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SECOND COHOMOLOGY
AND NILPOTENCY CLASS 2

Sinǐsa Crvenković and Vladimir Tasić

Abstract. Conditions are given for a class 2 nilpotent group to have no
central extensions of class 3. This is related to Betti numbers and to the
problem of representing a class 2 nilpotent group as the fundamental group of
a smooth projective variety.

Surveys of the work on the characterization of the fundamental groups of
smooth projective varieties and Kähler manifolds (see [1],[3], [9]) indicate that
torsion-free nilpotent groups have been both attractive and problematic in this
context. For example, it took a long time to show, contrary to the beliefs of many
researchers in the area, that the fundamental group of a smooth projective variety
can be non-abelian torsion-free nilpotent ([2], [11]). Even more interestingly from
an algebraist’s point of view, nilpotent groups of class 2 have played a significant
role as test cases. There are structural reasons for this. Let P denote the class of
groups isomorphic to fundamental groups of smooth projective varieties. Let γk(G)
denote the k-th term of the lower central series of the group G. For a subgroup
K of G, let

√
K denote the subgroup generated by {g ∈ G | (∃n ∈ Z) gn ∈ K}.

Due to the work of Deligne [4], Hain [6] and others, it is known that if G ∈ P then
the quotients G/

√
γ2(G) and G/

√
γ3(G) in a certain sense determine G/

√
γk(G)

for all k. Consequently, if G ∈ P is torsion-free nilpotent of class 2, its class 3
extensions are limited by the underlying geometry.

For this and other reasons, class 2 nilpotent groups have generated a certain
amount of interest among geometers. For instance, Hain [7] defines groups of
Heisenberg type as finitely generated nontrivial central extensions of Z by a torsion-
free Abelian group, and demonstrates that fundamental groups of links of isolated
singularities of n-dimensional complex algebraic varieties are of Heisenberg type
(hence torsion-free and nilpotent of class 2). The definition generalizes the stan-
dard Heisenberg groups H2m+1, given by generators {x0, x1, . . . , x2m} and relations
(xi, xm+i) = x0 for i = 1, . . . , m, and (xj , xk) = 1 for all other commutators. These
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groups are well understood, but it is not a trivial matter to show that H2m+1 �∈ P.
The proof relies on the sophisticated results due to Deligne et al. ([5]; see also [9])
about the degrees of the defining relations of the associated Lie algebra. Despite
the powerful algebraic constraints, it is still not known (see [3]) whether the class
of Kähler groups, which includes P, contains a nilpotent group of class 3.

We are interested in a purely algebraic analog of the restriction imposed on
class 3 extensions by the underlying geometry in the case of fundamental groups of
smooth projective varieties. To this end we introduce the concept of an extension
matrix of a finitely generated torsion-free class 2 nilpotent group, and relate it to
the second Betti number. The algebraic analog does not capture all restrictions
imposed by geometry; for example, Campana [2] has shown that the Lie algebra
associated with the fundamental group of a complex projective variety must have
dimension at least 9 (which does not follow solely from the algebraic properties of
extensions). Nevertheless, taking account of well known properties of Betti numbers
of smooth projective varieties, our results can be used to construct new examples
of class 2 nilpotent groups that do not belong to P, and to give a new and simpler
proof that H4k+1 �∈ P.

It is convenient to work with the cohomology of the associated Lie algebra
L(G) (over Q) constructed in the standard way from the lower central series of G.
If G is torsion-free and nilpotent of class 2, then L(G) is also nilpotent of class 2,
i.e, L3 = [[L,L], L] = 0. Since we are interested in the non-abelian case, we may
assume L2 = [L,L] �= 0.

If L is a class 2 nilpotent finite-dimensional Lie algebra, choose X = {x1, . . . , xd}
so that {x1 + L2, . . . , xd + L2} is a basis of L/L2, and let Y = {y1, . . . , ye} be a
basis of L2. Since L3 = 0, X ∪ Y is a basis of L, and L is determined by the

(
d
2

)
relations of the form:

[xi, xj ] =
e∑

t=1

α
(t)
ij yt (i > j).

