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ABSTRACT. The finite-difference scheme approximating nonlocal boundary
value problem for a second order elliptic equation is studied. A convergence
rate estimate in discrete W3-norm is obtained, assuming that the coefficients
and the solution to the original problem belongs to Sobolev spaces.

1. Introduction

The generalization of Bitsadze—Samarski problem [1] was investigated by many
authors (see e.g., [2-6]). In [5] for the Poisson equation is considered a difference
scheme, which converges by the rate O(h?) in the discrete W2-norm to the exact
solution from the class C*((Q2).

In the present paper a nonlocal boundary value problem of Bitsadze—Samarski
type is considered in a domain Q = (0,1)? for a second order elliptic equation
with variable coefficients. The investigation of the corresponding difference scheme
is carried out in Sobolev weight space and under assumption that the coefficients
and the solution to the original problem belong to Sobolev spaces, the estimate of
convergence rate

(1) ly = ullwi (o < b Hullwg), € (1;3]

is obtained, where r = r(z1) = 1 — x1, w is a uniform grid in Q with the step h.
The main idea is to introduce an auxilary (equivalent to r) weight function
p(x1), which gives possibility to state the positive definity of the difference scheme
operator, and validity of the first (energetic) fundamental inequality too. The inner
product of the indicated type and induced by it norm were used firstly in [2] to
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prove uniqueness of classic, and afterwards also difference solution [4] of nonlocal
boundary value problems.

2. The problem and its approximation

Let @ = {(z1,22) : 0 < 2, < 1, k =1,2} be a unit square with a boundary T’;
Q1,Qs, ... 0, arbitrary real numbers; &,&s,. .. , &, fixed points from (0, 1); note
that 0 <& <& < <& <1, 6 =0, &n1 =1

F(z) = {(&,1‘2) 0<xy < ].}, i=1,...,m+1, Iy = F(m—i—l); Iy = F\F*

Consider the nonlocal boundary value problem

2
_ 0 ou _
(2) LU:ijgla—xi(ama—xj) —au—f(af), Z'Eﬂa
(3) u(z) =0, x € Ty, u(l,z2) = Zaku(.fk,xz), 0<zy < 1.
k=1

We assume that the problem (2), (3) with the right-hand side f € W5~ %(Q), is
uniquely solvable in W3 (), 1 < s < 3, and the coefficients a1; = ayj(z3_;), as; =
as;(z) (j =1,2), and a = a(z) satisfy to the following conditions:

2
(4) Z aijtit; > vi(t] +13), vi = const >0, a > 0.
ij=1
a1; € W;*I(O; 1), p>max(1l/(s—1),2) for s € (1;2], p=2for s € (2;3],
asj € W;_I(Q), g>2/(s—1)forse(1;2], ¢g=2forse (23],
a€Lly.(N),1<5<2,e>0,ac Wi %), 2<s<3.
Consider the following grid domains in Q:
Do ={Zo =iah:iqa=0,1,...,n, h=1/n},
Wa = 0o N (0,1), wh =@, N (0;1], @« =1,2,
W=w1 Xws, =W X, v9=TgNw.
For grid functions and difference ratios, we use the standard notation from [7]:
Vg, = (V) —v)/h, vz, = (v —v("1))/h,
where v(#11) (z) = v(21 + h, x2), vF12)(z) = v(z1, 2 + h). The notations v(F0-5:)
v{+0-51,-14) will have similar sense. Let
&=(mp+60K)h, 00, <1, k=1,2,...,m,
wie =q{z1:21 =1h,i=1,2,... ,nk}.

where ny are nonnegative integers 0 < n; < ng < --- < n,y < n, the equality
between which will take place if in the corresponding subinterval (between the
neighboring points of the grid wy) more than one point & is situated. Suppose

(5) h/2<1—¢&, —v, v=const > 0.
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Let
O 1
Gru= (1—-06) / tu(ngh + th,zz) dt + 0 / (1 = t)u(nrh + th, z2) dt,
0 O
k=1,2,...,n,. We also need the following averaging operators:

0
Sy u= / w(z1 + th, z2) dt,

—1

1
Sfu= / u(zy + th, o) dt,
0

1
T1u=/ (1 = [t])u(zs + th, z2) dt.
—1

The operators S; and T, are defined likewise. For these operators the following
relations hold:

0%u du
T—:Ez;T—:_zakzlaa
k@ﬂfi Uz gz, k@mk Sy U, 2
8%u 1
G pr h—z((l—ek)u(nkh,mz) + Opu(nph+h, 22) —u(ér, 22)), k=1,2,...,nm.
1

By Yi(22), Zi(22), Zi(z2), Z(22) we will denote the expressions
Yi(z2) = (1 — 0)y(ngh, z2) + Ory(nph + h,z2) etc.

