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A STRUCTURAL FORMULA OF THE WEINSTEIN
FUNCTIONS USED IN HIS PROOF OF THE MILIN,
ROBERTSON AND BIEBERBACH CONJECTURES

Pavel G. Todorov

Communicated by Gradimir Milovanovié

ABSTRACT. We find a structural formula of the Weinstein functions indicated
in the title. This yields a reduced form of our general integral identity for the
Milin functional from which the Milin, Robertson and Bieberbach conjectures
follow immediately. In particular, the well-known Fitzgerald-Pommerenke
special integral identity for this problem is obtained.

1. Introduction

Let S denote the class of all functions
(1) @)=Y anm, a =1,
n=1

analytic and univalent in the unit disk |z| < 1. Bieberbach [1] conjectured that the
inequalities

(2) lanl <my m=2,3,...,
hold where the equality sign holds only for the Koebe function
o0
— o — n
(3) fo(z) = TEE nglnz €S

and its rotations e~ fo(ze®) € S where « is real.
Let S? denote the subclass of odd functions

(4) f2(z) =V f(Z2) = Z b2n71z2"717 f(z) € S: bl = 1)
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of the class S. It follows from (1) and (4) that

Il
—

(5) an = Z bok—1bo(ny1-k)-1, n=1,2,..., b
k=1

It is clear from (5) and the Cauchy inequality that
n
(6) lan| <> lbok—1?, n=2,3,..., b=L
Because of (6), Robertson [2] conjectured that over the class S? the inequalities

n
(7) D lb-1P<n, m=2,3,..., bh=1,
k=1

hold where the equality sign holds only for such functions (4) which correspond to
the Koebe function (3) and its rotations. Thus the Robertson conjecture (7) over
the class S? implies the Bieberbach conjecture (2) over the class S. The logarithmic
coefficients ¢,, of the function f(z) € S are generated by the Taylor expansion

(8) ln@=20nz”, 2] <1, Inl1=0.

For the coefficients in (4) and (8), Lebedev and Milin [3] found the inequalities

n+1 n
(9) Z|b2k1|2§(n+1)exp[ Zk|ck| —4/k (n—k+ )
k=1 )i
for n = 1,2,.... Because of (9), Milin [4] conjectured that over the class S the
inequalities
n
(10) Zk|ck| —4/k)(n—-k+1)<0, n=1,2,...,
k=1

hold where the equality sign holds only for the Koebe function (3) and its rotations.
Thus it follows from (9) and (6) that the Milin conjecture (10) implies the Robertson
conjecture (7) and the Bieberbach conjecture (2).

Louis de Branges [5]-[6] proved the Milin conjecture (10) for all n = 1,2,...,
and hence, the Robertson conjecture (7) and the Bieberbach conjecture (2) for all

n =2,3,.... De Branges uses the Loewner differential equation [7]
0f(2,1) 0f(2,1)
11 < ' = 7
( ) at ch(zﬂ t) az

for the family of analytic and univalent functions

o0
(12) flz,t) = etz + Zan(t)z", 2] <1, 0<t< 400,
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where f(z,0) = f(z), and the function ¢(z,t) is analytic in |2| < 1 and measurable
in 0 <t < 400 satisfying
(13) Rep(z,t) >0, |z|<1, ¢(0,t)=1, 0<t<+o0.

If the logarithmic coefficients ¢, (t) for the functions (12) are generated by the
Taylor expansion

f=t)
an = ch(t)z”, 2] <1, 0<t< 400, Inl=0,

n=1

(14)

then with the help of the Loewner equation (11), de Branges proved the general
inequality

(15) S (ke (B — 4/K)omk(t) <0, 0<t< +oo,
k=1

for any positive integer n > 1, where o, (¢) are the de Branges weight functions

n—k
a b E+v+1),2k+ 20+ 2 n_p—r g
(16)  onk(t) = ’“;}( b EDCE e

written by us [8, Theorem 1] in the full notations o, (t) with the two subscripts n

and k, k=1,2,...,n, for 0 <t < 400, n > 1, where (a), for an arbitrary number
a denotes the Pochhammer symbol
(17) (a)y =a(a+1)---(a+v—-1), v=1,2,...; (a)p=1.

The functions (16) are the unique solution of the de Branges system of differential
equations

(18) onk(t) = on k1 () = =0y, (8) [k — 0 111 (8)/ (K + 1),
0§t<+00, k:1327"'3n3 ”21; Un,n—i—l(t)zoa

with initial conditions

(19) on(0)=n—-k+1, k=1,2,...,n, n>1.

