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Abstract. We prove an analog of the Boolean representation theorem for
locally finite-dimensional weak cylindric probability algebras. These algebras are
designed to provide an apparatus for an algebraic study of the weak probability
logic L 4py .

The notion of a weak cylindric probability algebra will be introduced as a
common algebraic abstraction from the theory of deductive systems of the weak
probability logic Lapv, and the geometry associated with basic set-theoretic no-
tions.

The logic L 4py is the minimal extension of the infinitary logic L4 (see [3])
and the probability logic L ap (see [4]), where A is a countable admissible set such
that w € A. Let L be a countable A-recursive set of finitary relation, function and
constant symbols. The set Formy, of all formulas of L 4pv is closed under countable
disjunctions (V) and conjunctions (A), negation (—), usual quantifiers (V,3) and
probability quantifiers (Pv > r), where v is a finite tuple of distinct variables and
r € AN[0,1]. This set contains as distinguished elements the expressions: false
(F), true (T') and v,=v, for any p,q < w. The structure

Formy, = (Formpg,V,A,—, F,T,3v;, Pv > r,up=v,)

is the free algebra of formulas of L 4py.
Axioms and rules of inference for L 4py are those for L 4 and the weak L 4p,
as listed in [3] and [4], together with the following axioms (see [6]):
(APY1) (Vz)p = (Pz > 1)¢;
(APYs) (Px1...20 > 1) = (PZg1 .. Tan > 1),
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Weak cylindric probability algebras 7

where 7 is a permutation of {1,...,n}.

Let X be any set of sentences of L 4py. The notion of a deduction of a formula
o from ¥ (denoted by X F ¢) is defined in the usual way. Let =x be a relation on
Formj, defined by

p=xy it Yoo
X F @+ 4, then ¥ F (3z)p & ()¢ and T + (Px > r)p « (Px > ).
Hence the relation =y is a congruence relation on Fotmy. Let ¢ be a set of all
formulas =x-equivalent to ¢, and let Formy, / =y be a set of all equivalence classes
¥, ¢ € Formy. Now, we construct the quotient algebra

Formy, /=x= (Formy /=5, VZ,AE, =% FX T (3u;)%, (Pv > )%, (v,=v,)*),
p="Yq

which will be called a weak cylindric probability algebra of formulas.

Let A = (A, R}, f}', ¢k, in)n<w be a weak probability structure for L4pv;
ie., (4, RE, f,c}) is a classical first-order structure and p,,’s are finitely additive
probability measures defined on the set of all definable subsets of A™. By using the
natural definition of the satisfaction relation, we obtain the collection A of all sets

of the form p* = {a € A* : A | ¢[a]}, ¢ € Formy,. Then

((Hvi)go)m:{aeA“’ calw\{i}=blw\{i} for some b€ ¢},
((Per)go)Q[ = {aeA‘” St {(Dkys - b)) s D E QR (f ¢ K —>bj=aqa;)} Zr},

where v = wvg,,...,v5, and K = {ki,...,kn}. Thus we get a weak cylindric
probability set algebra. As usual, a unary cylindric set operation C; is defined on
the subsets of A¥ by setting, for any X C A%,

Ci(X)={ye A’ :ylw\{i}=zw\{i} for some z € X}.

Let (K) be a tuple of distinct integers corresponding to a finite subset {ki,...,kn}
of w. For each (K) and r € [0, 1], we introduce a unary cylindric probability set
operation C(TK) on the subsets of A“ by setting, for any X C A%,

Cly(X) ={y € A% : pn{(@hy5 - 20,) 12 € X & (¢ K >3 =y;)} >r}.

By means of C(TK> we obtain a cylinder generated by translating only the sec-
tion of X whose measure is not less than r parallelly to the (ki,...,k,)-axis of
A¥. If K is a singleton {k}, then we write C} instead of Clixyy- 1t follows
from C;(p?%) = ((EIU,-)QO)Ql and Ol (™) = ((Pv > 7‘)4,0)91 that the function
f:Formy, /=s— A defined by f(¢*) = ¢® is a “natural” homomorphic trans-

formation from the weak cylindric probability algebra of formulas Formy, / =y onto
the weak cylindric probability set algebra

(A,U,ﬂ, NawaAwacia CZ‘K)"DP(]))
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where D, = {a € A“ : a, = a,} and, so, D, = (vp=v,)?.

