EXTENDABLE SHELLING, SIMPLICIAL AND TORIC h-VECTOR OF SOME POLYTOPES

Duško Jojić

Abstract

We show that the stellar subdivisions of a simplex are extendably shellable. These polytopes appear as the facets of the dual of a hypersimplex. Using this fact, we calculate the simplicial and toric h-vector of the dual of a hypersimplex. Finally, we calculate the contribution of each shelling component to the toric h-vector.

1. Introduction

A polytopal (polyhedral) complex is a finite set \mathcal{C} of polytopes (including $\emptyset \in \mathcal{C}$) satisfying:
(i) if $P \in \mathcal{C}$ and Q is a face of P, then $Q \in \mathcal{C}$;
(ii) For all $P, Q \in \mathcal{C}, P \cap Q$ is a (possible empty) face of both P and Q.

For the definitions and properties of polytopes, see [10]. A simplicial complex is a special case of polytopal complex, the case when every polytope is a simplex. In this paper we consider only pure complexes \mathcal{C}, that is, complexes which satisfy the condition that all the maximal faces with respect to inclusion, called the facets of \mathcal{C}, have the same dimension, called the dimension of \mathcal{C}.

An example of a pure polytopal complex is the boundary complex $\mathcal{C}(\partial P)$ of a polytope P; the set of the faces of P except for the polytope itself.

A shelling of a polytopal complex \mathcal{C} is a linear ordering $F_{1}, F_{2}, \ldots, F_{k}$ of its facets which is arbitrary for $\operatorname{dim} \mathcal{C}=0$ (all F_{i} are points), and for $\operatorname{dim} \mathcal{C}>0$ has to satisfy the following conditions (see [4] or Section 8 in [10]):
(i) The boundary complex $\mathcal{C}\left(\partial F_{1}\right)$ of the first facet has a shelling.
(ii) For every $i>1$, the intersection of F_{i} with the previous facets is a beginning part of a shelling of the boundary complex $\mathcal{C}\left(\partial F_{i}\right)$, that is:

$$
F_{i} \cap\left(\bigcup_{j<i} F_{j}\right)=G_{1} \cup G_{2} \cup \cdots \cup G_{l}
$$

for some shelling $G_{1}, G_{2}, \ldots, G_{l}, \ldots, G_{m}$ of $\mathcal{C}\left(\partial F_{i}\right)$.

[^0]For polytopal complexes, the condition (i) is pleonastic, because the boundary of any polytope is shellable, see [4]. Further, for simplicial complexes, the condition (ii) can be simplified:

For every $i<j \leqslant k$ there exist some $l<j$ and a vertex v of F_{j} such that

$$
\begin{equation*}
F_{i} \cap F_{j} \subset F_{l} \cap F_{j}=F_{j} \backslash\{v\} \tag{1}
\end{equation*}
$$

A polytopal (simplicial) complex \mathcal{C} is extendably shellable if every partial shelling can be extended to a complete shelling of \mathcal{C}. This concept is essential for the algorithmic use of shellings, but we know very few about extendable shellability. Ziegler showed in [9] that the boundaries of "almost all" 4-polytopes are not extendably shellable.

For a d-dimensional polytopal (simplicial) complex \mathcal{C}, we denote the number of i-dimensional faces of \mathcal{C} by f_{i}, and $f(\mathcal{C})=\left(f_{0}, f_{1}, \ldots, f_{d}\right)$ is called the f-vector. A generating polynomial for the f-vector is the f-polynomial:

$$
f(\mathcal{C}, x)=x^{d+1}+f_{0} x^{d}+f_{1} x^{d-1}+\cdots+f_{d-1} x+f_{d}
$$

A new invariant, the h-vector $h(\mathcal{C})=\left(h_{0}, h_{1}, \ldots, h_{d}, h_{d+1}\right)$ is defined to be the coefficients of $f(C, x-1)$:

$$
\begin{equation*}
f(\mathcal{C}, x-1)=h_{0} x^{d+1}+h_{1} x^{d}+\cdots+h_{d} x+h_{d+1}=h(\mathcal{C}, x) \tag{2}
\end{equation*}
$$