It is useful to define the structure constants α
(t)
ij for i � j, by setting α

(t)
ii = 0 and

α
(t)
ij = −α

(t)
ji .

Let Λk(L) denote the space of k-linear functionals on L. Recall that the dif-
ferential dk : Λk(L) → Λk+1(L) is given by

(dkf)(x1, . . . , xk+1) =
∑

1�i<j�k+1

(−1)i+jf([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1)

for all f ∈ Λk(L) and x1, . . . , xk+1 ∈ L. The k-th cohomology group (which is
in fact a vector space) is defined as Hk(L, Q) = ker(dk)/Im(dk−1). Let bk(L) =
dim Hk(L, Q), the k-th Betti number of L. In general, H1(L, Q) is the dual of
L/L2, so that b1(L) = dim(L/L2). We are interested in computing the second
Betti number of a Lie algebra of nilpotent class 2, that is, of a non-abelian algebra
L for which L3 = 0. For such an L, we have d = b1(L) = dim(L/L2) > 1 and
e = dim(L2) > 0.
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We assume in the following that d > 2. This is not a serious restriction. Since
e �

(
d
2

)
for all L, d = 2 implies e � 1. Thus either e = 0, in which case the algebra

is abelian, or e = 1, in which case L is the three dimensional Heisenberg algebra.
The assumption d > 2 thus excludes only one class 2 nilpotent algebra.

Now consider the vector space Λ2 of skew-symmetric bilinear functionals on L.
We must determine the dimension of ker d2. The subspace ker d2 consists of all the
f ∈ Λ2 such that for each triple 1 � k < j < i � d and each pair 1 � r < t � e the
following linear equations hold:

e∑
t=1

α
(t)
ij f(yt, xk) +

e∑
t=1

α
(t)
ki f(yt, xj) +

e∑
t=1

α
(t)
jk f(yt, xi) = 0

f(yt, yr) = 0

Given f , let fts = f(yt, xs) and �f = (f11, . . . , fe1, f12, . . . , fe2, . . . , f1d, . . . , fed)T .
Then �f ∈ Qed, and the

(
d
3

)
equations (1) above can be written as a matrix equation

A�f = �0 for a suitable matrix A of size
(
d
3

) × ed. We call this matrix the extension
matrix of L. Its nullity is closely related to class 3 extensions of L. It also permits
us to compute effectively the second Betti number of L.

Lemma 1. Let L be a finite-dimensional class 2 nilpotent Lie algebra with
b1(L) � 3 and extension matrix A. If n(A) denotes the nullity of A, then b2(L) =(
d
2

) − e + n(A).

Proof. For a functional f ∈ ker d2, define T (f) = �f as above. By the ear-
lier discussion we have T (f) ∈ ker(A). Thus T : ker d2 → ker(A) is a linear
transformation. The kernel of T consists of all functionals such that f(yt, xs) = 0
and f(yt, yr) = 0 for all r, t, s. Since the values of f(xi, xj) can be assigned ar-
bitrarily for each i > j, dim ker(T ) =

(
d
2

)
. Given �f ∈ ker(A), define a func-

tional g ∈ ker d2 by setting g(xi, xj) = 0, g(yt, xr) = ftr and g(yt, ys) = 0.
Then T (g) = �f , so T is onto, and we have dim Im(T ) = n(A). It follows that
dim(ker d2) = dim ker(T ) + dim Im(T ) =

(
d
2

)
+ n(A). By definition of H2(L, Q),

we have b2(L) = dim(ker d2) − dim(Im d1). But Im d1 is isomorphic to the vector
space dual of L2, so dim(Im d1) = e. Therefore b2(L) =

(
d
2

) − e + n(A). �

It is instructive to consider several standard examples. Using Lemma 1, we
compute the second Betti numbers of the Heisenberg algebras and of the free class
2 nilpotent algebras.