The abstract notion of a weak cylindric probability algebra is defined by
equations which hold in both algebras mentioned above. We suppose in advance
that a fixed indexation by hereditarily countable sets (from A C HC) is given. So
let A ={z;:i€I}and I C A We say that a Boolean algebra (4,+,-,—,0,1)
is A-complete if for any {z; : j € J} C A, where J C I and J € A, we have
2jesti €A

Definition 1. A weak cylindric probability algebra is a structure
A= (A, +,-,—,0,1, Cia C(K)Jdl’11>7

such that (4, +,-,—,0,1) is an A-complete Boolean algebra, C; and C’(TK> are unary
operations on A for each ¢ < w and each finite K C w, dpy € A for all p,q < w, and
the following postulates hold (by convention, let C(TK):U = C’<1K>x for » > 1, and
Clgyz = Cly for r < 0).

(WCPy) (4,4+,-,—,0,1,C;,dp,) is a cylindric algebra of dimension w.

(WCPy) (i) Clpz ==, (i) Cig,0=0, wherer >0.
(WCP») C’?K>:1: =1.

(WCP3) If r > s, then Cliyr < Cly .

(WCPy) Cigy(z + Cfyy) = Cigyw + Cipyy, where K C L.
(WCP5) () Clgy - Clieyy < Cht ™' (),

(i) Clpyz- Cliyy - Cly — (@-9) < 7S (@ + ).
(WCPg) Cly == = Y50 Cly T/ ™.
(WCP7) C’Z‘K>:c < C{ﬂ(K»x, where 7 is a permutation of {1,...,n} and
(m(K)) is kr1y- -y knn-
(WCPg) —-C} —z < Cyx.
(WCPy) Ifz: e K, then: (i) 'C@C(Kﬂ: = C(K>w, (ii) C(TK) Ciz = C(TK\{i})Cif"-
(WCPyo) Ifi,j ¢ K, then: (i) C(K>Cz(d” ) = C,’C(K) (d,’j - ),

(11) C(T-Ku{z})CJ(dU - 1’) = C(KU{J})CZ(d'U - 27)

We point out that the axioms WCP,—WCPg express a well-known properties
of finitely additive measures. The axioms WCP; and WCPg express the conditions
(APY) and (APY,) of L 4py, respectively.

Now we give some properties of the operations C(TK)‘ The necessary properties

. . z, if i=j
of C; and the substitution operation S} defined by Sjz = { o J ,
Cz(dzJ : .’17), if i
are well-known (see [2] and [5]).

THEOREM 1. If (A,—i—,-,—,0,1,C,~,C<TK),d,,q) is a weak cylindric probability
algebra, then:
(1) C’{K>1 =1.
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(2) Ifr>0ands >0, thenCKa:—a: zij y &=L

(3) Ifr>00rr=5=0 and K/C L, then C<K)(CL' Cinyy) = Cliyz - Clpyy.
(4) Clgyx - —Clky y < Em>0 (K) V(@ —y).

(6) C K)'T +Clkyy < C(K)(HJ + y)

(7) C<K>(x y) < Cliym - Cligyy-

(8) C(K)m C(K)?/ —C(K)(ﬂf y)-

(9) ClK z=z iff Cixyx = .

(10) IfK {k1,...,kn} and r > 0, then Clryr < C, -.. C, .

(11) C’<K>dpq = dpq, where p,q¢ K. '

(12) Ifi € K, then: (a) S’Q<K)m = Cliy@, (b) S;SClyyx = ST'Clyy .
(13) Ifi,j ¢ K, then: (a) S;Clgyx = C’<K>S]

() ClxuipySie = Clrugyy S5

Proof. (1) It follows from WCP; (ii) and WCPg that
r _ 1—-r+1/mn
Cll==>_ Ciy "0=1.
(2) If Cliy = x, then

C(SK> —r=— Zm>0 C(lK;-i-l/m by WCP
= 1 S+1/mCT .
- Zm>0 (K) (k)T by assumption
=— Z 50 C(TK)iL' by WCP, (putting z = 0) and WCP;
by WCP,.