The h-vector of a shellable simplicial complex \mathcal{C} has the following combinatorial interpretation. For a fixed shelling $F_{1}, F_{2}, \ldots, F_{k}$ of \mathcal{C}, we define the restriction R_{j} of the facet F_{j} :

$$
R_{j}=\left\{v \in V\left(F_{j}\right): F_{j} \backslash\{v\} \subset F_{i} \text { for some } 1 \leqslant i<j\right\}
$$

that is, R_{j} is a minimal new face at the j-th step in the given shelling.
The type of F_{j} in the given shelling is the cardinality of R_{j}, i.e., type $\left(F_{j}\right)=\left|R_{j}\right|$. Now, we have that

$$
h_{k}(\mathcal{C})=\left|\left\{j: \operatorname{type}\left(F_{j}\right)=k\right\}\right|
$$

This interpretation of the h-vector was of great significance in the proof of the upper-bound theorem and in the characterization of f-vectors of simplicial polytopes, see [10].

The entries of the h-vector of a simplicial polytope are Betti numbers of the associated toric variety. This can be generalized to nonsimplicial polytopes, to define the toric h-vector, but we do not have combinatorial interpretation for the entries of this vector.

In this paper, we use the combinatorial formula for the toric h-vector of Eulerian poset given by Stanley [8]. To a graded poset P we associate two polynomials, $f(P, t)$ and $g(P, t)$ recursively:
(1) For the Boolean lattice B_{1}, the only graded poset of rank 1 , we have $f\left(B_{1}, t\right)=g\left(B_{1}, t\right)=1$.
(2) If $\operatorname{rank}(P)=n+1>0$, then $f(P, t)$ has the degree n, say
$f(P, t)=h_{0}^{T}+h_{1}^{T} t+\cdots+h_{n-1}^{T} t^{n-1}+h_{n}^{T} t^{n}$, and we define $g(P, t)=h_{0}^{T}+\left(h_{1}^{T}-h_{0}^{T}\right) t+\cdots+\left(h_{[n / 2]}^{T}-h_{[n / 2]-1}^{T}\right) t^{[n / 2]}$.
(3) If $\operatorname{rank}(P)=n+1>0$ we define

$$
\begin{equation*}
f(P, t)=\sum_{x \in P, x<\hat{1}_{P}} g\left(\left[\hat{0}_{P}, x\right], t\right)(t-1)^{n-r(x)} \tag{3}
\end{equation*}
$$

The toric h-vector $h^{T}(P)=\left(h_{0}^{T}, h_{1}^{T}, \ldots, h_{n}^{T}\right)$ of an Eulerian poset P is defined as the vector of coefficients of the polynomial $f(P, t)$.

For all simplicial Eulerian posets the toric h-vector coincides with the usual h-vector, defined with relation (2). Further, for the entries of the toric h-vector of any Eulerian poset of rank $n+1$ holds $h_{i}^{T}=h_{n-i}^{T}$.

A poset P is quasisimplicial if for any coatom c of P, the interval [$\hat{0}, c]$ is simplicial, that is, for any corank 2 element x of P, the interval $[\hat{0}, x]$ is a Boolean algebra. From the formulae (3) and the fact that for all Boolean lattices B_{m} the equality $g\left(B_{m}, t\right)=1$ holds, we can obtain that for a quasisimplicial poset P whose h-vector is $h(P)=\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ the toric h-vector of P is

$$
h_{i}^{T}= \begin{cases}h_{i} & \text { for } i \leqslant[n / 2] \tag{4}\\ h_{n-i} & \text { for } i>[n / 2]\end{cases}
$$

2. Polytopes T_{k}^{n} are extendable shellable

The stellar subdivision of a polytope P in a face F (see [6] for more details) is a new polytope $\operatorname{conv}\left(P \cup x^{F}\right)$, where x^{F} is a point of the form $y^{F}-\varepsilon\left(y^{P}-y^{F}\right)$, where y^{P} is in the interior of P, y^{F} is in the relative interior of F, and ε is small enough. Let T_{k}^{n} denotes a polytope obtained as a stellar subdivision of n-simplex Δ_{n} in a k-face S. Obviously, T_{k}^{n} is simplicial and in [2] we can find that

$$
\begin{equation*}
\partial T_{k}^{n}=\left(\Delta_{n} \backslash S\right) \cup\left(\partial S * \partial l k_{\Delta_{n}} S *\left\{x^{S}\right\}\right) \tag{5}
\end{equation*}
$$

