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FINITE DIFFERENCE SCHEMES
ON NONUNIFORM MESHES
FOR PARABOLIC PROBLEMS

WITH GENERALIZED SOLUTIONS

Bosko S. Jovanovié and Peter P. Matus
Communicated by Gradimir Milovanovié

ABSTRACT. We investigate the convergence of finite difference schemes for one di-
mensional heat conduction equation on nonuniform rectangular meshes. For schemes
with averaged right hand sides convergence rate estimates consistent with the s-
moothness of the solution in discrete L2 norm are obtained. Possible extensions of
obtained results are noted.

Introduction

Nonuniform meshes are often used for approximation of problems with general-
ized solutions. In this case, the order of local error is usually reduced.

In many papers it is shown that the accuracy of the method can be increased us-
ing approximation of the considered differential equation in some non-mesh points
(see e.g. [1], [5], [6])- In [15] for one dimensional heat conduction equation on a
nonuniform in space variable rectangular mesh finite difference schemes (FDSs) of
second order accuracy on z are constructed. The convergence of these schemes in
discrete C—norm is proved under some restrictions on the step sizes of the mesh.
Analogous results are obtained for hyperbolic problems. In [16] similar results for
the Poisson equation are obtained.

Clearly, the employment of strong norms (e.g. C*) in the proofs of convergence
involves supplementary restrictions on the smoothness of solutions of boundary
value problems, restricting the class of admissible problems. Notice that the first
results on the convergence of discrete methods for the problems with solutions from
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Sobolev spaces were obtained in finite element method theory framework [3]. How-
ever, the ways of construction of difference schemes and methods for establishing
the convergence rate estimates for the finite difference methods are essentially dif-
ferent from those for finite element methods (see [12], [13]). In particular, so called
convergence rate estimates consistent with the smoothness of data are of the major
interest [10]. In the case of uniform meshes such estimates are obtained for a large
class of boundary value problems (see bibliographies in [9] and [14]). Estimates of
this type are usually based on the application of the Bramble-Hilbert lemma [2],
[4]-

In present paper the convergence of FDSs defined in [15] is proved in discrete
Ly—norm assuming that the generalized solution of the considered initial boundary
value problem (IBVP) belongs to the corresponding Sobolev space. Obtained con-
vergence rate estimates are consistent with the smoothness of data. These estimates
are obtained by direct estimation of the truncation error, using the interpolation
theory of function spaces. In such a way, application of the Bramble-Hilbert lemma,
which usually involves unnecessary restriction on the mesh step sizes is avoided.
Contrary to FDSs considered in [15], where the right hand sides of equations are
taken in some intermediate non—mesh points, we replace the right hand sides with
some averaged values. This is necessary because in the problems with generalized
solutions, the right hand sides of equations may be discontinuous functions.

Preliminaries and notations.

Let us consider the first initial-boundary value problem for the heat conduction
equation

2
N, @NeQ=(00x0T)

O u(z, 0) = uo(x), O<z<l,
(0, t) =u(l, t) =0, 0<t<T.

In the domain Q we define the mesh Qp, = @ x @,, where

n
={z=zi=zi1+h;, i=1,2,...,n—1, 20=0, z, =1}, Zhi:l,

i=1

EI)

is nonuniform mesh on [0, /] and @, — uniform mesh on [0, T'] with the step size
7 =T/m. We assume that

1 hip
2 —< ——X<ec
( ) e = hz ~ €,
where ¢ is a positive constant.

Denote

H=on(0,1), & =6n(0,1], wf=&,n0,T], Qnr=dxwh, Q° =d&xaw,.

T
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In the sequel we shall use the notation

T=T;, T+=1=Ti+1, t=1;=7T, h=h;, ht=hjt, ﬁz(h+h+)/2,
v=uv(z,t), vr=v(xs,t), =v(z,t+71), v=v(z, t—1T).

We introduce finite differences in a standard way (see [12])

vy = (v4 —v) /hy, vy = (v—v_)/h, v; = (v4 —v)/h,
ve=(0—-v)/T, vp=(v—-0)/T,
Let us introduce the discrete inner products
(u,v)*=2uvh, (u, v] Zuvh
TEW zewt
and the norms
ol = 02 = (@, 0)e,  [lO)P = (0, 0], Ioll7quy =T D llo(-, DI
tEw.,-
The following assertion holds true.