Example 1. The Heisenberg algebra H2m+1 is given by the 2m+1 generators
{x1, . . . , x2m, y1} and relations [xi, xm+i] = y1, with all other brackets equal to
zero. Thus we have d = 2m and e = 1. If m = 1, there are no relations of type
(1) above (hence Lemma 1 does not apply), but it is easy to see that in this case
b2 = 2. We assume that m > 1. Then the extension matrix is of size

(
2m
3

) × 2m.
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For example, if m = 2, the extension matrix is 4 × 4:

A =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

Clearly n(A) = 0, so by Lemma 1 b2(H5) = 5. In fact, n(A) = 0 for all Heisenberg
algebras H2m+1. To see this, we note that the structure constants of H2m+1 are
such that αij = 0 whenever |i − j| �= m and αij = sgn(i − j) if |i − j| = m. For
each i, 1 � i � d = 2m, let �εt be the row t of the d × d identity matrix. We have
several cases:

(1) t < m. The row of A corresponding to the triple 2m > m > t equals �εt.
(2) 2m > t > m. The row of A corresponding to this triple equals −�εt.
(3) t = m. The row corresponding to m + 1 > m > 1 equals −�εm.
(4) t = 2m. The row corresponding to 2m > m + 1 > 1 equals �ε2m.

Thus A contains a d × d submatrix of rank d. Since A is of size
(
d
3

) × d, it follows
that rank(A) = d and n(A) = 0. By Lemma 1, b2(H2m+1) =

(
2m
2

) − 1. Note that
Santhaourbane [10] has computed the higher Betti numbers of Heisenberg algebras
using cohomological methods.

It would be interesting to determine the second Betti numbers for the more
general algebras of Heisenberg type defined by Hain ([7]). It is not difficult to see
that Betti numbers of these more general algebras can be larger than the Betti
number of the standard Heisenberg algebra of the same dimension. For example,
consider the 5-dimensional algebra L with generators x1, . . . , x4, y1 and relations
[x4, x1] = y1, [x3, x1] = y1 and all other brackets zero. Here the extension matrix
is

A =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 1
0 −1 0 0
0 −1 0 0

⎞
⎟⎟⎠

so n(A) = 2 and therefore b2(L) = 7, whereas b2(H5) = 5.

Example 2. Let Fn denote the free class 2 nilpotent Lie algebra on n � 3 free
generators. This algebra has a canonical presentation with d = n and e =

(
n
2

)
(since

there are no relations among the commutators [xi, xj ], i > j). We want to show
that the rank of the extension matrix is maximal, i.e., equal to

(
d
3

)
. To see this, let

E = {1, . . . , e} and let Dm be the set of strictly decreasing sequences of length m in
{1, . . . , d}. Dm and Dm×E can be given a total order, for example the lexicographic
order. Thus we can think of rows of the extension matrix A as indexed by D3, and
its columns indexed by D2 × E. With this convention, the upper index of the
structure constants α

(t)
ij ranges over D2, and we have α

(t)
ij = sgn(i − j) if t = (i, j)

or t = (j, i); otherwise α
(t)
ij = 0. Now take (i, j, k) ∈ D3. Then t = (i, j) ∈ D2.

Consider the column of A indexed by (t, k). The only nonzero entry in this column
equals α

(t)
ij = 1 and appears in the row indexed by (i, j, k). Thus the extension
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matrix A contains the identity matrix of size
(
d
3

) × (
d
3

)
as a submatrix, and it

follows that the rank of A is
(
d
3

)
. Therefore n(A) = de− (

d
3

)
= d

(
d
2

)− (
d
3

)
= 2

(
d+1
3

)
.

Since e =
(
d
2

)
, by Lemma 1 we have b2(Fn) = 2

(
n+1

3

)
.

Turning back to extensions of class 3, it is well known that the elements of
H2(L) are the equivalence classes of central extensions (see [8]). However, some of
the extensions have nilpotent class 2. Let C2 ⊆ H2(L) denote the set of equivalence
classes of class 2 extensions of L. It is not difficult to see (and it is demonstrated in
the proof of the lemma below) that C2 is a subspace of H2(L). Lemma 2 establishes
the dimension of the space H2/C2 and so in a sense ‘measures the number’ of class
3 extensions.