The converse follows by symmetry.
(3) It follows from (2), WCP4 and WCPy4 that, for r > 0, we have:

Clry(@ - Clpyy) = Clgy — (=2 + —C{pyy)

=3 WG M e+ —Cluy)
1—r+1/m s

- (( Zm>o Cuy - ”’) + ‘C<L>y)

_ 1—-r+1/m s

= ( =D s Gy = ””) Clnyy

= CZ‘K>.'L' . CfL)y

(4) We have:
r r 7 1—r+1/m
Clryz ~Clryy =Clyr- Y Cry /™ =y by WCPs
- Zm>0 Clieyo - Claey +H/m _ by WCP,

< me Chit@ - —y) by WCP5 (i).
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(5) If x <y, then - —y = 0. So, Clyz - =Cliyy = 0 from (4) and WCPy; i.e.,
Cliy® < Cliyy-

(6),(7) Immediate by (5) and z <z +vy, y<z+y, z-y<z, z-y<y.

(8) By WCPs (i) we have Cyy@ - Clgyy < Clyy(z - y). The reverse inequality is
an instance of (7).

(9) If Ciz = =, then Crz = CyChz = Clz = x from WCPy (i). It follows from
WCP3, WCPs and WCPy that Clz < 3, Cp/™z = —CL — & < Cyz. Hence,
if Crz = =z, then Cjz < z and z = —C), — z < Cjz by WCPy and WCPys; i.e.,
z = Ciz. Now, by induction, it follows from WCPyg that C<1K>x = ¢z if and only if
Cikyz = z.

(10) First, we prove —C<1K> — 2 < Cy, ...Ck, x by induction on |K|. The inequal-
ity is clear if K = . Suppose that K = {ki,...,knq1}. Now z < Cj, .., s0
~Chpya@ < —, and hence Clyy — C, ;& < Clyey — @, and s0

1/m
~Clgy =2 < —Clyy = Ch, s = me CH Cham

_ 1/m _ 1
= o0 Clk\thn i n Crnir® = =Clic\fhnaay — Cha®
S Ck1 .. .Ckn_HII}.

Finally, choose p > 0 so that 1/p < r. Then
1 1/m
Clryr <Cbe <Y O =—Clxy — < Chy ... Cp,z.

(11) Immediate by (9) and C(xydp, = dpy, where p,q ¢ K.
(12) Assuming i # j and ¢ € K, we have:

= Ci(dy; - CiC{kyz) by WCPy (i)
= CZ'K>:L' by WCPy,
and S]’:S}“C(mx = S;SFC€K>$ = S]’-nS]’:CZ"mx = 57"Cyz by WCPq.
(13) Assuming i # j and 4,j ¢ K, we have:
S;Clxyz = Ci(dij - Clgyx) = CiCley(dij - ) by (3)
= ClyCi(dij - ©) = Cl, S}z, by WCPyq (i),

and

CrxupinSiz = Clxupy Cidij - )
= ClgugnCi(dij - z) by WCP1g (ii)
= ClkugpSie- U
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The algebraic notion of an ideal in a weak cylindric probability algebra can
be modified using specific properties of these algebras.

Definition 2. An ideal in a cylindric probability algebra A is a nonempty set
7 C A such that the following conditions hold:

(1) Z is a Boolean ideal of A; i.e.,
(a) 0eZ,
(b) I {a;:j€J} CZT and J € A, then }°, ;a; € Z,

(¢) fx €7 and y < z, then y € 7;
(2) Foralli < w,if x € Z, then C;z € 7.