We approximate the problem (2), (3) by finite-difference scheme

2
(6) Ay = Z A’Uy + ay = —Q0($), T € W, @Y= TlTQfa
i,j=1
m
(7) Y= 07 T € Y0, y(l,m2) = ZakYk($2)7 Ty € wa,
k=1

where Ay = _0.5((1(?0.51)?/%)“ _ 0-5(a(+0'51)yzj)- .

ij ij T;

3. The first fundamental inequality

Let H be the set of all grid functions, defined on @ and vanishing on v, with
the inner product and the norm:

(W, 0)r = D Wr(@)y(@)o(@), yll} = @,9)r r@1) =1~ a1
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Further, we put

Iz = Y. wry’, wll2= D> Bry?,
+

wq Xwa w1 wa

|y|iw,r = ||yi1]|i + ”yi2”72*7 ”y”%,w,r = ||y||2 + |y|%,w,r7

Iyl =Y mhy?, llyllo = D12 ll* = - B Ilyll*= > A%’

w xwa e wi xwa wixXws
h h
2 _
hy? hy?, 7= —, h="hf h=_- f =1
llyllx Z v, llyl2 Z , T, or r1 € wi, or z; =

Define the following weight function

; , - < <&y1,1=0,1,2,...,m—1,
(8) p(z1) = pi(x1), & < a1 <&iyr, 0 m
T(.’L‘l), &n <1 <1,
where
pi(m) = (@) —x) owri(@), (@) = &=z, =Y |aw|\/&, on = =
k=i+1 k=1 \/é-_k

Suppose that s < 1. Then [6]

(9) (1= 5*)r(21) < p(a1) < r(@).

In future we will consider that the inner product and norms, involving p in
index have similar to the expression with index r sense.

In order to use below the results obtained in this section, for a priori estimate
of the error of method (when the nonlocal condition will not be homogeneous any
more) we will get the estimates for the function y(z) in such form, in which the
nonlocal condition still will not be taken into account.

LEMMA 1. For any y € H the following estimates are valid:

(10) 1Yll2 < (/) |y ]I2
(11) lyll < llyz ]l
(12) lyll, < (1/V38)llyzslls-

PRrOOF. By virtue of the Cauchy-Buniakovski inequality and via (5) the esti-
mate (10) follows from

ne+1
Yk(a:Q) = Z th(i)yjl(ih,.’L'g) Tk( ) =1fori=1,2,...,ng, Tk(nk + ].) =0,

i=1
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taking into account that 72 < 73, #(ih) > v, i =1,2,...,n, + 1. Next,

lyll* = ZZZﬁ(i)hzy(ih,@)yfl(jh,xz)

i=1 j=1 w2
no i 1/2
< (S X o) (33 Yo o)
i=1 j=1 w2 i=1 j=1 w2
< llyll Ny ]l-,

which yields (11).
The estimate (12) follows from (see e.g., [7, p.120]) ||y||> < (1/8)||yz,|)?, noting
that p <. O

Denote

(13) ®(a11,y Zhall T2 <zl§ o1 Y (z2) —y2(1,$2)).

The following estimate (so called “first fundamental inequality” in terminology used
by Ladyzhenskaya) is valid.
LEMMA 2. Ify(z) € H, then

(14) (Ayay)p > cl||y||iw,7' + (I)(allay)a G =1 (1 - J{2)/2

If moreover, y(x) satisfies the nonlocal condition (7), then in the right-hand side
(14) the second term may be neglected.

PRroOF. Partial summation yields

(15) =2 hpysmy =Y hpys, + > hpyl, —y*(1,20) Z hy? sy, -
w1 wi" wi

Represent now the weight function p in the following way
t, ift>0
r)=1-=x -z t)=1" =7
p(z1) 1- Z%ka &k 1), x(?) {0’ ift<0.

It is not hard to check that hlezl (&x —ih) = (1 — 6g) 0(ng, @) + Ok (ng, + 1,4),
where §(.,.) is the Kronecker delta. Consequently,

hpz1z1 (Zh —x E Uk 1 — Gk)é(nk, ) + 0k5(nk +1 ’L))
k=1
and

(16) Z hy2pzie, = — Z s0y, (1 = 0k)y* (nkh, T2) + Opy* (nkh + h, 22)).