The system (18) is written by us in the corresponding full notations. De Branges
proved that the sign of the derivative with respect to ¢ of the left-hand side of (15)
is determined by the signs of the derivatives of the functions (16) which have the
representation

ol () _wfn+k+1 —n+kn+k+2 k+1/2; e
2 _’nk — kt F ’ ’ ’
(20) k¢ ( n—k )3 2( k+3/2, 2k +1
for0<t<+4ocand k=1,2,...,n, n > 1, where
(21)

o (TR k2, k12 e _”i’“ (=t k) (0 k+2), (k+1/2)y
32 k+3/2 2k+1 B (k + 3/2),(2k + 1), 0! ’

v=0
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having in mind (17), are special cases of the Askey and Gasper polynomials [9,
p. 717, Formula (3.1)], which are nonnegative for the examined ¢, i.e.,

(22) or®) <0, 0<t<+4oc0, k=1,2,...,n, n>1,

where the equality holds only for ¢ = 0 if n — k is odd. Therefore, the left-hand
side of (15) is an increasing function with respect to ¢, and hence, the inequality
(15) holds since o, (+00) = 0 for k = 1,2,...,n, n > 1, according to (16). In
particular, for ¢ = 0, it follows from (15) and (19) that the inequalities (10) hold
where

(23) Cp = Ck(O), k= 1,2,.. ‘o

are the coefficients in (8) for the function f(z) = f(z,0). Fitzgerald and Pom-
merenke [10]-[11] simplified the proof of de Branges in the special case when the
function @(z,t) in (11) has the simplest form

1+ &(t)z
24 t) = ——— 1 <t
(29 plert) = T <1, 0si<on,

where £(t) is a continuous function on 0 < ¢t < +oc with |k(¢)| = 1.
Lenard Weinstein [12] proved the Milin conjecture (10) for all n = 1,2,...,
and hence, the Robertson conjecture (7) and the Bieberbach conjecture (2) for all

n=2,3,... ,in another way. Weinstein found the identity
n+1 2 _ k
(25) nz::lz ;(4/k—k|ck| )(n—k—}—l)—/o 1= a2 (ZAk w > ,

where ¢;, are the coefficients in (8) (or in (23)), Ag(t) are the functions

(26)

1 .
Ap(t) = lim — Re p(ret?  t) ‘ (1 + Zl/c,, rY “’9) — ke (t)rkett? d9 >0
0

r—1 27

for0 <t <400, k=1,2,...,0 <r <1, where ¢ is the general function in (11)
and (13) and ¢, (t) are the coefficients in (14), and w = w(z, t) is the Pick function
[13] determined by the equation

z etw
2 = 1 < .
(27) A—2f  O—w? 2] <1, 0<t<+o0

With the help of the theory of Legendre polynomials, Weinstein showed that if w
is determined by (27), in the Taylor expansion

t k+1

(28) 1—w?

ZA” 2" k=1,2,...,

for |z| <1 and 0 < ¢ < 400, all coefficients A7 > 0, which, according to (25)-(26),
proves the Milin conjecture (10) for all n = 1,2,..., and hence, the Robertson
conjecture (7) and the Bieberbach conjecture (2) for all n =2,3,... .
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But Weinstein did not find a simple explicit form of the coefficients A} (t) in
(28). In [8, Formula (41)] we found the surprising formula

(1)
(29) Aﬁ(t)z—"T, 0<t< 400, n>k, k=12,...,
(AR(t) = 0 for 0 < n < k — 1), which throws a bridge over the de Branges proof
and the Weinstein proof of the Milin, Robertson and Bieberbach conjectures, i.e.,
in their final stages these two proofs are one and the same. There is another proof
of this fact in our paper [14]. From (25) with the help of (28)—(29) we obtained the
following integral identity for the Milin functional (10) [8, Theorem 2] namely

n n

2 oo T (t)
(30) S (klexl? = 4/K)(n— k +1) = / Y Au(t) 7
k

k=1 0 =1

for n = 1,2,..., where ¢ are the logarithmic coefficients in (8) (or (23)) of the
normalized analytic and univalent functions (1) in |z| < 1 of the class S, A (t) are
the nonnegative Weinstein functions (26) and o,,,(t) are the nonpositive deriva-
tives of the de Branges weight functions o, (t) in our full notations determined by
(20)—(21) and (16), respectively. From our identity (30) the Milin, Robertson and
Bieberbach conjectures become evidently true due to either the Askey and Gasper
polynomial results or the Legendre polynomial results by means of (22) or (29),
respectively. In [14] we showed it with the help of the Chebyshev polynomials of
the second kind.
Further in this paper, we will calculate the limit (26).

2. A structural formula for Ag(¢)

It is necessary for our aim to give the Herglotz representation formula for the
function ¢(z,t) in (11) and (13) (compare with Pommerenke [15, p. 40, Theorem
2.4, ii]):

THEOREM 1. The function ¢(z,t) in (11) and (13) has the following Herglotz
representation

2 —10

1 i

(31) (,D(Z,t) = / %du(aaﬂa |Z| < 15 0 S t< +00,
0 —

where p(0,t) is a probability measure on < 6 < 2w for each fixed t in 0 <t < +o00.