It follows from Definition 2 and (10) of Theorem 1 that, for any finite K C w
and r € (0,1], if z € Z, then Clxyr € T. An ideal 7 determines the relation
~={(z,y):x-—y+y-—x €T} Asusual,if z ~ y, then C;xz ~ C;y. Forr >0
and z,y € A, we have

1 1
Clieyz - ~Cliyy + Claoyy - ~Clagr < D Oy @)+ - Criey' (- —2)

by (4) of Theorem 1. So, if  ~ y, then C(TK>:C ~ C(K>y. Hence, ~ is a congruence

~ o~ o~
~ o~

relation of A. We define a new algebra A /7 = (A/Z,+,%,=,0,1,C;, C/'&(\),Jpq) as
usual. It is not difficult to see that A / 7 is a weak cylindric probability algebra,
and that there is a “natural” homomorphism from A onto A / Z.

The dimension set Az of an element z € A is introduced by Az = {k :
Crz # z}. Tt follows from the clause (9) of Theorem 1 that Az = {k : Cjz # z},
i.e., the coordinates in which z is not a cylinder can be obtained also by applying
probability cylindrifications of the form Cj.

Definition 3. A weak cylindric probability algebra A is locally finite-dimen-
sional if Az is finite for all z € A.

Every formula ¢ of L py has only finitely many free variables. If v; is a
variable not occurring in ¢, then | (Jv;)p ¢ ¢ and = (Pv; > 0)p < ¢. So, for
any given set ¥ of sentences of L 4py, there are at most finitely many indices ¢ < w
such that ¢ is not equivalent under ¥ neither to (Jv;)p nor to (Pv; > 0)¢; hence,
Formy, /Eg is locally finite-dimensional weak cylindric probability algebra.

The following theorem gives some elementary properties of A.

THEOREM 2. If (A,—|—,-,—,0,1,C,~,C<TK),dpq) is a weak cylindric probability
algebra, then:
(1) A0O=A1=0; (5) Adpq = {p,q};
2) A(X esz5) SUjes Azj, JEA;  (6) ACiz € Az )\ {i};
3) A(ILjeszi) CUjes Ay, J€A;  (7) ASjz C(Az\{i})U{j};
(4) A —z= Az (8) AC(K)m CAz\ K.
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Proof. The clauses (1)—(7) are well-known properties of A from the classical
theory of cylindric algebras.
(8) Let i be any integer such that i ¢ Az \ K. If i € K, then CiClyyz = Clyyx
by WCPy (i). If i ¢ Az U K, then

So, i ¢ ACjyz. O

The main result of this paper is the following analog of the Boolean represen-
tation theorem from the classical theory of cylindric algebras.

THEOREM 3. If A is a locally finite-dimensional weak cylindric probability
algebra and |A| > 1, then there is a homomorphism from A onto a weak cylindric
probability set algebra.

Proof. We prove that A is isomorphic to a weak cylindric probability algebra
of formulas Form;, /=5 for some L and X.

Let R, be an n-ary relation symbol corresponding to a for each a € A, where
the integer n is obtained from Aa C {1,...,n}. Fix the language L = {R, : a € A}.
By induction on the complexity of formulas of the logic L 4py we define a function
f:Formy, — A satisfying: if - ¢, then f(p) =1 as follows:

(1) Let ¢ be an atomic formula R, (vg,,-.-,vk,) and let ji,...,j, be the first
n integers in w \ {1,...,n,k1,...,kn}. Then

@)= Siy -S4 Sjy -+ a5

(2) f(vp=vq) = dpg; (5) fFIN®) =1l,ca flo), PEA;
B) f(=p) = —f(v); (6) f((Fui)y) = Cif();

4) fF(V®) =X ca flp), A (T) fF((PV21)p) = Clyyh(p),
and K = {ky,...,kn}.

Let ¢ be a formula of L 4py and let ¢* be a formula obtained by the substi-
tution of some free variables v, ,...,vr, of ¢ with vy, ,...,Vm, , respectively. By
induction on complexity of formulas of L 4py, we prove the following substitution
property:

where v = vg,, ..., U

m

(S) flp) =Sit - S Sm .. S f ("),

where j1, ..., jn are some distinct integers in w\ {1,...,n,k1,..., kn,M1,...,mp}.

