: {Xs < y}}

Using the relation (15) we have

0 0
Prys(y,x) = _%P{Xt+s,z <y}= —%E{ Px,,{Xs <y}}

0
= —B{ = Px,.{X, <y} DX}
= _E{ _]EXt,m {DXS|XS = y}Ps (Xt,ac; Y) E{Dt,z |Xt,z}}

+oo
= / E. {DX;|X; = y}ps(2,y) B{ Dt o | Xt,z = 2}pe(2, 2) dz

—0o0

+o0
= / E{DXS,Zle,z = y}ps(z,y) ]E{Dt,z|Xt,z = Z}pt(m,Z) dz

—0o0

+oo
= / ps(y, 2) pe(2, ) dz,

—0o0

and the theorem is completely proved. O

(1]

(8]
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