Lemma 2. Let L be a finite-dimensional class 2 nilpotent Lie algebra with
b1(L) � 3 and the extension matrix A. Then H2(L)/C2

∼= ker(A). Thus, modulo
class 2 extensions, L has precisely n(A) basic extensions of class 3.

Proof. Each functional f ∈ ker d2 defines a central extension L1 on the vector
space L ⊕ Q. The bracket operation on L1 is defined by:

[u, q]1 = 0

[u, v]1 = [u, v] + f(u, v)

for u, v ∈ L and q ∈ Q. Since the elements of Q are central in L1, it is clear that
L1 is of class 2 if and only if [xs, yt]1 = 0 for all s and t. But L is of class 2,
so [xs, yt] = 0 and hence [xs, yt]1 = [xs, yt] + f(xs, yt) = f(xs, yt). Thus L1 is of
class 2 if and only if f(xs, yt) = 0 for all s and t. Therefore f ∈ ker d2 defines
a class 2 extension if and only if f ∈ ker(T ), where T : ker d2 → ker(A) is the
linear transformation defined in Lemma 1 by T (f) = �f . Since the set of functionals
defining extensions of class 2 is ker(T ), we have C2 = (ker(T ) + Im(d1))/Im(d1).
But Im(d1) ⊆ ker(T ). To see this, suppose f = d1g for some linear functional
g : L → Q. Then f(xs, yt) = d1g(xs, yt) = −g([xs, yt]) = −g(0) = 0 because L is of
nilpotent class 2 and yt ∈ L2. Therefore C2 = ker(T )/Im(d1), and we have

H2(L)/C2
∼= (

ker d2/Im(d1)
)/(

ker(T )/Im(d1)
) ∼= ker d2/ ker(T ).

By an argument given in the proof of Lemma 1, T : ker d2 → ker(A) is surjective,
so ker d2/ ker(T ) ∼= ker(A). Hence H2(L)/C2

∼= ker(A). �

The lemmas imply:

Theorem 1. Let L be a finite-dimensional class 2 nilpotent Lie algebra with the
extension matrix A and b1(L) � 3. Then L has no central extensions of nilpotent
class 3 if and only if n(A) = 0.

Example 3. Some Lie algebras (and groups) of Heisenberg type admit central
extensions of class 3. Let L be the algebra generated by {x1, . . . , x6, y1}, with
relations [x6, x5] = y1, [x5, x4] = y1 and all other brackets zero. The extension
matrix A is of size 20× 6 and has nullity 2. Recall from Example 2 that rows of A
are indexed by strictly decreasing sequences of length 3 from {1, . . . 6}; we assume
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the sequences are given the reverse lexicographic order. With this convention, the
submatrix consisting of the first four rows of A is⎛

⎜⎜⎝
0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎠

The only other nonzero rows are those indexed by (5, 4, 3), (5, 4, 2) and (5, 4, 1).
However, these rows have zeros in columns 5, 6 and 7, so the nonzero entries can
be eliminated by using rows 2, 3 and 4 of A. Hence n(A) = 2.

It is interesting to formulate Theorem 3 without referring to the extension
matrix, that is, in terms of the second Betti number.

Theorem 2. Let L be a finite-dimensional class 2 nilpotent Lie algebra such
that b1(L) � 3. Then

(1) b2(L) �
(
d
2

) − e

(2) L does not admit central extensions of class 3 if and only if b2(L) =
(
d
2

)−e.

The condition n(A) = 0, given in Theorem 3, forces restrictions on the param-
eters d and e that are not explicit in Theorem 4. Since the extension matrix A is
of size

(
d
3

) × ed, its null space will be of positive dimension if ed >
(
d
3

)
. Thus if L

has no central extensions of class 3, then ed �
(
d
3

)
. An elementary computation

now yields:

Corollary 1. Let L be a class 2 nilpotent finite-dimensional Lie algebra such
that b1(L) � 3. If L has no central extensions of class 3, then b2(L) =

(
d
2

) − e and
e � (d−1)(d−2)

6 . In particular, b2(L) � d2−1
3 .

