WEAK CYLINDRIC PROBABILITY ALGEBRAS

M. Rašković, R.S. Dorđević and M. Bradić

Communicated by Žarko Mijajlović

Abstract. We prove an analog of the Boolean representation theorem for locally finite-dimensional weak cylindric probability algebras. These algebras are designed to provide an apparatus for an algebraic study of the weak probability logic $L_{\mathcal{AP}\forall}$.

The notion of a weak cylindric probability algebra will be introduced as a common algebraic abstraction from the theory of deductive systems of the weak probability logic $L_{AP\forall}$, and the geometry associated with basic set-theoretic notions.

The logic $L_{\mathcal{A}P\forall}$ is the minimal extension of the infinitary logic $L_{\mathcal{A}}$ (see [3]) and the probability logic $L_{\mathcal{A}P}$ (see [4]), where \mathcal{A} is a countable admissible set such that $\omega \in \mathcal{A}$. Let L be a countable \mathcal{A} -recursive set of finitary relation, function and constant symbols. The set Form_L of all formulas of $L_{\mathcal{A}P\forall}$ is closed under countable disjunctions (\vee) and conjunctions (\wedge), negation (\neg), usual quantifiers (\forall , \exists) and probability quantifiers ($\mathbf{P}\mathbf{v} \geq r$), where \mathbf{v} is a finite tuple of distinct variables and $r \in \mathcal{A} \cap [0,1]$. This set contains as distinguished elements the expressions: false (F), true (T) and $v_p = v_q$ for any $p, q < \omega$. The structure

$$\mathfrak{Form}_L = \langle \mathrm{Form}_L, \vee, \wedge, \neg, F, T, \exists v_i, P\mathbf{v} \geq r, v_p = v_q \rangle$$

is the free algebra of formulas of $L_{AP\forall}$.

Axioms and rules of inference for $L_{AP\forall}$ are those for L_A and the weak L_{AP} , as listed in [3] and [4], together with the following axioms (see [6]):

$$(AP\forall_1) \ (\forall x)\varphi \to (Px \ge 1)\varphi;$$

 $(AP\forall_2) \ (Px_1 \dots x_n \ge r)\varphi \to (Px_{\pi 1} \dots x_{\pi n} \ge r)\varphi,$

AMS Subject Classification (1991): Primary 03C70

Research supported by Science Fund of Serbia through Mathematical Institute SANU grant number 04M03/C

where π is a permutation of $\{1, \ldots, n\}$.

Let Σ be any set of sentences of $L_{\mathcal{A}P\forall}$. The notion of a deduction of a formula φ from Σ (denoted by $\Sigma \vdash \varphi$) is defined in the usual way. Let \equiv_{Σ} be a relation on Form_L defined by

$$\varphi \equiv_{\Sigma} \psi$$
 iff $\Sigma \vdash \varphi \leftrightarrow \psi$.

If $\Sigma \vdash \varphi \leftrightarrow \psi$, then $\Sigma \vdash (\exists x)\varphi \leftrightarrow (\exists x)\psi$ and $\Sigma \vdash (P\mathbf{x} \geq r)\varphi \leftrightarrow (P\mathbf{x} \geq r)\psi$. Hence the relation \equiv_{Σ} is a congruence relation on \mathfrak{Form}_L . Let φ^{Σ} be a set of all formulas \equiv_{Σ} -equivalent to φ , and let $\mathrm{Form}_L / \equiv_{\Sigma}$ be a set of all equivalence classes φ^{Σ} , $\varphi \in \mathrm{Form}_L$. Now, we construct the quotient algebra

$$\mathfrak{Form}_L / \equiv_{\Sigma} = \langle \operatorname{Form}_L / \equiv_{\Sigma}, \vee^{\Sigma}, \wedge^{\Sigma}, \neg^{\Sigma}, F^{\Sigma}, T^{\Sigma}, (\exists v_i)^{\Sigma}, (P\mathbf{v} \geq r)^{\Sigma}, (v_p = v_q)^{\Sigma} \rangle,$$

which will be called a weak cylindric probability algebra of formulas.

Let $\mathfrak{A} = \langle A, R_i^{\mathfrak{A}}, f_j^{\mathfrak{A}}, c_k^{\mathfrak{A}}, \mu_n \rangle_{n < \omega}$ be a weak probability structure for $L_{\mathcal{A}P\forall}$; i.e., $\langle A, R_i^{\mathfrak{A}}, f_j^{\mathfrak{A}}, c_k^{\mathfrak{A}} \rangle$ is a classical first-order structure and μ_n 's are finitely additive probability measures defined on the set of all definable subsets of A^n . By using the natural definition of the satisfaction relation, we obtain the collection A of all sets of the form $\varphi^{\mathfrak{A}} = \{a \in A^{\omega} : \mathfrak{A} \models \varphi[a]\}, \varphi \in \text{Form}_L$. Then

$$((\exists v_i)\varphi)^{\mathfrak{A}} = \{a \in A^{\omega} : a \upharpoonright \omega \setminus \{i\} = b \upharpoonright \omega \setminus \{i\} \text{ for some } b \in \varphi^{\mathfrak{A}}\},$$
$$((P\mathbf{v} \ge r)\varphi)^{\mathfrak{A}} = \{a \in A^{\omega} : \mu_n\{(b_{k_1}, \dots, b_{k_n}) : b \in \varphi^{\mathfrak{A}}, \ (j \notin K \to b_j = a_j)\} \ge r\},$$

where $\mathbf{v} = v_{k_1}, \dots, v_{k_n}$ and $K = \{k_1, \dots, k_n\}$. Thus we get a weak cylindric probability set algebra. As usual, a unary cylindric set operation C_i is defined on the subsets of A^{ω} by setting, for any $X \subseteq A^{\omega}$,

$$C_i(X) = \{ y \in A^\omega : y \upharpoonright \omega \setminus \{ i \} = x \upharpoonright \omega \setminus \{ i \} \text{ for some } x \in X \}.$$