Remark 1. Let us denote the vertices of S with $r_{1}, r_{2}, \ldots, r_{k+1}$; the vertices of $\Delta_{n} \backslash S$ denote with $c_{1}, c_{2}, \ldots, c_{n-k}$, and let c_{n-k+1} denotes the new vertex x^{S}. Now, we have that the set of the vertices of T_{k}^{n} is

$$
V\left(T_{k}^{n}\right)=\left\{r_{1}, r_{2}, \ldots, r_{k+1}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{n-k}, c_{n-k+1}\right\}
$$

From the relation (5), we conclude that all facets of T_{k}^{n} are just ($n-1$)-simplices $F_{i, j}=\operatorname{conv}\left(V\left(T_{k}^{n}\right) \backslash\left\{r_{i}, c_{j}\right\}\right)$, for all $i=1,2, \ldots, k+1 ; j=1,2, \ldots, n-k, n-k+1$. Therefore, if we label rows and columns of a $(k+1) \times(n-k+1)$ rectangle $R_{(k+1) \times(n-k+1)}$ with vertices $r_{1}, r_{2}, \ldots, r_{k+1}$ and $c_{1}, c_{2}, \ldots, c_{n-k}, c_{n-k+1}$ of T_{k}^{n}, then facets of T_{k}^{n} correspond with $(k+1)(n-k+1)$ squares of $R_{(k+1) \times(n-k+1)}$.

Now, with an appropriate labelling of the vertices, we can prove that the following complexes are combinatorially equivalent: $\partial T_{k}^{n} \cong \partial\left(\Delta_{k} \times \Delta_{n-k}\right)^{*} \cong \partial \Lambda_{k}^{n+1}$ (here Λ_{k}^{n+1} is a simplicial n-disk, obtained as the union of $k+1$ facets of an $(n+1)$ simplex).

Note that the facets $F_{i, j}$ and $F_{p, q}$ of T_{k}^{n} share a common $(n-2)$-simplex if and only if $i=p$ or $j=q$ (corresponding squares are in the same row or column
of $\left.R_{(k+1) \times(n-k+1)}\right)$. Now, it is easy to verify that the lexicographical order of the facets of T_{k}^{n}

$$
\begin{equation*}
F_{i, j}<F_{p, q} \Leftrightarrow i<p \text { or } i=p, j<q \tag{6}
\end{equation*}
$$

is a shelling order. In this order we have that type $\left(F_{i, j}\right)=i+j-2$, so we can conclude that for $0 \leqslant k \leqslant n-k$ the h-vector of the polytopes T_{k}^{n} is $h\left(T_{k}^{n}\right)=$ $(1,2, \ldots, k, k+1, \ldots, k+1, k, \ldots, 1)$.

Theorem 2. Polytopes T_{k}^{n} are extendably shellable.