PrOOF. By the Schwarz formula we have

I reif 4 o
(32) o(z,t) = / o0 zdu(r,@,t), 0<|zl<r<l, 0<t<+o0,
o —

where the function

1 [f ;
(33) wr,0,t) = 2—/ Rep(re'™,t)dr, 0<0<2m, 0<t< +oo,
T Jo
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is increasing in 0 < § < 27, for each fixed rin 0 < r < land ¢t in 0 <t < 400, and
satisfies

(34) u(r,0,t) =0, 0<r<1l, 0<t<+oo,
27
(35) uir,2m,t) = py Rep(re'™,t) dr = p(0,t) =
0

for 0 <r<1,0<t< +o0o0. Hence (33)-(35) determine the family of functions
{p(r,0,t)} in the interval 0 < § < 27 and in the set 0 < 7 < 1 for each fixed ¢ in
0 <t < +00 which are bounded by 1 and their total variations are equal to 1. Then
by the Helly selection theorem we can find a sequence {0 < 7, < 1}, n=1,2,...,
with 7, = 1 as n = oo such that u(r,,0,t) converges to an increasing function
1(0,t) in 0 < 0 < 27 for each fixed ¢ in 0 < ¢ < 400 for all of the continuity points
of u(0,t) and with total variation equal to 1. Further, since the left-hand side of
(32) does not depend on r, the limit process r = r, — 1 as n — oo under the
integral sign on the right-hand side of (32) leads us to the formula (31). O

Further, it is necessary for our aim to do the following generalization of the
second theorem of Helly for a passage to the limit under the integral sign of an one-
dimensional Stieltjes integral (see, for example, Shohat and Tamarkin [16, p. XIII]
and Natanson [17, Chapter VIII, p. 219, Theorem 3]).

THEOREM 2. Given a sequence {fn(x)}, n=1,2,..., of continuous functions
in the interval [a,b], which converges uniformly to the (continuous) function f(zx) in
[a,b]. Given a sequence {gn(x)}, n =1,2,..., of functions with uniformly bounded
total variations in [a,b], which converges to the finite function g(x) (with bounded
total variation) in [a,b]. Then

(36) lim bfn ) dgn(z /f ) dg(x

n—oo

PrROOF. We have the identity

/fn ) dgn(z /f ) dg(z ﬁfn(w) (2)] dgn(a /f ) dlga () —g(2)]

It follows from the second condition that
b

(38) Von(z) <K < 400, n=1,2,...,
a

where Kbgn(m) denotes the total variation of the function g,(z) in [a,b] and K is
some positive constant. Having in mind (38), we obtain

39 Vi - @) < Voulo) + Vi) S K+ K =28, n=1,...,

where the symbol V denotes the total variations of the corresponding functions
in [a, b]. It is clear from (39) that the differences {gn(z) —g(z)}, n =1,2,..., have
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uniformly bounded total variations in [a, b]. Therefore by the second Helly theorem
we have

b
(40)  lm [ @) dgn /f )d lim [g(z) — g(x)] = 0.

n—oo a n—oo

Further, it follows from the first condition that for every € > 0 there exists a
number N (g), such that

(41) |fn(z) — f(z)| <e/k, n>N(), Vzé€]la,b].

From (41) we obtain

b
@ | Vo) - I@ldga@)| < £ V(@) <o 0 < NE),

having in mind (38).
Now from (40) and (42) we conclude that the right-hand side of (37) tends to
zero as n — 0o. Thus the equation (36) follows. O

THEOREM 3. The Weinstein functions (26) have the following representation
formula

2
du(6,t)

(1 + Z Ve, “"9) — ke (t)et*?

for 0 <t < 4oo, k=1,2,..., where ¢,(t) are the logarithmic coefficients in (14)
and p(6,t) is a probability measure on 0 < 6 < 27 for each fized t in 0 < t < +o00.

(43) Aut) = / "

PROOF. Let us set

(44) Iy (r,t) = /27r 2du(r,H,t)

(1 + Z ve, (t)r? “’9> — ke, (t)rkett?

for 0 <t < 400, k =1,2,...,0 < r < 1. The limit Ax(f) in (26) exists at
any r — 1 with 0 < » < 1 (Weinstein [12] and Hayman [18, pp. 238-242]), i.e
Ik(’l“,t) — Ak(t) asr —1-0.

(i) From (44) and the arguments for (33)—(35) at the selected r = r, — 1 with
0<r, <1lasn — oo we find that u(ry,8,t) — u(0,t) where u(6,t) is that in
Theorem 1.