Let $\langle K \rangle$ be a tuple of distinct integers corresponding to a finite subset $\{k_1, \ldots, k_n\}$ of ω . For each $\langle K \rangle$ and $r \in [0,1]$, we introduce a unary cylindric probability set operation $C^r_{\langle K \rangle}$ on the subsets of A^{ω} by setting, for any $X \subseteq A^{\omega}$,

$$C^r_{(K)}(X) = \{ y \in A^\omega : \mu_n \{ (x_{k_1}, \dots, x_{k_n}) : x \in X \& (j \notin K \to x_j = y_j) \} \ge r \}.$$

By means of $C^r_{\langle K \rangle}$ we obtain a cylinder generated by translating only the section of X whose measure is not less than r parallelly to the (k_1, \ldots, k_n) -axis of A^ω . If K is a singleton $\{k\}$, then we write C^r_k instead of $C^r_{\langle \{k\} \rangle}$. It follows from $C_i(\varphi^{\mathfrak{A}}) = \left((\exists v_i)\varphi\right)^{\mathfrak{A}}$ and $C^r_{\langle K \rangle}(\varphi^{\mathfrak{A}}) = \left((P\mathbf{v} \geq r)\varphi\right)^{\mathfrak{A}}$ that the function $f\colon \mathrm{Form}_L/\equiv_{\Sigma}\to\mathbb{A}$ defined by $f(\varphi^\Sigma)=\varphi^{\mathfrak{A}}$ is a "natural" homomorphic transformation from the weak cylindric probability algebra of formulas $\mathfrak{Form}_L/\equiv_{\Sigma}$ onto the weak cylindric probability set algebra

$$\langle \mathbb{A}, \cup, \cap, \sim, \emptyset, A^{\omega}, C_i, C^r_{\langle K \rangle}, D_{pq} \rangle$$

where $D_{pq} = \{ a \in A^{\omega} : a_p = a_q \}$ and, so, $D_{pq} = (v_p = v_q)^{\mathfrak{A}}$.

The abstract notion of a weak cylindric probability algebra is defined by equations which hold in both algebras mentioned above. We suppose in advance that a fixed indexation by hereditarily countable sets (from $\mathcal{A} \subset HC$) is given. So let $A = \{x_i : i \in I\}$ and $I \subseteq A$. We say that a Boolean algebra $(A, +, \cdot, -, 0, 1)$ is A-complete if for any $\{x_j: j \in J\} \subseteq A$, where $J \subseteq I$ and $J \in A$, we have $\sum_{j\in J} x_j \in A$.

Definition 1. A weak cylindric probability algebra is a structure

$$\mathbf{A} = \langle A, +, \cdot, -, 0, 1, C_i, C^r_{\langle K \rangle}, d_{pq} \rangle,$$

such that $(A, +, \cdot, -, 0, 1)$ is an A-complete Boolean algebra, C_i and $C_{(K)}^r$ are unary operations on A for each $i < \omega$ and each finite $K \subseteq \omega$, $d_{pq} \in A$ for all $p, q < \omega$, and the following postulates hold (by convention, let $C^r_{(K)}x = C^1_{(K)}x$ for $r \geq 1$, and $C_{\langle K \rangle}^r x = C_{\langle K \rangle}^0 x \text{ for } r \leq 0$.

```
(\text{WCP}_0) \quad \langle A, +, \cdot, -, 0, 1, C_i, d_{pq} \rangle \text{ is a cylindric algebra of dimension } \omega.
```

(WCP₁) (i)
$$C_{\langle\emptyset\rangle}^r x = x$$
, (ii) $C_{\langle K\rangle}^r 0 = 0$, where $r > 0$.

$$(WCP_2) \quad C_{\langle K \rangle}^0 x = 1.$$

$$\begin{array}{ll} \text{(WCP}_2) & C^0_{\langle K \rangle} x = 1. \\ \text{(WCP}_3) & \text{If } r \geq s \text{, then } C^r_{\langle K \rangle} x \leq C^s_{\langle K \rangle} x. \end{array}$$

$$(\mathrm{WCP_4}) \quad C^r_{\langle K \rangle}(x + C^s_{\langle L \rangle}y) = C^r_{\langle K \rangle}x + C^s_{\langle L \rangle}y, \quad \text{where } K \subseteq L.$$

$$(WCP_5) \quad (i) \quad C_{\langle K \rangle}^r x \cdot C_{\langle K \rangle}^s y \le C_{\langle K \rangle}^{r+s-1} (x \cdot y),$$

(ii)
$$C^r_{\langle K \rangle} x \cdot C^s_{\langle K \rangle} y \cdot C^1_{\langle K \rangle} - (x \cdot y) \le C^{r+s}_{\langle K \rangle} (x+y).$$

$$(WCP_6) \quad C_{\langle K \rangle}^r - x = -\sum_{m>0} C_{\langle K \rangle}^{1-r+1/m} x.$$

 $(ii) \quad C^r_{\langle K \rangle} x \cdot C^s_{\langle K \rangle} y \cdot C^1_{\langle K \rangle} - (x \cdot y) \leq C^{r+s}_{\langle K \rangle} (x+y).$ $(\text{WCP}_6) \quad C^r_{\langle K \rangle} - x = -\sum_{m>0} C^{1-r+1/m}_{\langle K \rangle} x.$ $(\text{WCP}_7) \quad C^r_{\langle K \rangle} x \leq C^r_{\langle \pi(K) \rangle} x, \quad \text{where π is a permutation of } \{1, \dots, n\} \text{ and } x \in \mathbb{C}^r_{\langle \pi(K) \rangle} x.$ $\langle \pi(K) \rangle$ is $k_{\pi 1}, \ldots, k_{\pi n}$.

$$(WCP_8) - C_k^1 - x \le C_k x.$$

$$(\text{WCP}_9) \quad \text{If } i \in K, \text{ then: (i)} \quad C_i C_{\langle K \rangle}^r x = C_{\langle K \rangle}^r x, \quad \text{(ii)} \quad C_{\langle K \rangle}^r C_i x = C_{\langle K \setminus \{i\} \rangle}^r C_i x.$$

(WCP₁₀) If
$$i, j \notin K$$
, then: (i) $C_{\langle K \rangle}^{\backslash R} C_i(d_{ij} \cdot x) = C_i C_{\langle K \rangle}^r (d_{ij} \cdot x)$,

(ii)
$$C^r_{\langle K \cup \{i\} \rangle} C_j(d_{ij} \cdot x) = C^r_{\langle K \cup \{j\} \rangle} C_i(d_{ij} \cdot x).$$

We point out that the axioms WCP₂-WCP₆ express a well-known properties of finitely additive measures. The axioms WCP₇ and WCP₈ express the conditions $(AP\forall_2)$ and $(AP\forall_1)$ of $L_{\mathcal{A}P\forall}$, respectively.