Example 4. Suppose L is a 4-dimensional class 2 nilpotent algebra that has
no extensions of class 3. Then dim(L) = d + e = 4, so either d = 2 and e = 2
or d = 3 and e = 1. (e = 0 is impossible because then L is abelian, and d = 1
is impossible because then L is abelian and e = 0.) But if d = 2 then e � 1, so
d + e < 4. Therefore d = 3 and e = 1, which contradicts Corollary 5. Hence every
4-dimensional class 2 algebra admits an extension of class 3.

To formulate the group analog to Corollary 5, note that if G is a finitely gener-
ated torsion-free class 2 nilpotent group, then G/G′ and G′ are finitely generated
torsion-free abelian groups. Thus G can be given a ‘canonical’ presentation analo-
gous to the one we have been using for finite-dimensional class 2 Lie algebras (with
structure constants in Z). Thus we can speak of the extension matrix of G, meaning
the extension matrix of the associated Lie algebra.

Corollary 2. Let G be a torsion-free nilpotent group of class 2, given by its
canonical class-2 presentation with b1(G) � 3. If G has no central extensions of
class 3, then b2(G) =

(
d
2

) − e and e � (d−1)(d−2)
6 . In particular, b2(G) � d2−1

3 .

Both corollaries give only necessary conditions for an algebra or a group not to
have central extensions of class 3. The necessary and sufficient condition is given by
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n(A) = 0, and must be decided based on the concrete presentation. Nevertheless,
the results presented here, together with known restrictions on the cohomology of
smooth varieties, imply that certain class 2 nilpotent groups (including the Heisen-
berg groups H4m+1) are not isomorphic to the fundamental group of any smooth
variety.

Before we formulate the statement, we note a well-known result due to Deligne
(see [4]): if G ∈ P, the cohomology groups of the associated Lie algebra have a
mixed Hodge structure. Therefore Betti numbers b2n+1(L) are even for all n. In
particular, d = b1(L) is even, so either b1(L) ≡ 0 (mod 4) or b1(L) ≡ 2 (mod 4).

Corollary 3. Let G be a torsion-free class 2 nilpotent group with extension
matrix A and b1(G) � 3.

(1) Suppose b1(G) ≡ 0 (mod 4). If e is odd and n(A) is even, then G /∈ P.
(2) Suppose b1(G) ≡ 2 (mod 4). If e is odd and n(A) is odd, then G /∈ P.

Proof. To prove part (1), suppose G ∈ P. Let L = L(G) be the Lie algebra
associated with G. Since G ∈ P, odd Betti numbers of L are even. By Poincaré
duality, b2(L) = bd+e−2(L). Since d + e is odd, so is d + e − 2, and it follows that
b2(L) = bd+e−2(L) is even. By Lemma 1 we have b2(L) =

(
d
2

)−e+n(A). But
(
d
2

)
is

even because d is divisible by 4, so n(A)− e ≡ b2(L) ≡ 0 (mod 2). Hence n(A) ≡ e
(mod 2), which contradicts the assumption. Thus G /∈ P.

The proof of part (2) is very similar. Suppose G ∈ P. Since d + e is odd,
b2(L) =

(
d
2

) − e + n(A) = bd+e−2(L) ≡ 0 (mod 2), as above. But now
(
d
2

)
, e and

n(A) are each odd, so b2(G) =
(
d
2

) − e + n(A) ≡ 1 (mod 2). Therefore G �∈ P. �
The corollary excludes the Heisenberg groups H4k+1 from P, because for these

groups d = 4k, e = 1 and n(A) = 0. However, Corollary 7 also applies to some
groups of Heisenberg type which do have central extensions of class 3.

Example 5. Let G be the group generated by {x1, . . . , x8, y1}, with relations
(x8, x7) = (x7, x6) = y1 and all other commutators are identity. By an argument
similar to the one given in Example 3, the extension matrix has nullity 2. Since
d = 8 and e = 1, Corollary 7 implies G �∈ P.
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