Taking into account that
(1= 0k)y* (nih, 22) + Oky® (nih + h, 22) = Vi (22) + B20k(1 = 0k)y3, (nih, 2)
Yy (22),

vV
[V



74 BERIKELASHVILI
from (15), (16) we get

1 1
(Auny,9), 2 5 > Rpanyi + 5 > Bpanyl, + ®(a11,y).
wi Xwa wy Xwa

Furthermore, by using partial summation we have

—0.5 0.5
(A12y,9), Z h2pal, 1’ym1ym+— > n2paldys, s,
wi" Xwa w1 Xwe2
0.5 0.5 :
(A2;9,9), Z h?pal; "y ya, + = 3 W2palt "y s, §=1,2.
wl xw;‘ wl sz
Consequently,
0.5 0.5
Ay7 Z 2 Zh2 Z a( 1)319: Yz; + 5 Zh2 Z a(+ 1)y$iy$j
,j=1,2 i,j=1,2

+ (a,y )p + ®(a11,y).

Therefore (4), (9) implies (Ay,y), > v1(1—3)|yl} , . + ®(a11,y), and taking into
account (11), we finally obtain (14).
If y(x) satisfies the nonlocal condition (7) too, then

y2(1,22) < Z 5o, Y (w2)
k=1

and ®(a11,y) > 0. This completes the proof of the lemma. O

Due to Lemma, 2 the problem (6), (7) has an unique solution.

4. A priori estimate of error of difference solution

Let u be a solution of the problem (2), (3) and y — a solution of the difference
scheme (6), (7). Then for the error z = y — u we obtain the problem

(17) Az=1vY, z€w, 2=0, £ € v, 2(1,22) = Zaka + R, 29 € wy,
k=1
where

2

8%u
b= Mij)e; +1, R= ZakRk, Ry, = h2Gy, ka2 1 =TT(au) — TiTau
i,j=1 k=1 1

1 _ Ou -
Th'j 2 (]051)uzj+2 (;’_051’ 1) ( 1)_5 T3 z(aija—wj)a 27.7:1;2.

LeMMA 3. The a priori estimate

(18) lzll1w.r < clllara Rllx + llmadl + llm2]] + [l |] + 72211 + [1nllo)-
is valid for the solution of the problem (17).
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PROOF. Represent the solution z to the problem (17) as a sum z = Z + Z of
solutions of the following two problems:

m
(19) Az=0,z€w, 2=0, x € v, Z(1,12) :Zakzk + R, 23 € wy,
k=1

(20) AZ=yY, x €w, 2=0, = € v, E(l,:cﬂzZakék, Ty € Wa.
k=1
It follows from nonlocal condition (19) that

—2‘13(0,11, 2) S Z hau(.'L'z) <R2 + 2RZ Oéka) s

w2 k=1
therefore (10) implies —2®(a11,2) < |la11 R||? + (23¢/v/V)||a11 R||« |2z, ]|, and we
obtain

(21)  —2®(a11,2) < (L +3¢/(ervV)llan Rl + Geer/vVV)l|2a,][i s Yer > 0.

Further, applying Lemma 2 we conclude that 2¢;|z|13, , + 2®(a11,2) < 0, the
addition of which to (21) (with &1 chosen properly) gives

(22) 12117 o » < callan R

lw,r =

On the other hand, applying Lemma 2 to the solution of the problem (20) we come
to

2
(23) Cl”aliw,r S Z ((nij)wiag)p + (7}72)0
3,j=1
Since
Z h27’k771ﬁa;1§: — Z h27“k’l715551
W1,k XW2 W1,k XW2
Nk K3
+ 33" ST R+ Dmp(ih + b, 22)2z, (b, 22)
i=1 j=1 ws

using the Cauchy-Buniakovski inequality we get

Z hQTknlgwlg

W1,k XW2

< 281221+ [lmp]l,

noting that ry < &7. Similarly, |(1182,, 2)r| < 2||Zz,]|+|lmp]|- Therefore from

(Mpe1s 2o = (Mpzis2)r — p_ %0k Y, Krimpe, 2

k=1 W1,k XW2

it follows

(24) |01, 2)p] < 2(1 + 5125, ]I+ lImp]l, B =1,2.
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Now, it is not difficult to verify that

(25) (12822, 2)p| < l|Zzo]lrlIn2sll, 8=1,2.