Now we give some properties of the operations $C_{\langle K \rangle}^r$. The necessary properties of C_i and the substitution operation S_j^i defined by $S_j^i x = \begin{cases} x, & \text{if } i = j \\ C_i(d_{ij} \cdot x), & \text{if } i \neq j \end{cases}$ are well-known (see [2] and [5])

Theorem 1. If $\langle A, +, \cdot, -, 0, 1, C_i, C_{lK}^r \rangle$ is a weak cylindric probability algebra, then:

(1)
$$C_{\langle K \rangle}^r 1 = 1$$
.

(2) If
$$r > 0$$
 and $s > 0$, then $C^r_{\langle K \rangle} x = x$ iff $C^s_{\langle K \rangle} - x = -x$.

(3) If
$$r > 0$$
 or $r = s = 0$ and $K \subseteq L$, then $C_{\langle K \rangle}^{r(N)}(x \cdot C_{\langle L \rangle}^s y) = C_{\langle K \rangle}^r x \cdot C_{\langle L \rangle}^s y$.

(4)
$$C_{\langle K \rangle}^r x \cdot - C_{\langle K \rangle}^r y \le \sum_{m>0} C_{\langle K \rangle}^{1/m} (x \cdot - y).$$

(5) If
$$x \leq y$$
, then $C_{\langle K \rangle}^r x \leq C_{\langle K \rangle}^r y$.

(6)
$$C_{\langle K \rangle}^r x + C_{\langle K \rangle}^r y \leq C_{\langle K \rangle}^r (x + y).$$

(7) $C_{\langle K \rangle}^r (x \cdot y) \leq C_{\langle K \rangle}^r x \cdot C_{\langle K \rangle}^r y.$

$$(7) C^r_{\langle K \rangle}(x \cdot y) \le C^r_{\langle K \rangle} x \cdot C^r_{\langle K \rangle} y$$

(8)
$$C^1_{\langle K \rangle} x \cdot C^1_{\langle K \rangle} y = C^1_{\langle K \rangle} (x \cdot y).$$

(9)
$$C^1_{\langle K \rangle} x = x$$
 iff $C_{\langle K \rangle} x = x$

(9)
$$C_{\langle K \rangle}^{1} x = x$$
 iff $C_{\langle K \rangle} x = x$.
(10) If $K = \{k_1, \dots, k_n\}$ and $r > 0$, then $C_{\langle K \rangle}^{r} x \leq C_{k_1} \dots C_{k_n} x$.

(11)
$$C^1_{\langle K \rangle} d_{pq} = d_{pq}$$
, where $p, q \notin K$.

(12) If
$$i \in K$$
, then: (a) $S_j^i C_{\langle K \rangle}^r x = C_{\langle K \rangle}^r x$, (b) $S_j^i S_i^m C_{\langle K \rangle}^r x = S_j^m C_{\langle K \rangle}^r x$.

(13) If
$$i, j \notin K$$
, then: (a) $S_j^i C_{\langle K \rangle}^r x = C_{\langle K \rangle}^r S_j^i x$,
(b) $C_{\langle K \cup \{i\} \rangle}^r S_j^i x = C_{\langle K \cup \{j\} \rangle}^r S_j^i x$.

Proof. (1) It follows from WCP₁ (ii) and WCP₆ that

$$C^r_{\langle K \rangle} 1 = -\sum_{m>0} C^{1-r+1/m}_{\langle K \rangle} 0 = 1.$$

(2) If $C_{\langle K \rangle}^r x = x$, then

$$\begin{split} C^s_{\langle K \rangle} - x &= -\sum_{m>0} C^{1-s+1/m}_{\langle K \rangle} x & \text{by WCP}_6 \\ &= -\sum_{m>0} C^{1-s+1/m}_{\langle K \rangle} C^r_{\langle K \rangle} x & \text{by assumption} \\ &= -\sum_{m>0} C^r_{\langle K \rangle} x & \text{by WCP}_4 \text{ (putting } x = 0) \text{ and WCP}_1 \\ &= -x & \text{by WCP}_0. \end{split}$$

The converse follows by symmetry.

(3) It follows from (2), WCP₄ and WCP₆ that, for r > 0, we have:

$$\begin{split} C^r_{\langle K \rangle}(x \cdot C^s_{\langle L \rangle} y) &= C^r_{\langle K \rangle} - (-x + -C^s_{\langle L \rangle} y) \\ &= -\sum_{m > 0} C^{1-r+1/m}_{\langle K \rangle}(-x + -C^s_{\langle L \rangle} y) \\ &= -\left(\left(\sum_{m > 0} C^{1-r+1/m}_{\langle K \rangle} - x\right) + -C^s_{\langle L \rangle} y\right) \\ &= \left(-\sum_{m > 0} C^{1-r+1/m}_{\langle K \rangle} - x\right) \cdot C^s_{\langle L \rangle} y \\ &= C^r_{\langle K \rangle} x \cdot C^s_{\langle L \rangle} y. \end{split}$$

(4) We have:

$$\begin{split} C^r_{\langle K \rangle} x \cdot - C^r_{\langle K \rangle} y &= C^r_{\langle K \rangle} x \cdot \sum\nolimits_{m > 0} C^{1 - r + 1/m}_{\langle K \rangle} - y & \text{by WCP}_6 \\ &= \sum\nolimits_{m > 0} C^r_{\langle K \rangle} x \cdot C^{1 - r + 1/m}_{\langle K \rangle} - y & \text{by WCP}_0 \\ &\leq \sum\nolimits_{m > 0} C^{1/m}_{\langle K \rangle} (x \cdot - y) & \text{by WCP}_5 \text{ (i)}. \end{split}$$

