THE DUAL OF THE BERGMAN SPACE DEFINED ON A HYPERBOLIC PLANE DOMAIN

Miodrag Mateljević

Communicated by Miroljub Jevtić

Abstract. We determine the dual of Bergman space over a plane domain whose boundary has at least three finite boundary points. An important tool in our approach is the existence of the reproducing kernel function with corresponding properties on a hyperbolic plane domain.

We say that a plane domain D is hyperbolic if D has three or more boundary points in \mathbb{C} . Suppose that D is a hyperbolic plane domain and let U denote the open unit disk in C. This hypothesis implies that there is a universal covering mapping $p: U \to D$ with a Fuchsian covering group G for which $U/G \cong D$. The Poincaré density (metric) $r = r_D$ for the region D is defined by the equation $r(p(z))|p'(z)| = r_U(z), z \in U$, where $r_U(z) = (1-|z|^2)^{-1}$ is the hyperbolic density on U. To obtain the kernel function, we first form the series:

$$F(z,\zeta) = \sum_{B \in \Gamma} K_U(B(z),\zeta)B'(z)^2$$

defined for z and ζ in U. Then let the kernel function $K = K_D$ be determined by

$$K(p(z),p(\zeta))p'(z)^2\overline{p'(\zeta)^2}=F(z,\zeta) \qquad z,\zeta\in U.$$

For the proof that $K = K_D$ is well defined and satisfies the properties of the next lemma see Lemma 3, p. 80 of [3].

Lemma A. For any hyperbolic plane domain D in C, the kernel function $K(z,\zeta)$ defined for all (z,ζ) in $D\times D$ is holomorphic in z and has the following properties

$$K(z,\zeta) = \overline{K(\zeta,z)},$$
 (i)

$$\iint\limits_{\Omega} |K(z,\zeta)| dx dy \le \pi r^2(\zeta), \tag{ii}$$

$$f(z) = \frac{3}{\pi} \iint_{D} r^{-2}(\zeta) K(z, \zeta) f(\zeta) d\xi d\eta, \tag{iii}$$

for every integrable holomorphic function f on D.

From now on let D denote a plane domain and let $L^p(D)$, $1 \le p \le +\infty$, be the space of all measurable functions f on D for which

$$||f||_p^p = \iint\limits_D |f(z)|^p dx dy < +\infty.$$

Let further $B^p = B^p(D)$ denote the subspace of L^p consisting of holomorphic functions on D. For every $\varphi \subset L^p(D)$, $1 \leq p \leq +\infty$, let K denote the projection defined by:

$$K\varphi(z) = \frac{3}{\pi} \iint_D r^{-2}(\zeta) K(z,\zeta) \varphi(\zeta) d\xi d\eta, \qquad z \in D.$$

By L_r^{∞} we denote the space of all measurable functions ψ on D for which

$$\|\psi\|_{\infty,r} = \operatorname{ess\,sup}_{w \in D} r^{-2}(w)|\psi(w)| < \infty,$$

and by B_r^{∞} the subspace of L_r^{∞} consisting of holomorphic functions on D. If $D = \mathbb{C}\setminus\{a,b,\infty\}$ where $a,b\in\mathbb{C},\ a\neq b$ and $f\in B^1(D)$, then f must be the identically zero function on D. But if the boundary of the plane domain D has at least three finite boundary points a,b and c, then the function $f(z)=[(z-a)(z-b)(z-c)]^{-1}$ belongs to $B^1(D)$.

THEOREM 1. Let D be a plane domain, whose boundary has at least three finite boundary points. To each bounded linear functional Φ on $B^1(D)$, there corresponds a unique $g \in B_r^{\infty}(D)$ such that

$$\Phi(f) = \iint_D r^{-2}(w)f(w)\overline{g(w)}dudv, \qquad f \in B^1(D).$$
 (1)

Moreover, if Φ and g are related as in (1), then $\frac{1}{3}||g||_{\infty,r} \leq ||\Phi|| \leq ||g||_{\infty,r}$.