The inequality (12) immediately implies that
(26) (n,2),] < (1/V8)lInllo l1Zz. ]
Substituting (24)—(26) into (23) we finally obtain

2
27) 1R e < | 30 Cmsll + sl + o )
B=1

The inequality (18) follows directly from (22), (27). O

5. Estimate of the convergence rate

In order to estimate the convergence rate of finite-difference scheme (6), (7), it
is enough to estimate the norm of error functionals in (18). For this we apply the
well-known tecnique (see e.g., [8], [9]), which uses the generalized Bramble-Hilbert
lemma [10].

We will show, that

(28) lau Rl < ch®~Hullws o), s € (1,3].

Let e = (ngh,ngh + h) X (x2 — h/2,22 + h/2), Q = (nrh,nph + h) x (0,1). We
now represent Ry in the form of sum

Pu 0%u _0%u
522 Gk5262)+h2GkS28—x%=R§c+ "ok=1,2,...,nm.
Let us remark, that R}, is a bounded linear functional of u € W3 (e), s > 1, which

vanishes if u is a second-degree polynomial. Using Bramble-Hilbert lemma we
obtain

(29) IRk < ch® Hulws (e, [1REl« < ch®Hulwy o), s € (1,3].

Ry = (h2G,c

For s > 1, R} is a bounded linear functional of u € W3 (ey), which vanishes if
u is a first-degree polynomial. Using Bramble-Hilbert lemma we obtain

(30) IREllx < b Hulws(o), s € (1,2.5].

In the case s > 2.5 we write
W2 < Z o

and since 9%u/0z? € W5™%(Q), s —2 > 0.5, we may use an estimate for Ly-norm
of a function in a sprit near the boundary in terms of W5~ 2-norm in the domain
Q (see, e.g., [8, p- 161], [11, p. 47]) :

‘dm< ch?

H 83:1 Lo(2%)

255,
Lz(Qk) 0z llwz=2(@)

05<s—2<1.
= [05<a-22
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This gives ||R{ ||l < ch®|ulwsq), s € (2.5,3], which along with (29), (30), taking
into account continuity of the coefficient a11, proves the inequality (28).
We will show, that

(31) ]l < eh® *lullws @y, Imesl] < eh® Hlullwg @), <5< 3.
For 1 < s < 2, we represent 7;; in the following way

0.5 Oou +0.51,—1; Ou
(32) Nij = 772] + 0. 50’( 1)77;; (6 ) + 0. 5a( ! )77"’<6$ )
where

17”—05( (=051) 4 , (+051,—1 ))S T ’gm]. STy z(a”gu)

ni(w) = S;v— 8 Ts_v, njj(v) = (va)( D _ S; Ts_v.
Let e = (z1 — h,z1 + h) X (z2 — h,z2). Since n; is a linear functional with

respect to ap;, is bounded in W#~'(e), s > 1 and vanishis if ag; is constant, we
have

L Ou
;| < ch® 3 2/"|G21|W,;—1(e)/‘87‘dx
e J

It is easy to see that

_ (¢—2)/(29)

‘d < ( 6_u 2¢/(q—2) dx) a ! h1+2/q7
therefore

|15, < ch®~ |a2J|WS ey lulw, Wi (aeay (©)
and
(33) lIm3;1] < ch®™ IHGQJ”WS 1(Q)” ullw, 20/ (a-2) ()"
Analogously,
(34) lImi;]l < ch™ 1”a11||W’ 1o llullw, Wan/o-2)(2)°

Since qu/(q 2)> sz/(pﬁ) C W52, using (33), (34) and similar estimates for Mijs

nij» from (32) we come (31) for 1 < s < 2.

In the case 2 < s < 3 we write

(35) N =l (aﬂg ) + 0.5a:1ls (86.'17 ) + 0.5a §f0~51’_1")l3 (5—;),

(36) Miz =g (%2(;9—) +a ( S0 )l ((,i: ) + 0.5uz,lg(as),
where
li(v) = 0.50(70%) 4 0.50F05071) _ oy sy Iy(v) = Sy v — o705
I3(v) = Sifv —vF03) 1y (v) = 0708 — ST Ty,
I5(v) = 0.555 v 4 0.55F v — p(08)  [o() = y(7051) _9qy(-05) 44, (+0.51,—15)
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For s > 2,1;(v) (j = 1,2,3,4,5,6) are a bounded linear functionals of v € W; 2
and vanish if v is a first-degree polinomial. Hence from (35), (36) we get (31) for
2<s<3.

For 7 the estimate [|nllo < ch®™" [Jullws(q), 1 < s < 3 is true.

Finally on the basis of obtained estimates, together with Lemma 3 the following
convergence theorem is proved.

THEOREM 1. The finite-difference scheme (6), (7) converges and the conver-
gence rate estimate (1) holds.
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