- (5) If $x \leq y$, then $x \cdot -y = 0$. So, $C_{\langle K \rangle}^r x \cdot -C_{\langle K \rangle}^r y = 0$ from (4) and WCP₁; i.e., $C_{\langle K \rangle}^r x \leq C_{\langle K \rangle}^r y$.
- (6),(7) Immediate by (5) and $x \le x + y$, $y \le x + y$, $x \cdot y \le x$, $x \cdot y \le y$.
- (8) By WCP₅ (i) we have $C^1_{\langle K \rangle} x \cdot C^1_{\langle K \rangle} y \leq C^1_{\langle K \rangle} (x \cdot y)$. The reverse inequality is an instance of (7).
- (9) If $C_k^1x=x$, then $C_kx=C_kC_k^1x=C_k^1x=x$ from WCP₉ (i). It follows from WCP₃, WCP₆ and WCP₈ that $C_k^1x\leq \sum_{m>0}C_k^{1/m}x=-C_k^1-x\leq C_kx$. Hence, if $C_kx=x$, then $C_k^1x\leq x$ and $x=-C_k-x\leq C_k^1x$ by WCP₀ and WCP₈; i.e., $x=C_k^1x$. Now, by induction, it follows from WCP₉ that $C_{\langle K\rangle}^1x=x$ if and only if $C_{\langle K\rangle}x=x$.
- (10) First, we prove $-C_{\langle K \rangle}^1 x \leq C_{k_1} \dots C_{k_n} x$ by induction on |K|. The inequality is clear if $K = \emptyset$. Suppose that $K = \{k_1, \dots, k_{n+1}\}$. Now $x \leq C_{k_{n+1}} x$, so $-C_{k_{n+1}} x \leq -x$, and hence $C_{\langle K \rangle}^1 C_{k_{n+1}} x \leq C_{\langle K \rangle}^1 x$, and so

$$-C^{1}_{\langle K \rangle} - x \leq -C^{1}_{\langle K \rangle} - C_{k_{n+1}} x = \sum_{m>0} C^{1/m}_{\langle K \rangle} C_{k_{n+1}} x$$

$$= \sum_{m>0} C^{1/m}_{\langle K \setminus \{k_{n+1}\} \rangle} C_{k_{n+1}} x = -C^{1}_{\langle K \setminus \{k_{n+1}\} \rangle} - C_{k_{n+1}} x$$

$$\leq C_{k_{1}} \dots C_{k_{n+1}} x.$$

Finally, choose p > 0 so that 1/p < r. Then

$$C_{\langle K \rangle}^r x \le C_{\langle K \rangle}^{1/p} x \le \sum_{m>0} C_{\langle K \rangle}^{1/m} x = -C_{\langle K \rangle}^1 - x \le C_{k_1} \dots C_{k_n} x.$$

- (11) Immediate by (9) and $C_{\langle K \rangle} d_{pq} = d_{pq}$, where $p, q \notin K$.
- (12) Assuming $i \neq j$ and $i \in K$, we have:

$$S_{j}^{i}C_{\langle K \rangle}^{r}x = C_{i}(d_{ij} \cdot C_{\langle K \rangle}^{r}x)$$

$$= C_{i}(d_{ij} \cdot C_{i}C_{\langle K \rangle}^{r}x) \quad \text{by WCP}_{9} \text{ (i)}$$

$$= C_{\langle K \rangle}^{r}x \quad \text{by WCP}_{0},$$

 $\text{ and } S^i_j S^m_i C^r_{\langle K \rangle} x = S^i_j S^m_j C^r_{\langle K \rangle} x = S^m_j S^i_j C^r_{\langle K \rangle} x = S^m_j C^r_{\langle K \rangle} x \text{ by WCP}_0.$

(13) Assuming $i \neq j$ and $i, j \notin K$, we have:

$$S_j^i C_{\langle K \rangle}^r x = C_i (d_{ij} \cdot C_{\langle K \rangle}^r x) = C_i C_{\langle K \rangle}^r (d_{ij} \cdot x) \quad \text{by (3)}$$
$$= C_{\langle K \rangle}^r C_i (d_{ij} \cdot x) = C_{\langle K \rangle}^r S_j^i x, \quad \text{by WCP}_{10} \text{ (i)},$$

and

$$\begin{split} C^r_{\langle K \cup \{i\} \rangle} S^j_i x &= C^r_{\langle K \cup \{i\} \rangle} C_j(d_{ij} \cdot x) \\ &= C^r_{\langle K \cup \{j\} \rangle} C_i(d_{ij} \cdot x) \quad \text{by WCP}_{10} \text{ (ii)} \\ &= C^r_{\langle K \cup \{j\} \rangle} S^i_j x. \quad \Box \end{split}$$

The algebraic notion of an ideal in a weak cylindric probability algebra can be modified using specific properties of these algebras.

Definition 2. An ideal in a cylindric probability algebra A is a nonempty set $\mathcal{I} \subset A$ such that the following conditions hold:

- (1) \mathcal{I} is a Boolean ideal of **A**; i.e.,
 - (a) $0 \in \mathcal{I}$,
 - (b) If $\{a_j : j \in J\} \subseteq \mathcal{I}$ and $J \in \mathcal{A}$, then $\sum_{j \in J} a_j \in \mathcal{I}$,
 - (c) If $x \in \mathcal{I}$ and $y \leq x$, then $y \in \mathcal{I}$;
- (2) For all $i < \omega$, if $x \in \mathcal{I}$, then $C_i x \in \mathcal{I}$.