LEMMA 1. [13] For arbitrary mesh functions v(x) and w(z), defined on & which
vanish for © = 0, I, the following relations hold

(va, w)x = —(v, wg],
(vfi7 w)* ( T ]
Let us define the Steklov smoothing operator on variable ¢
1 rt
Tff(wa t) = f(xa tl) dt’
T Ji—r
and asymmetric Steklov smoothing operators on z (for z € @):
1 $+h+/2
Tof(o, t) = f' de,  Tof(s, f) = / K@) f(', t)da’ |
h z—h/2

where

Ou 8%u
ot =uwu; and Tzw = Uz -

As usual, let W5 () be the Sobolev space in Q. Following [11], we also de-
fine spaces W ((0, T'); W3 (R)) and anisotropic Sobolev spaces in Q: W5 "(Q) =
w3 ((0, T); W3 (0, 1)) N W3 ((0, T); W(0, 1)).

The following assertion holds true (comp. [11]).

Notice that in the mesh nodes: Tj;—
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LEMMA 2. If a e WJ(0,1), 0.5 <0 <1 and a(0) =0, then

1 /2 20+1
—20 2 < - A
([ era©d)” <37 lawson

In the sequel we need some results of interpolation theory of function spaces. Let
X and Y be two Hilbert spaces, X dense in Y, and continuously imbedded. Fol-
lowing [11], let us introduce interpolation space [X, Y]g. The following assertions

hold true (see [11]).
LEMMA 3. For u € X and 0 < 8 < 1 the following inequality holds

-0
lullix, v1o < Co llullx” llull$ -

LEMMA 4. If S1, S2, 71, T2 >0 and 0 <0 <1 then

[W3 ((0,T); W3 (0,1)), W52 ((0,T); W32(0,1))],,
— W2(1*9) s1+0 s2 ((0’ T), W2(176) r1+6 72 (0’ l)) )

In the following, by C' and C; we shall denote positive generic constants inde-
pendent of mesh step sizes.

Divergent scheme.
We approximate the problem (1) by implicit FDS

2
vg + (E U{;i) =z + I in Qpr;
xr

2

U=T2u0—(%u0,5)A for t=0; v=0 for z=0,1.
€T

The FDS (3) is proposed in [15] for problems with smooth solutions. The value of
the right hand side is taken in an intermediate point (zZ, t), where Z = z+(h—h)/3.
In our case the right hand side may be discontinuous and we must take its averaged
value. Notice that FDS (3) is exactly the scheme produced by the finite element
method for linear elements (on variable ).

The error z = u — v satisfies the following conditions

h2

(4) Z{*‘(Fzﬁ)i:%i*“ﬂm-l-wf in Qnpr;
z:z/)(,O) for t=0, z2=0 for :L':Oala
where
2

p=Tu—u and wzu—T2u+(%ui)

T
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To derive the a priori estimate in discrete Ly-—norm, let us set z = z(1) 4 2(?)
where z(!) and 2(?) are the solutions of the following FDSs

h2
zél) + (—zg)) . zgl) +@ze I Qnr;

(5) 6
20 =0 for t=0; 2 =0 for x=0,1,
and
@ _ (" o @ e .
(6) zg T+ (F iz )m =275 +¥7 in Qnr;

2 = (-, 0) for t=0; 22 =0 for z=0,1.
Let ¢ be a mesh function satisfying
2
—Coz = 21 4 (h_ zg)) in Q?“_; (=0 for z=0,1.
6 &
Multiplying (5) by ¢ and summing over the mesh &, we immediately obtain
T 1 .
P latl® + 5 (G = 1G117) + 120112
(7) 1 ! 1
= g 1021 + 5 (s, hal = (0, 20

Using the inequality

Ihza)l® = 3 (2 —2-)* h < 4]z

zewt

and e—inequality, from (7) we obtain
1 .
®) 3 lIcaall* + 5= (IGa]P* - ||ci]|2) + 1202
2 1 1
“ (1) 2 (1) 2 2 - (1)12 - 2
< 2N+ 25 (DI + 2 ll2) + 5 (e 12002 + L ll2)