(ii) Let us set

2
(45) (r,0,t) =2+ Z apve,(t "ei"o

for0<r<1,0<0<2m,0<t< +00, k=1,2,..., where
(46) oy =2, 1<v<k-1, k>2;, ap=1, k>1.
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It follows from (45)—(46) that

k k
My (r,60,t) =4+2 Z apve, (t)re? +2 Z VG, ()7 e 0
v=1 v=1
k .
(47) + Z Uk OpAVACy (D) Ex (E)r TRl V=20
v=1 A=1
From (47) we obtain
k ' k .
My (1,6,t)— My(r,0,t) = 22 QppVCy (t)(l—r")e“’9+2z VG, (1) (1—1")e~ 7
v=1 v=1
ko k .
(48) + 3N ararave, (HEx () (1 — rv el Mo
v=1 =1

An upper bound of the modulus of the difference (48) is

|Mk(17 07 t) - Mk(,ra 07 t)|
k ko k
(49) < [4Zakuv2|cu(t>| 35 arameAw + Ve ®ller®)]] (1 - 7).
v=1 v=1 =1

The estimate (49) shows that My(r,8,t) converges uniformly with respect to € in
0 < 6 < 27 for each fixed ¢t in 0 < ¢t < 400 to the limit My(1,60,t) as r — 1 with
0 < r < 1. Hence, in particular, the sequence {My(ry,,0,t)}, n =1,2,..., formed
by (45) for the selected r = r, — 1 with 0 < r,, < 1 as n — oo in section (i),
converges uniformly with respect to # in 0 < § < 27 for each fixed tin 0 < t < 400
to the limit My(1,6,t) as well.

(iii) According to Theorem 2 and the results in the sections (i) and (ii) the
sequence {I(rn,t)}, n=1,2,..., formed by (44) for the selected r = r,, — 1 with
0 <r, <1asn — oo, converges to the limit A (¢) represented by the formula
(43).

This completes the proof of Theorem 3. O

It is clear from the proof of Theorem 3 that the limit of the integral in (32) for
the selected r = r,, - 1 — 0 as n — oo can be directly obtained by Theorem 2.
THEOREM 4. For the Milin functional (10), we have the following integral iden-
tity
n

> (klek|* — 4/k)(n — k + 1)

k=1
(50) = /0+OO dt i # /02"‘2 (1 + Z ucu(t)ei”g) — kg (t)et*?
k=1

forn =1,2,..., where ¢, and ¢, (t) are the logarithmic coefficients in (8) (
and in (14), respectively, ol,.(t) are the nonpositive derivatives (20)—(22) of the
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de Branges weight functions o, (t) in (16) and p(8,t) is a probability measure on
0 <0 <27 for each fired t in 0 <t < +00.

REMARK. Evidently the Milin functional on the left-hand side of (50) is non-
positive since du(8,t) > 0, having in mind (22).
ProOOF. The identity (50) follows from (30) and (43). O

COROLLARY. If the measure u(6,t) in (31), (43) and (50) is a step-function,
then we have the corresponding representations
g —i0,(t)
1+ ze %%
(51) p(z,t) = Zlﬂp(t)ma || <1, 0<t<+oo,
p:
2

q k
(52) Ap(t) = Z Lp(t) ‘2 (1 + Z ve, (t)eiuap(t)) — keg(t)eittr®

for0 <t < +4o00,k=1,2,..., and

Y (Klex|* —4/k)(n — k+1)

k=1
k 2

(53) z/ dtz Z,up ‘ <1+Z ch(t)eiyop(t)) — kg (t)et*? )
v=1

forn =1,2,..., where uy(t) and 8,(t) are real continuous functions in 0 <t < 400
with
(54)

0<01(t) <Oa(t) <--- < 0,(t) <2m,  0< pyp(t)

= Z/J/P 7 QZ1

In particular, for g =1, 8(t) := 01(t), 0 < (¢t) < 27, the representations (51)—(54)
are reduced to

14 ze~#0(®)
! = —-—
(51') p(2:t) = T gy 1A <L 0Lt <+oo,
k ) . 2
(52" Ap(t) = ‘2(1 + E I/Cy(t)ezyﬂ(t)) _ kck(t)ezka(t)
v=1

for0<t< +4o0,k=1,2,..., and

Zk|ck|2 4/k)(n—k+1)
k=1

n 2

400 k
(53" = / dt Z ‘ (1 + Z vey, (t)ei”a(t)) — ke (t)eH?®
v=1

forn=1,2,..., respectively.
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The identity (53') is found by Fitzgerald and Pommerenke [10, p. 686, Identity

(3.13)] for the special case (51') (or equivalently for (24) if we set x(t) := e~0(®).

(1]
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