It follows from Definition 2 and (10) of Theorem 1 that, for any finite $K \subseteq \omega$ and $r \in (0,1]$, if $x \in \mathcal{I}$, then $C^r_{(K)}x \in \mathcal{I}$. An ideal \mathcal{I} determines the relation $\sim = \{(x,y): x \cdot -y + y \cdot -x \in \mathcal{I}\}.$ As usual, if $x \sim y$, then $C_i x \sim C_i y$. For r > 0and $x, y \in A$, we have

$$C^r_{\langle K \rangle} x \cdot - C^r_{\langle K \rangle} y + C^r_{\langle K \rangle} y \cdot - C^r_{\langle K \rangle} x \leq \sum\nolimits_{m > 0} C^{1/m}_{\langle K \rangle} (x \cdot - y) + \sum\nolimits_{m > 0} C^{1/m}_{\langle K \rangle} (y \cdot - x)$$

by (4) of Theorem 1. So, if $x \sim y$, then $C^r_{\langle K \rangle} x \sim C^r_{\langle K \rangle} y$. Hence, \sim is a congruence relation of **A**. We define a new algebra $\mathbf{A}/\mathcal{I} = \langle A/\mathcal{I}, \widehat{+}, \widehat{\cdot}, \widehat{-}, \widehat{0}, \widehat{1}, \widehat{C}_i, \widehat{C_{\langle K \rangle}^r}, \widehat{d}_{pq} \rangle$ as usual. It is not difficult to see that \mathbf{A} / \mathcal{I} is a weak cylindric probability algebra, and that there is a "natural" homomorphism from **A** onto \mathbf{A}/\mathcal{I} .

The dimension set Δx of an element $x \in A$ is introduced by $\Delta x = \{k : x \in A \}$ $C_k x \neq x$. It follows from the clause (9) of Theorem 1 that $\Delta x = \{k : C_k^1 x \neq x\}$, i.e., the coordinates in which x is not a cylinder can be obtained also by applying probability cylindrifications of the form C_k^1 .

Definition 3. A weak cylindric probability algebra A is locally finite-dimensional if Δx is finite for all $x \in A$.

Every formula φ of $L_{AP\forall}$ has only finitely many free variables. If v_i is a variable not occurring in φ , then $\models (\exists v_i)\varphi \leftrightarrow \varphi$ and $\models (Pv_i > 0)\varphi \leftrightarrow \varphi$. So, for any given set Σ of sentences of $L_{AP\forall}$, there are at most finitely many indices $i < \omega$ such that φ is not equivalent under Σ neither to $(\exists v_i)\varphi$ nor to $(Pv_i>0)\varphi$; hence, $\mathfrak{Form}_L/\equiv_{\Sigma}$ is locally finite-dimensional weak cylindric probability algebra.

The following theorem gives some elementary properties of Δ .

Theorem 2. If $\langle A, +, \cdot, -, 0, 1, C_i, C_{\langle K \rangle}^r, d_{pq} \rangle$ is a weak cylindric probability algebra, then:

- $\begin{array}{lll} (1) & \Delta 0 = \Delta 1 = \emptyset; & (5) & \Delta d_{pq} = \{p,q\}; \\ (2) & \Delta \left(\sum_{j \in J} x_j\right) \subseteq \bigcup_{j \in J} \Delta x_j, & J \in \mathcal{A}; & (6) & \Delta C_i x \subseteq \Delta x \setminus \{i\}; \\ (3) & \Delta \left(\prod_{j \in J} x_j\right) \subseteq \bigcup_{j \in J} \Delta x_j, & J \in \mathcal{A}; & (7) & \Delta S_j^i x \subseteq (\Delta x \setminus \{i\}) \cup \{j\}; \\ (4) & \Delta x = \Delta x; & (8) & \Delta C_{\langle K \rangle}^r x \subseteq \Delta x \setminus K. \end{array}$

Proof. The clauses (1)–(7) are well-known properties of Δ from the classical theory of cylindric algebras.

(8) Let i be any integer such that $i \notin \Delta x \setminus K$. If $i \in K$, then $C_i C^r_{\langle K \rangle} x = C^r_{\langle K \rangle} x$ by WCP₉ (i). If $i \notin \Delta x \cup K$, then

$$C_i C_{\langle K \rangle}^r x = C_i C_{\langle K \rangle}^r C_i x = C_i C_{\langle K \cup \{i\} \rangle}^r C_i x \quad \text{by WCP}_9 \text{ (ii)}$$

$$= C_{\langle K \cup \{i\} \rangle}^r C_i x = C_{\langle K \rangle}^r x \quad \text{by WCP}_9 \text{ (i)}.$$

So,
$$i \notin \Delta C^r_{\langle K \rangle} x$$
. \square

The main result of this paper is the following analog of the Boolean representation theorem from the classical theory of cylindric algebras.

THEOREM 3. If A is a locally finite-dimensional weak cylindric probability algebra and |A| > 1, then there is a homomorphism from A onto a weak cylindric probability set algebra.

Proof. We prove that A is isomorphic to a weak cylindric probability algebra of formulas $\mathfrak{Form}_L /\equiv_{\Sigma}$ for some L and Σ .

Let R_a be an n-ary relation symbol corresponding to a for each $a \in A$, where the integer n is obtained from $\Delta a \subseteq \{1, \dots, n\}$. Fix the language $L = \{R_a : a \in A\}$. By induction on the complexity of formulas of the logic $L_{AP\forall}$ we define a function $f: \text{Form}_L \to A \text{ satisfying: if } \vdash \varphi, \text{ then } f(\varphi) = 1 \text{ as follows:}$

(1) Let φ be an atomic formula $R_a(v_{k_1},\ldots,v_{k_n})$ and let j_1,\ldots,j_n be the first n integers in $\omega \setminus \{1, \ldots, n, k_1, \ldots, k_n\}$. Then

$$f(\varphi) = S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^1 \cdots S_{j_n}^n a ;$$

- (5) $f(\bigwedge \Phi) = \prod_{\varphi \in \Phi} f(\varphi), \quad \Phi \in \mathcal{A};$ (6) $f((\exists v_i)\varphi) = C_i f(\varphi);$ (2) $f(v_p = v_q) = d_{pq};$
- (3) $f(\neg \varphi) = -f(\varphi);$
- (4) $f(\nabla \Phi) = \sum_{\varphi \in \Phi} f(\varphi), \quad \Phi \in \mathcal{A}; \quad (7) \quad f((P\mathbf{v} \ge r)\varphi) = C_{(K)}^r h(\varphi),$

where $\mathbf{v} = v_{k_1}, \dots, v_{k_m}$ and $K = \{k_1, \dots, k_m\}.$

Let φ be a formula of $L_{AP\forall}$ and let φ^* be a formula obtained by the substitution of some free variables v_{k_1}, \ldots, v_{k_n} of φ with v_{m_1}, \ldots, v_{m_n} , respectively. By induction on complexity of formulas of $L_{AP\forall}$, we prove the following substitution property:

(S)
$$f(\varphi) = S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^{m_1} \cdots S_{j_n}^{m_n} f(\varphi^*),$$

where j_1, \ldots, j_n are some distinct integers in $\omega \setminus \{1, \ldots, n, k_1, \ldots, k_n, m_1, \ldots, m_n\}$.