From (8), summing over the mesh w}, we obtain

1
(g - _) ” ® ”Lz(th—) - 6 ||(p||L2(QhT)7

wherefrom, for 0 < € < 2/5, we obtain the estimate

9) 12N Lo@nry < C PN La(@ns) -



150 JOVANOVIC AND MATUS
Let us now estimate z(?). We multiply (6) in scalar way by 7, where
- =2% in QY ; n=0 for t=T+7.

Applying partial summing on ¢, we obtain

T T h2 (2) h2
—r 3 =Y (5 2),m) — (G2 0) on(-. 7).
t=1 t—‘rT -
=7 (o me =7 Y ()
t=71 t=71
Further
(2 m)e = =2, me] = (otme] = 5= (1]l = Ia]P?) = & el
1oy ()72
—;(nn@n?—unin) 5 128117,
2 2
(5 ), m), ==((5=2),#™), = g In =21 < 211,

and
(e, 0) . m) == (Bt 0) @<-,T)]
< HmeConlP+ 2 B 0] < %II%(-J)]IQ P |y, )

§§|l%(-,7)]l2 P s (- 0l

It follows
L 1 72 &
2
T + 5 lne DI + 5 Y 1P
t=1 t=1
- oz _ (2
10) =7y w22, Zuh — (Fes(, 0ma-, )
t=T1
T

2 h2..
<+ D)1+ 7 Q)nwu* 5 e, 7 + o )2,
t=0

From (10) for 0 < e < 1/3 it follows

(11) 1221 2o(@n) < C (1Y l122(@un) + Pmax [18(+; 0)lLa(@)] -
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From (9) and (11) we obtain the desired a priori estimate

(12)  lzllzo@nr) < C llls(@nr) + 1Yl La(@nr) + Pmax 10(-, 0)llL()] -

In such a manner, to obtain the convergence rate estimate of FDS (3), we need
to estimate the right hand side terms in (12). Let us set

¢ =1 +ps = T1(Teu — u) + [(Teu —u) — T1(Tyu — u)] .

Further
1 z+h+/2 t
o1(z, t) = [—/ u(z', t') dt' —u(z, t)] dx’

h’ z—h/2 t—7

z+hy/2 ¢ 1 z+hy/2 ¢t ¢ 5 o

t
/ / [u(z, t') —u(a', t)] dt' da’ = P / // % at'" dt' d='
z—h/2 t—T z—h/2 t—7 t

Estimating integrals in the right hand side by Cauchy—-Schwartz inequality, we
obtain

where e=(x—h/2,z+h/2)x (t—T,1).

(e 0 < o= | 5

Summing over the mesh (), we obtain:

La(e)’

(13) lorllzaan <7 | o
L@ ST )

To estimate s let us set a(t) = Thu—u. For 1/2 < o < 1, from lemma 2 follows
1t
a0 = = Tal = |2 [ [at) - ()] | <
t—1

: l{ /;(t = )77 [at) - a(t’)fdt’}l/z { / ;(t - t')2"dt’}1/2

20 +1 79— 1/2 |a tl t”)‘2 1o 12
dt' dt .
20—1 t—1 Jt—7 |tl_t”|1+20

B

Further
w+h+/2
)=o) = |3 [ Rl )~ ule, ¢ = ule', ¢+ uta, )]
z—h/2
1 :E+h+/2
<1 8(") ~ ()] de'

h z—h/2
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where
Bz) = u(, t') — u(=, t").
Estimating ((z) — #(z') in an analogous manner, we finally obtain
Chgfl/2 7_0'71/2
< .
|(102($7 t)| = (Q — 1/2) ((7 — 1/2) |u|(g,a),e )

where |u|%g,0);e =

$+h+/2 $+h+/2 t

t
1oy _ "oy _ rogn 1"ogy|2
— / / / / |'U/(SL' ’t ) |xu(x Jt ) 'U/(.'L' Jt ) + u(.’l}' 5t )l dtl dt” dSL" d:E”

! _ Z.II|1+2,Q |tl _ tll|1+2(7

z—h/2 z—h/2 t—Ti-T
and 1/2 < p, 0 < 1. Summing over the mesh we obtain

(14) ||‘p2”L2(th—) < Ch‘r%ax 77 |u|%g, 7); Q"

Let us choose o € (1/2,3/4) and set 9 = 2(1 — o). It follows that ¢+ 20 = 2
and he 7% < h2_ .+ 7. Using lemma 4, we obtain

[W2((0,T); W2 (0,1)), W3 ((0,T); W (0,1)], = W5 ((0,T); W3~27(0,1)) -
Finally, accordingly to lemma 3

|u|(272 7,0);Q < ||u||W; ((O,T); w22 a(O’l))

< 1—0o o
(15) - C”””W&((o,n;wsm,z)) ”u”W;((o,wag(o,z))

<C (Jlul?