Suppose ¢ is Ry (Vky,---,Vk, ). Let p1,y...,Pn,q1,---,q, be distinct integers
inw\{1,...,n,k1,...,kn,m1,...,myu}. For some distinct integers ji,. .., jn in the
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set w\{1,...,n,k1,...,kn,m1,...,mp}, we have:

Sii...gizsgl...sxnf(w*):SIJS...5116:5;7111...5],":"5%1.__5% Sl ...87 ¢

Mmn ~q1 qn
=GPt Spn gL S G ...Sg;ng(}l S a
= Sp S Spt - S S -+ S S, -+ S
= 5115; ...ngsgi ...5}%:5;1 ...Sgna
= 5}1:: ...55:5}16’: ...55:5;1 ...Sg"a
= Slfll ...55::511)1 ...Sgna
= f(p)
by WCPy (see [2] or [5]).
Let ¢ be vg, =vk,. We may suppose ki # ka. It follows from WCPq that

F(@) = dpyro = SIS ST STy my = SIS ST ST f(7).

J1 I
The steps =y, \/ ® and A ® in the inductive proof of (S) are easy using
appropriate properties of S% (see [2] and [5]).

Let ¢ be (Fv;)(vky, .-, 0k, ,v;) and i & {ki,..., k,, m1,...,m,}. For some
distinct integers j1,...,5, inw\ {1,...,n,k1,..., ky,m1,...,my,i} we have:

flp) = C,Sﬁ ‘e S,JU: Sit--- S f(¥*) by induction assumption
=8t S8 ... S Cif(¥7) by WCPq
=St ST S f (%),
Suppose ¢ is (Pugy, -0, 2 TV Vkyy e -V s Uty e vV, ), L= {l1, -y lm}

and LN {my,...,mpn,k1,...,kn} = 0. For some distinct integers ji,...,J, in
w\{L,...,n,k1,..., kn,ma,...,mp,l1,..., 15} we have:

f(p) = Clpy Sy -+ Sin S-S f(¢*) by induction assumption
= Sﬁ 5;: St S Clpy f(¥*) by (13) (a) of Theorem 1
=S{t - Sin ST ST f (%),

Next, by induction on the complexity of formulas of the logic L 4py, we prove
the following dimension property:

(D) if v; does not occur free in ¢, then i ¢ Af(p).

We point out only the case of the probability quantification, because other
cases are easy using appropriate parts of Theorem 2. So, let ¢ be the formula
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(Pugyy-.yvr, > T)0(Vkys- -y Uk, ,Vlys- -5, ) such that v; does not occur free in
p,1e.,i€¢ {ky...,k,}. Then

Af(p) CAfW)\{l1,---,lm} Dby (8) of Theorem 2
C{k1,...,kn} by induction hypothesis,
ie,i¢ Af(p).

Now we shall prove that each logical axiom of L 4py is in the set
I'={p € Formy, : f(p) =1}.

(A) All axioms of L 4 (see [3]):
It follows from the classical theory of cylindric algebras that each logical
axiom of AN L, is in T. Suppose ¢ is A ¥ — 9, where ¢ € ¥. Then

1) =1, FO+ 1) > —f) + (¥) = 1.

Similarly, if p is = A ¥ + V¢e\If —p, then f(p) = 1.
(AP) All axioms of the weak logic L ap (see [4]):

Monotonicity: Let ¢ be (Pv > 1)y — (Pv > s)i, where 7 > s. Then for
V = Uk, Uk, and K = {k1,..., kn} we have f(p) = —Cly, () + Cl, f(¥) = 1
by WCPg

Non-negativity: If ¢ is (Pv > 0)¢, then f(p) = C?K)f(zb) =1 by WCP».

Let ¢ be 01 < 63, where 61 is (Pvg,,..., 0k, > 7)(Vk,...,0,) and 6,
is (Puyy,...,u, > r)Y(uy,...,u,). Let K = {k1,...,kn} and L = {ls,...,1,}.