Suppose φ is $R_a(v_{k_1},\ldots,v_{k_n})$. Let $p_1,\ldots,p_n,q_1,\ldots,q_n$ be distinct integers in $\omega \setminus \{1, \ldots, n, k_1, \ldots, k_n, m_1, \ldots, m_n\}$. For some distinct integers j_1, \ldots, j_n in the set $\omega \setminus \{1, \ldots, n, k_1, \ldots, k_n, m_1, \ldots, m_n\}$, we have:

$$\begin{split} S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^{m_1} \cdots S_{j_n}^{m_n} f(\varphi^*) &= S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^{m_1} \cdots S_{j_n}^{m_n} S_{m_1}^{q_1} \cdots S_{q_n}^{q_n} A_{q_1}^{q_1} \cdots S_{q_n}^{q_n} a \\ &= S_{k_1}^{p_1} \cdots S_{k_n}^{p_n} S_{p_1}^{m_1} \cdots S_{p_n}^{m_n} S_{m_1}^{q_1} \cdots S_{m_n}^{q_n} S_{q_1}^{1} \cdots S_{q_n}^{n} a \\ &= S_{k_1}^{p_1} \cdots S_{k_n}^{p_n} S_{p_1}^{k_1} \cdots S_{p_n}^{q_n} S_{k_1}^{q_1} \cdots S_{k_n}^{q_n} S_{q_1}^{1} \cdots S_{q_n}^{n} a \\ &= S_{k_1}^{p_1} \cdots S_{k_n}^{p_n} S_{k_1}^{q_1} \cdots S_{k_n}^{p_n} S_{p_1}^{1} \cdots S_{p_n}^{n} a \\ &= S_{k_1}^{p_1} \cdots S_{k_n}^{p_n} S_{p_1}^{1} \cdots S_{p_n}^{p_n} a \\ &= S_{k_1}^{p_1} \cdots S_{k_n}^{p_n} S_{p_1}^{1} \cdots S_{p_n}^{n} a \\ &= f(\varphi) \end{split}$$

by WCP_0 (see [2] or [5]).

Let φ be $v_{k_1}=v_{k_2}$. We may suppose $k_1\neq k_2$. It follows from WCP₀ that

$$f(\varphi) = d_{k_1 k_2} = S_{k_1}^{j_1} S_{k_2}^{j_2} S_{j_1}^{m_1} S_{j_2}^{m_2} d_{m_1 m_2} = S_{k_1}^{j_1} S_{k_2}^{j_2} S_{j_1}^{m_1} S_{j_2}^{m_2} f(\varphi^*).$$

The steps $\neg \psi$, $\bigvee \Phi$ and $\bigwedge \Phi$ in the inductive proof of (S) are easy using appropriate properties of S_i^i (see [2] and [5]).

Let φ be $(\exists v_i)\psi(v_{k_1},\ldots,v_{k_n},v_i)$ and $i\notin\{k_1,\ldots,k_n,m_1,\ldots,m_n\}$. For some distinct integers j_1,\ldots,j_n in $\omega\setminus\{1,\ldots,n,k_1,\ldots,k_n,m_1,\ldots,m_n,i\}$ we have:

$$f(\varphi) = C_i S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^{m_1} \cdots S_{j_n}^{m_n} f(\psi^*) \quad \text{by induction assumption}$$

$$= S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^{m_1} \cdots S_{j_n}^{m_n} C_i f(\psi^*) \quad \text{by WCP}_0$$

$$= S_{k_1}^{j_1} \cdots S_{k_n}^{j_n} S_{j_1}^{m_1} \cdots S_{j_n}^{m_n} f(\varphi^*).$$

Suppose φ is $(Pv_{l_1}, \ldots, v_{l_m} \geq r)\psi(v_{k_1}, \ldots, v_{k_n}, v_{l_1}, \ldots, v_{l_m})$, $L = \{l_1, \ldots, l_m\}$ and $L \cap \{m_1, \ldots, m_n, k_1, \ldots, k_n\} = \emptyset$. For some distinct integers j_1, \ldots, j_n in $\omega \setminus \{1, \ldots, n, k_1, \ldots, k_n, m_1, \ldots, m_n, l_1, \ldots, l_n\}$ we have:

$$\begin{split} f(\varphi) &= C^r_{\langle L \rangle} S^{j_1}_{k_1} \cdots S^{j_n}_{k_n} S^{m_1}_{j_1} \cdots S^{m_n}_{j_n} f(\psi^*) \quad \text{by induction assumption} \\ &= S^{j_1}_{k_1} \cdots S^{j_n}_{k_n} S^{m_1}_{j_1} \cdots S^{m_n}_{j_n} C^r_{\langle L \rangle} f(\psi^*) \quad \text{by (13) (a) of Theorem 1} \\ &= S^{j_1}_{k_1} \cdots S^{j_n}_{k_n} S^{m_1}_{j_1} \cdots S^{m_n}_{j_n} f(\varphi^*). \end{split}$$

Next, by induction on the complexity of formulas of the logic $L_{AP\forall}$, we prove the following dimension property:

(D) if
$$v_i$$
 does not occur free in φ , then $i \notin \Delta f(\varphi)$.