2
we (01 wecow) + 114

/
W;((O,T);wg(o,z))) = Cllullwzq) -

In such a way, from (13-15) follows

(16) 1ol za(@nr) < € (hrae + 1) lullyza o -
To estimate the term %, let us set

2

¥ =11+ = Ty[u—Tou+ (% “‘f)@]

+{[u_T2u+ (Buy) ]~ 1ifu—ou 4 (hg%)j]}.

Further

= = (Tyu — w) + To(Tyu — u) - [h—; (Tru—u),] =-¢+Top- (%Q%)i ,

€T
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and, using estimate (16), we immediately obtain

(17) 102l 2a(@n) < C (W +7) il 2 g -

The term 1); can be presented in the form

6 ( " tl) mn 1
1(z, t) fn/ // tTK 527 dt' dz'" dz'" dx’'

T z T4 2’
h azu(x”a tl) ! " ! h‘+ 62“(33”3 tl) ' n !

z_ ' t—7 z z t—7

Estimating integrals at the right hand side by the Cauchy—Schwartz inequality, one
obtains

Ch2,, |0%u
|¢1($7 t)' \/h_: w La(e') ) where e = (IL',, .CL'+) X (t -7, t) .
Summing over the mesh @y, we obtain:
2 ||0%u
18 <Ch
( ) ||¢1 ”Lz(Qh-,— max 61'2 Lo (Q)
The term ¢(z, 0) can be presented in the form
T+ T X
//K uo' (') dz" dx' + — by / "(z') dz' — h ug' (z') dx’
6h 6h ’
r_ z! z_

wherefrom follows
(@, 0| < CVRlluo' Lo, 0= (-, zy)

and by summing over the mesh @
(19) 195 0)llLs(@) < € hmax lluollwy 0,1 < € hmax [[ully2.1 () -

From (12) and (16-19) we obtain the desired convergence rate estimate for FDS
3)
(20) lu = 0llza(@ury < € (R + 1) llullyz o -

In such a manner, the following assertion is proved.

THEOREM 1. FDS (3) converges in the discrete Ly norm and the inequality (20)
holds.

Notice, that the convergence rate estimate (20) is consistent with the smooth-
ness of the solution of IBVP (1) (see [10]). In the case of uniform mesh estimate
of the form (20) is obtained in [7] for 7 < h?. Equation with variable coefficients
is considered in [8]. For the less smooth solutions (u € W;*°, 0 < s < 1) analo-
gous lower order convergence rate estimate can be obtained. Analogous result (in
continuous Ly-norm) follows from the existing finite element theory.
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Monotonous scheme.

Let us approximate now the IBVP (1) with the following implicite monotonous
FDS (see [15])

hy —h

3 Viz = Uzz +Tef in Qpr;

vF +
hy —h
3

(21)

v+ vy =Toug for t=0; v=0 for z=0,1.

For the sake of simplicity we assume that the mesh & satisfies the condition
(22) h<hy<ech,

The error z = u — v satisfies the conditions

hy —h .
2+ +3 2 = Zze + Pz +¥p iIn Qnr;
(23) he — B
z+ +3 zz =¢Y(z,0) for t=0; z2=0 for z=0,1,
where
hy —h
p=Tu—u and Y =u—-Thu+ 3 Uz

To obtain the a priori estimate in discrete Lo—norm, let us set z = 21 4+ 2(2) |
where z(1) and 2(?) are the solutions of the following FDSs

hye —h .
B0 Qs

(24)
2(1)20 for t=07 z(l)zo for $:0,l,
and
. hy —h .
N
(25)

hy—h
z(2)++ng(—c2)=¢(a:,0) for t=0; 22 =0 for z=0,1.

Let ¢ be a mesh—function satisfying
(26) —Czs = Z(l) + % Zél) in Q(’)”_; (=0 for z=0,1.