Proof. Let Φ be a bounded linear functional on $B^1 = B^1(D)$. By the Hahn–Banach theorem, Φ can be extended to a bounded linear functional $\tilde{\Phi}$ on L^1 so that $\|\tilde{\Phi}\| = \|\Phi\|$.

By Theorem 6.16 of [4] there is a unique $\tilde{\psi} \in L^{\infty}$ such that

$$\tilde{\Phi}(\varphi) = \iint\limits_{D} \varphi(w) \tilde{\psi}(w) du dv \qquad (\varphi \in L^1)$$

and that $\|\tilde{\Phi}\| = \|\tilde{\psi}\|_{\infty}$.

Let $\psi(w)=r^2(w)\tilde{\psi}(w)$, so that $\psi\in L^\infty_r(D)$. Let $g=K\psi$. Using again the part (ii) of Lemma A we get:

$$|g(z)| = |(K\psi)(z)| \le \frac{3}{\pi} \iint_D r^{-2}(\zeta) K(z,\zeta) |\psi(\zeta)| d\zeta d\eta \le 3r^2(z) ||\psi||_{\infty,r},$$

where $z \in D$. Thus $g \in B_r^{\infty}$ and

$$||g||_{\infty,r} \le 3||\psi||_{\infty,r}. \tag{2}$$

For our purpose it is convenient to use the notation:

$$\langle \varphi, \tau \rangle = \iint_{D} r^{-2}(w) \varphi(w) \overline{\tau(w)} du dv,$$

if the right hand side exists. Note that $\tilde{\Phi}(\varphi) = \langle \varphi, \psi \rangle$, $\varphi \in L^1$. Now let $f \in B^1$.

$$\langle f,g\rangle = \langle f,K\psi\rangle = \frac{3}{\pi} \iint\limits_{D} (r^{-2}(\zeta)f(\zeta) \iint\limits_{D} r^{-2}(w)\overline{K(\zeta,w)\psi(w)}dudv)d\xi d\eta.$$

Since $K(z, w) = \overline{K(w, z)}$, using Fubini's theorem and the reproducing property which satisfies f, we get $\langle f, g \rangle = \langle f, \psi \rangle$. Hence $\langle f, g \rangle = \tilde{\Phi}(f) = \Phi(f)$.

Let us prove the uniqueness of g. Let g and g_1 satisfy (1) and let $h=g-g_1$. Then

$$\langle f, h \rangle = 0, \quad \text{for every } f \in B^1.$$
 (3)

Using the reproducing property

$$\overline{h(\zeta)} = \overline{(Kh)(\zeta)} = \frac{3}{\pi} \iint\limits_{D} r^{-2}(w) K(w,\zeta) \overline{h(w)} du dv \qquad (\zeta \in D),$$

Fubini's theorem and (3) we can show that

$$\langle \varphi, h \rangle = \langle \varphi, Kh \rangle = \langle K\varphi, h \rangle = 0,$$

for every $\varphi \in L^1$. Now the integral of $h = g - g_1$ over any measurable set $E \subset D$ of finite measure is 0 (as we see by taking χ_E for φ) and hence $h \equiv 0$ on D. By (2) we have

$$\frac{1}{3} ||g||_{\infty,r} \le ||\Phi|| \le ||g||_{\infty,r}.$$

Note that, among other things, the space L_r^{∞} has an important role in the theory of quasiconformal mapping (see [2] and [3]).

The dual of $B^1(U)$ was determined in [1]. In this case we can describe the dual space with respect to the weighted pairing

$$\langle f,g \rangle_s = \int\limits_U (1-|w|^2)^s f(w) \overline{g(w)} du dv, \qquad \text{for all } s \geq 0.$$

Let Λ_S , $0 \leq s < +\infty$, denote the space of all measurable functions g on U for which $r^{-s}g$ is a bounded function on U and $H\Lambda_s$ the corresponding subspace consisting of holomorphic functions on U.