We point out only the case of the probability quantification, because other cases are easy using appropriate parts of Theorem 2. So, let φ be the formula

 $(Pv_{l_1},\ldots,v_{l_m}\geq r)\psi(v_{k_1},\ldots,v_{k_n},v_{l_1},\ldots,v_{l_m})$ such that v_i does not occur free in φ , i.e., $i\notin\{k_1,\ldots,k_n\}$. Then

$$\Delta f(\varphi) \subseteq \Delta f(\psi) \setminus \{l_1, \dots, l_m\}$$
 by (8) of Theorem 2
 $\subseteq \{k_1, \dots, k_n\}$ by induction hypothesis,

i.e., $i \notin \Delta f(\varphi)$.

Now we shall prove that each logical axiom of $L_{AP\forall}$ is in the set

$$\Gamma = \{ \varphi \in \text{Form}_L : f(\varphi) = 1 \}.$$

(A) All axioms of L_A (see [3]):

It follows from the classical theory of cylindric algebras that each logical axiom of $\mathcal{A} \cap L_{\omega\omega}$ is in Γ . Suppose φ is $\bigwedge \Psi \to \psi$, where $\psi \in \Psi$. Then

$$f(\varphi) = -\prod\nolimits_{\xi \in \Psi} f(\xi) + f(\psi) \ge -f(\psi) + f(\psi) = 1.$$

Similarly, if φ is $\neg \bigwedge \Psi \leftrightarrow \bigvee_{\psi \in \Psi} \neg \psi$, then $f(\varphi) = 1$.

(AP) All axioms of the weak logic L_{AP} (see [4]):

Monotonicity: Let φ be $(P\mathbf{v} \geq r)\psi \to (P\mathbf{v} \geq s)\psi$, where $r \geq s$. Then for $\mathbf{v} = v_{k_1}, \ldots, v_{k_n}$ and $K = \{k_1, \ldots, k_n\}$ we have $f(\varphi) = -C^r_{\langle K \rangle} f(\psi) + C^s_{\langle K \rangle} f(\psi) = 1$ by WCP₃.

Non-negativity: If φ is $(P\mathbf{v} \geq 0)\psi$, then $f(\varphi) = C^0_{\langle K \rangle} f(\psi) = 1$ by WCP₂.

Let φ be $\theta_1 \leftrightarrow \theta_2$, where θ_1 is $(Pv_{k_1}, \ldots, v_{k_n} \geq r)\psi(v_{k_1}, \ldots, v_{k_n})$ and θ_2 is $(Pv_{l_1}, \ldots, v_{l_n} \geq r)\psi(v_{l_1}, \ldots, v_{l_n})$. Let $K = \{k_1, \ldots, k_n\}$ and $L = \{l_1, \ldots, l_n\}$. We may assume that $L \cap K = \emptyset$. Let m_1, \ldots, m_n be distinct integers in the set $\omega \setminus \{k_1, \ldots, k_n, l_1, \ldots, l_n\}$. For some distinct integers j_1, \ldots, j_n taken from the set $\omega \setminus \{1, \ldots, n, k_1, \ldots, k_n, l_1, \ldots, l_n, m_1, \ldots, m_n\}$ we have:

$$\begin{split} f(\theta_1) &= C^r_{\langle K \rangle} S^{j_1}_{k_1} \cdots S^{j_n}_{k_n} S^{m_1}_{j_1} \cdots S^{m_n}_{j_n} f(\psi^*) & \text{by (S)} \\ &= C^r_{\langle K \rangle} S^{l_1}_{k_1} \cdots S^{l_n}_{k_n} S^{m_1}_{l_1} \cdots S^{m_n}_{l_n} f(\psi^*) & \text{by WCP}_0 \\ &= C^r_{\langle L \rangle} S^{l_1}_{k_1} \cdots S^{k_n}_{l_n} S^{m_1}_{l_1} \cdots S^{m_n}_{l_n} f(\psi^*) & \text{by (13) (b) of Theorem 1} \\ &= C^r_{\langle L \rangle} S^{l_1}_{l_1} \cdots S^{k_n}_{l_n} S^{m_1}_{k_1} \cdots S^{m_n}_{k_n} f(\psi^*) & \text{by WCP}_0 \\ &= C^r_{\langle L \rangle} S^{j_1}_{l_1} \cdots S^{j_n}_{l_n} S^{m_1}_{j_1} \cdots S^{m_n}_{j_n} f(\psi^*) & \text{by WCP}_0 \\ &= f(\theta_2) & \text{by (S)}; \end{split}$$

so, $f(\varphi) = 1$.

Finite additivity: (i) If φ is $(P\mathbf{v} \leq r)\psi \wedge (P\mathbf{v} \leq s)\theta \rightarrow (P\mathbf{v} \leq r + s)(\psi \vee \theta)$, then

$$f(\varphi) = -\left(C_{\langle K \rangle}^{1-r} - f(\psi) \cdot C_{\langle K \rangle}^{1-s} - f(\theta)\right) + C_{\langle K \rangle}^{1-(r+s)} - \left(f(\psi) + f(\theta)\right)$$

$$\geq -C_{\langle K \rangle}^{1-r-s} \left(-f(\psi) \cdot -f(\theta)\right) + C_{\langle K \rangle}^{1-(r+s)} - \left(f(\psi) + f(\theta)\right) \quad \text{by WCP}_5 \text{ (i)}$$

$$= 1.$$

(ii) If
$$\varphi$$
 is $(P\mathbf{v} \geq r)\psi \wedge (P\mathbf{v} \geq s)\theta \wedge (P\mathbf{v} \leq 0)(\psi \wedge \theta) \rightarrow (P\mathbf{v} \geq r + s)(\psi \vee \theta)$, then

$$f(\varphi) = -\left(C_{\langle K \rangle}^{r} f(\psi) \cdot C_{\langle K \rangle}^{s} f(\theta) \cdot C_{\langle K \rangle}^{1} - \left(f(\psi) \cdot f(\theta)\right)\right) + C_{\langle K \rangle}^{r+s} \left(f(\psi) + f(\theta)\right)$$

$$\geq -C_{\langle K \rangle}^{r+s} \left(f(\psi) + f(\theta)\right) + C_{\langle K \rangle}^{r+s} \left(f(\psi) + f(\theta)\right) \quad \text{by WCP}_{5} \text{ (ii)}$$

$$= 1.$$

The Archimedean property: If φ is $(P\mathbf{v}>r)\psi\leftrightarrow\bigvee_{m>0}(P\mathbf{v}\geq r+1/m)\psi,$ then

$$\begin{split} f\big((P\mathbf{v}>r)\psi\big) &= -C_{\langle K\rangle}^{1-r} - f(\psi) = \sum_{m>0} C_{\langle K\rangle}^{r+1/m} f(\psi) \quad \text{by WCP}_6 \\ &= f\big(\bigvee_{m>0} (P\mathbf{v} \geq r + 1/m)\psi\big); \end{split}$$

so,
$$f(\varphi) = 1$$
.