We may assume that LN K = (. Let mq,..., m, be distinct integers in the set
w\{k1,...,kn,l1,...,l,}. For some distinct integers ji, ..., j, taken from the set
w\{L,...;n,k1,...,kn,l1,...,ln,m1,...,mp} we have:

by (S)

F(01) = Cly ST2 -+ - Sfr STt - ST f(4)7)
*) by WCPO
)
)

= C(K)Sill -'-Si"nsﬁl - S f
= C((TL)Szkll “'Sllf:’ Sptt--- St f(¥*) by (13) (b) of Theorem 1
= C(L>Slkil .. .Slknn Syt SPm f (W by WCP,

= CluySpy -+~ S{ 87 -+ S7u f(0*) - by WCPo

= f(62) by (S);

so, f(p) = 1.
Finite additivity: (i) If p is (Pv<r)Y A (Pv <s)§ = (Pv<r+3s)¥ V¥,
then
F(9) = —(Clel — 1) - Cles = 18)) + Cie ™™ = (F(¥) + £(8))
> —Cl ™ (= FW) - =1(0)) + Ciy ™ = (F() + £(6)) by WCPs (i)
=1.
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(i) fpis (Pv>r) Y A(Pv>s8)0A(Pv<0) (A0 = (Pv>r+s)(ypVE), then

flo) = —(C€K>f(¢) -Clry F(8) - Cley — (F(¥) -f(f)))) +CLE (FW) + £(9))
> —Ciay (F(W) + £9)) + CLs (F () + £(8)) by WCPs (i)
=1.

The Archimedean property: If ¢ is (Pv > 1)y <\ o(Pv > r +1/m)y,
then

F((Py >1)9) = —Clad — @) =" CiH/™ () by WCPq

m>0 (K)
=f(\V __ Bv2r+1/mp);
so, f(p) = 1.
(APY:1) Let ¢ be (Vv;)p = (Pv; > 1)9. Then

i) —Ci = f(¥) + Ci f (%)
i — f(¥)+ —Ci— f(¢) by WCPs

v
Q

—_

(APY3) Let ¢ be (Pug, ---vg, > 1) = (Pug,, - -vg

(%) _C(TK)f(w) + C(TW(K))f(lb)
Clanyf W) + Claxy (@) by WCP7

> 7). Then

Tn

v

1.
Finally, we shall prove that each logical theorem of L 4py is in I'. Obvious-

ly T is closed under Modus Ponens and under Conjunction rule. We have two
Generalization rules.

If o — ¥(v;) € T and v; is not free in ¢, then

flo = (Vo)) = —f(p) + = Ci — f(¥)
=—(Cif(p)-Ci — f(¥)) by (D)
=—Ci(Cif(p) - — f(¥)) by WCPq

=1 by assumption.

So, ¢ = (Vu;)p € T.
If o = Y(vgy,...,vk,) €T and vg,,...,vg, are not free in ¢, then

fle = (Pv>1)9) = —f(p) + Clgy F(¥)
= —Clxyf(¢) + Clgyf(¥) by (D) and (11) of Theorem 1.
= C%K)( — f(@)+ f(¥)) by WCPy4 and (2) of Theorem 1.

=1 by assumption.
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So, o = (Pv>1)y eT.

It follows that F ¢ < 1 implies f(p) f@). So, we introduce a well-
defined function g: Formp, /=9 — A by g(¢?) = f(p). It is easy to see that g is
a homomorphism from Formy, /=¢ onto A such that g(Rq(vi,...,v,)?) = a. Let
Z = {¢” : g(¢”) = 0} be a subset of Form;, /=, and let ¥ be a set of all sentences
@ of L gpy such that (—p)? € Z. Then 7 is an ideal in Formy, /=¢ and

A = (Formy, /=) /T = Formy, /=5 .
Moreover, X is consistent, since |A| > 1. Let 2 be a weak probability model of

¥ (see [6]). Then we have a “natural” homomorphism from Form; /=5 onto the
weak cylindric probability set algebra

<{ (pi’l 1pE FOI‘HIL }7 U7 ﬂ: ~, @7 Aw) Ci’ C(TK>’ qu>.
This completes the proof. [
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