PROPOSITION 2. If Φ is a bounded linear functional on $B^1(U)$, then: (a) for every s>0 there exists a $g\in H\Lambda_s$ such that $\Phi(f)=\langle f,g\rangle_s$ for all $f\in B^1$; (b) there exists a holomorphic function G which belongs to the Bloch space $\mathcal B$ such that

$$\Phi(f) = \lim_{r \to 1_{-}} \langle f_r, G \rangle_0, \qquad \text{for all } f \in B^1.$$

Here f_r has the usual meaning defined by $f_r(z) = f(rz)$. In the case D = U Theorem 1 is reduced to the case s = 2 of Proposition 2.

Proof of the part (a). In the proof of Theorem 1 we showed that there exists $\tilde{\psi} \in L^{\infty}$ such that $\Phi(f) = \langle f, \tilde{\psi} \rangle_0$ for every $f \in B^1$. Let $\psi = r^s \tilde{\psi}$. If s > 0 then Proposition 1.4.10 of [5] shows that the operator T_s (see chapter 7 of [5] for the definition) is a bounded operator from Λ_s into $H\Lambda_s$. Hence $g = T_s \psi$ belongs to $H\Lambda_s$. As in the proof of Theorem 1 we can show that $\langle f, \tilde{\psi} \rangle_0 = \langle f, \psi \rangle_s = \langle f, T_s \psi \rangle_s$ for every $f \in B^1$.

Proof of the part (b). Let $G = T_0 \tilde{\psi}$. Another application on Proposition 1.4.10 of [5] shows that $G \in \mathcal{B}$ (Note that T_0 is a bounded operator from $L_0 = L^{\infty}$ into Bloch space \mathcal{B} which is strictly larger then L^{∞} , but T_0 is not bounded from $L_0 = L^{\infty}$ into L^{∞}). Now the assertion (b) follows from the relations

$$\Phi(f_r) = \langle f_r, \tilde{\psi} \rangle_0 = \langle f_r, T_0 \tilde{\psi} \rangle_0 = \langle f_r, G \rangle_0, \quad 0 < r < 1, \quad \text{and} \quad \Phi(f) = \lim_{r \to 1_-} \Phi(f_r).$$

It would be interesting to give the appropriate generalizations of Proposition 2 and also of the statements which we used in our proof of Proposition 2, concerning more general domains than the unit disk.

We say that a hyperbolic domain D in \mathbb{C} is strongly hyperbolic if every component of ∂D is different from a point. If D is a hyperbolic domain then $r_D(z) \leq \operatorname{dist}(z,\partial D)^{-1}$, for every $z \in D$, where $d(z) = \operatorname{dist}(z,\partial D)$ denotes the distance from z to ∂D .

If D is strongly hyperbolic we realized that

$$\frac{1}{4}d_D^{-1}(z) \le r_D(z) \le d_D^{-1}(z). \tag{4}$$

If D is only hyperbolic, then the first inequality in (4) does not hold as the following example shows.

Example. If $D = U \setminus \{0\}$, then $r(z) = [|z| \log(1/(|z|))]^{-1}$. Thus r(z)d(z) tends to zero when $D \ni z \to 0$.

Now it is natural to ask whether there exists a version of Theorem 1 and Lemma A with d instead of r^{-1} ?

We are indebted to professor M. Pavlović for helpful comments .

REFERENCES

 J.M. Anderson, J. Clunie, Ch. Pommerenke, On the Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.

- [2] K. Astala, F. Gehring, Injectivity, the BMO norm and the universal Teichmuller space, J. Anal. Math. 46 (1986), 16–56.
- [3] F.P. Gardiner, Teichmuller Theory and Quadratic Differentials, J. Wiley and Sons, New York, 1987.
- [4] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- [5] W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980.

Matematički fakultet 11001 Beograd, p.p. 550 Vugaslavia (Received 08 01 1995) (Revised 25 05 1995)

Yugoslavia E-addresses: epmfm37@yubgss21.bg.ac.yu and miodrag@matf.bg.ac.yu