$$(AP\forall_1)$$
 Let φ be $(\forall v_i)\psi \to (Pv_i \geq 1)\psi$. Then

$$f(\varphi) = -C_i - f(\psi) + C_i^1 f(\psi)$$

$$\geq C_i - f(\psi) + -C_i - f(\psi) \text{ by WCP}_8$$

= 1.

$$(AP\forall_2) \quad \text{Let } \varphi \text{ be } (Pv_{k_1} \cdots v_{k_n} \ge r)\psi \to (Pv_{k_{\pi^1}} \cdots v_{k_{\pi^n}} \ge r)\psi. \text{ Then}$$

$$f(\varphi) = -C^r_{\langle K \rangle} f(\psi) + C^r_{\langle \pi(K) \rangle} f(\psi)$$

$$\ge -C^r_{\langle \pi(K) \rangle} f(\psi) + C^r_{\langle \pi(K) \rangle} f(\psi) \quad \text{by WCP}_7$$

$$= 1.$$

Finally, we shall prove that each logical theorem of $L_{AP\forall}$ is in Γ . Obviously Γ is closed under Modus Ponens and under Conjunction rule. We have two Generalization rules.

If $\varphi \to \psi(v_i) \in \Gamma$ and v_i is not free in φ , then

$$f(\varphi \to (\forall v_i)\psi) = -f(\varphi) + -C_i - f(\psi)$$

$$= -(C_i f(\varphi) \cdot C_i - f(\psi)) \quad \text{by (D)}$$

$$= -C_i (C_i f(\varphi) \cdot -f(\psi)) \quad \text{by WCP}_0$$

$$= 1 \quad \text{by assumption.}$$

So, $\varphi \to (\forall v_i)\psi \in \Gamma$.

If $\varphi \to \psi(v_{k_1}, \dots, v_{k_n}) \in \Gamma$ and v_{k_1}, \dots, v_{k_n} are not free in φ , then

$$\begin{split} f\big(\varphi \to (P\mathbf{v} \ge 1)\psi\big) &= -f(\varphi) + C_{\langle K \rangle}^1 f(\psi) \\ &= -C_{\langle K \rangle}^1 f(\varphi) + C_{\langle K \rangle}^1 f(\psi) \quad \text{by (D) and (11) of Theorem 1.} \\ &= C_{\langle K \rangle}^1 \big(-f(\varphi) + f(\psi) \big) \qquad \text{by WCP}_4 \text{ and (2) of Theorem 1.} \\ &= 1 \qquad \qquad \text{by assumption.} \end{split}$$

So,
$$\varphi \to (P\mathbf{v} \ge 1)\psi \in \Gamma$$
.

It follows that $\vdash \varphi \leftrightarrow \psi$ implies $f(\varphi) = f(\psi)$. So, we introduce a well-defined function $g \colon \mathrm{Form}_L /\!\!\equiv_{\emptyset} \to A$ by $g(\varphi^{\emptyset}) = f(\varphi)$. It is easy to see that g is a homomorphism from $\mathfrak{Form}_L /\!\!\equiv_{\emptyset}$ onto \mathbf{A} such that $g(R_a(v_1,\ldots,v_n)^{\emptyset}) = a$. Let $\mathcal{I} = \{\varphi^{\emptyset} : g(\varphi^{\emptyset}) = 0\}$ be a subset of $\mathrm{Form}_L /\!\!\equiv_{\emptyset}$, and let Σ be a set of all sentences φ of $L_{AP\forall}$ such that $(\neg \varphi)^{\emptyset} \in \mathcal{I}$. Then \mathcal{I} is an ideal in $\mathfrak{Form}_L /\!\!\equiv_{\emptyset}$ and

$$\mathbf{A} \cong (\mathfrak{F}\mathfrak{orm}_L /\!\!\equiv_{\emptyset}) / \mathcal{I} \cong \mathfrak{F}\mathfrak{orm}_L /\!\!\equiv_{\Sigma}.$$

Moreover, Σ is consistent, since |A| > 1. Let \mathfrak{A} be a weak probability model of Σ (see [6]). Then we have a "natural" homomorphism from $\mathfrak{Form}_L /\equiv_{\Sigma}$ onto the weak cylindric probability set algebra

$$\langle \{ \varphi^{\mathfrak{A}} : \varphi \in \operatorname{Form}_L \}, \cup, \cap, \sim, \emptyset, A^{\omega}, C_i, C^r_{\langle K \rangle}, D_{pq} \rangle.$$

This completes the proof. \Box

References

- [1] J. Barwise, Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
- [2] L. Henkin, D. Monk and A. Tarski, Cylindric Algebras, North-Holland, Amsterdam, 1971.
- [3] H.J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971.
- [4] H.J. Keisler, Probability quantifiers; in: Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Springer-Verlag, Berlin-Heidelberg-New York, 1985, pp. 509-556.
- [5] J.D. Monk, Mathematical Logic, Springer-Verlag, Berlin, 1976.
- [6] M. Rašković, Weak completeness theorem for L_{AP∀} logic, Zb. Rad. (Kragujevac) 8 (1987), 69-72.

Prirodno-matematički fakultet 34001 Kragujevac, p.p. 50 Yugoslavia (Received 09 01 1996)