Multiplying (24) by (, after some simple transformations, we obtain

(27) (Cif; Ca_r:] - (Z(l), Cm)* = (907 Ca_:i)* -
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From (27) and (26), using the identity

(Gots Ga) = Sl + 5= (1G] = 1GIP)

we obtain
. T
2— (¢11? = NIG211?) + B Gall® + 1212
hy —h hy —h
o2 = (o =) - (0 =),
Further
h+—h ~ 2_Z<h+—h‘z—z_)2h<2(01—1)2 2(22-}-22)}7,
3 = * _zew 3 h - 9 TEW -
Cl—]. 2 2 2
(X PO *hy) < 5 e =17 (e + 1) ]2,

wherefrom follows

1
V2(cr + D) 2]12,
C1 — 1

<=5 V2 (cr + 1) llll« ll=[l«

2 (C]_ =+ 1) (C]_ — 1)2
36¢

(z, h+3— h Zz)* < c

‘(90’ h+3_ : zi)*

<ell2l? +

[l

and 1
< 2, L 2
(¢, 2)4] <ellzllZ + 1z el

From here follows

o (1G] - ||<z]|)+5||<zt]|2 [ Al e 1) 2e] 02
1 [ —1)2

4

+1] lell?.
If

-1
(28) 1= == V2( +1) >0,

then, for sufficiently small £ > 0, one obtains

1 . T
- (Gz11 = NIGz11%) + 5 1G22l + Co llz2V)12 < Cy [leol 2.
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From here, summing over the mesh w, we obtain

T
IICw, NP+ ZII%]IQJr(JoTZIIz(”II2 Ciry_llellz,
t=1

and finally

(29) 120 22(@nr) < Co 10l L2(@nr) -
Notice that the condition (28) is satisfied for

(e1=1)(c1 +1)2 < 4.5
wherefrom follows
(30) 1 < 2.188.
Let us estimate z(?). Multiplying (25) in a scalar way by 7, where
- =2% in QY ; n=0 for t=T+7,

and using partial summing on ¢, we obtain

T T b —h T
=D IR (+T Z§2),nt)* =73 (22, ). —TZ b, M)
t=71 t=T1 t=71
Further

(257> M) = = (=8 mz] = (a4, 75)
1 . 1 . T .
= 5= (1) = nslP?) = 5 lImad]* = 5= (Ife]” — llna]l?) = 5 15711

wherefrom follows

T
TR gl TP+ 2 Bl
= hy —h
=7y (@, 2®). - TZ (==, )
t=71

t=7

(31)

From (31) follows

t=1

T T T
C1 — 1 2Y ¢ 2Y ¢ 1
<=5 V20 + )Y 1P +er Y 1D+ > Il
t=1 t=1 t=1

T T h _ h T
T NP < = Y (e, 2?) 47w, 2.
t=71 t=71
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From here, under the condition (30), for sufficiently small & > 0, we obtain

(32) 12 s (@nr) < Cs 1Ml za(@nr) -

From (29) and (32) we obtain the desired a priori estimate

(33) 120l a(@nny < C (1€llLa(@ny + 19l Lacn,)) -

Notice that contrary to the case of divergent scheme (3), this a priori estimate is
obtained under restriction to the ratio hy /h.

The terms o and v in the right hand side of (33) can be estimated in an analogous
way as in the case of divergent FDS: ¢ is the same as in the previous case, while v
may be represented in the form

8

hy —h
¢=1/11+¢2=Tg(u—T2u+ +3 u)

+[<u—Tgu+ h+3_ huj) —Tt-(u —Thu + h+3_huj)] .

Further

hy —h
3

hy —h

o = —(Tyu —u) + To(Tyu —w) — | (Tru—u),] = —¢+Top - s,

and

( m tl)
(z, t) = / / / K(x 522 dt' dz'" dz'" dx’'
T t—71

h+ - K 82 ) "
dx’'
S hr / / - dt' dz" dx

In such a manner, estimates (16-18) and the convergence rate estimate (20) are
satisfied.

THEOREM 2. FDS (21) converges in discrete norm Ly, under assumptions (22)
and (30), and the convergence rate estimate (20) holds.

REMARK. Analogous results can be obtained for FDS approximating other
boundary value problems, including problems with variable coefficients and hy-
perbolic problems.
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