Proof. Let \mathcal{F} be a subset of the facets of T_{k}^{n}, which we can identify with the squares in the rectangle $R_{(k+1) \times(n-k+1)}$. For all $i=1,2, \ldots, k+1$ we let $\mathcal{F}_{i}=\left\{j \in[n-k+1]: F_{i, j} \in \mathcal{F}\right\}$; i.e., \mathcal{F}_{i} is the set of the squares from \mathcal{F} contained in the i-th row of $R_{(k+1) \times(n-k+1)}$. We will prove that the following statements are all equivalent:
(a) there exists a shelling order for the union of the facets contained in \mathcal{F}.
(b) the sets \mathcal{F}_{i} form a chain: for all i, j we have that $\mathcal{F}_{i} \subseteq \mathcal{F}_{j}$ or $\mathcal{F}_{j} \subseteq \mathcal{F}_{i}$.
(c) there exists a shelling of T_{k}^{n} with the facets from \mathcal{F} at the beginning.
(a) $\Rightarrow(\mathrm{b})$. Assume that for some i, i^{\prime} there exists j such that $j \in \mathcal{F}_{i}$ and $j \notin \mathcal{F}_{i^{\prime}}$. Now, from the shellability of \mathcal{F}, for all $j^{\prime} \in \mathcal{F}_{i^{\prime}}$, the intersection $F_{i, j} \cap F_{i^{\prime}, j^{\prime}}$ is contained in an $(n-2)$-simplex, which is the intersection of $F_{i, j}$ or $F_{i^{\prime}, j^{\prime}}$ with a facet from \mathcal{F}, see (1). The only facets of T_{k}^{n} with the above properties are $F_{i, j^{\prime}}$ and $F_{i^{\prime}, j}$. As we assumed that $F_{i^{\prime}, j} \notin \mathcal{F}$, then shellability of \mathcal{F} implies that $F_{i, j^{\prime}} \in \mathcal{F}$, and therefore $\mathcal{F}_{i} \supseteq \mathcal{F}_{i}^{\prime}$.
(b) \Rightarrow (c). We may assume that $\mathcal{F}_{1} \supseteq \mathcal{F}_{2} \supseteq \ldots \supseteq \mathcal{F}_{k+1}$ (because we can relabel the vertices of S). We define the following linear order for the facets of T_{k}^{n} :

$$
\begin{equation*}
F_{i, j}<F_{k, l} \Leftrightarrow \text { either } j \in \mathcal{F}_{i}, l \notin \mathcal{F}_{k} \text { or } i<k \vee i=k, j<l . \tag{7}
\end{equation*}
$$

If $F_{a, b}$ precedes to $F_{c, d}$ in this order we consider the two possibilities:
$1^{\circ} a \leqslant c$, when $b \notin \mathcal{F}_{a}, d \notin \mathcal{F}_{c}$ or $b \in \mathcal{F}_{a}, d \in \mathcal{F}_{c}$ or $b \in \mathcal{F}_{a}, d \notin \mathcal{F}_{c}$, and then

$$
F_{a, b} \cap F_{c, d} \subseteq F_{a, d} \cap F_{c, d}=F_{c, d} \backslash\left\{r_{a}\right\}
$$

$2^{\circ} c<a$, when $b \in \mathcal{F}_{a}, d \notin \mathcal{F}_{c}$, and then $F_{a, b} \cap F_{c, d} \subseteq F_{c, b} \cap F_{c, d}=F_{c, d} \backslash\left\{c_{b}\right\}$.
Note that $F_{a, d}$ (and $F_{c, b}$ in the second case) precedes to $F_{c, d}$ in the given order. Therefore, a shelling order for the facets of T_{k}^{n} is defined by (7).

Finally, the implication $(c) \Rightarrow(a)$ is obvious.
It is shown in [5] that the cross polytope C_{n}^{Δ} (the convex hull of the standard basis vectors in \mathbb{R}^{n} and their negatives), is not extendably shellable in dimension 12 or higher. The cross polytope can be obtained as the dual of the product of segments, or by successive stellar subdivisions of a simplex, so we cannot generalize Theorem 2 in this way.

3. Simplicial and toric h-vector of $\Delta_{n-1}^{*}(k)$

The hypersimplex $\Delta_{n-1}(k)$ is a polytope in \mathbb{R}^{n} obtained as the intersection of the n-cube $C_{n}=[0,1]^{n}$ with the hyperplane $H_{k}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}=k\right\}$. In particular, $\Delta_{n-1}(1)$ and $\Delta_{n-1}(n-1)$ are $(n-1)$-simplices. As the polytopes $\Delta_{n-1}(k)$ and $\Delta_{n-1}(n-k)$ are isomorphic, we can assume that $0 \leqslant k \leqslant n-k$. The face lattice $L\left(\Delta_{n-1}(k)\right)$ of a hypersimplex is described with the following

Lemma 3. Let

$$
\begin{gathered}
L_{n-1}(k)=\{(A, B): A \subset B \subseteq[n] ;|A|<k ;|B|>k\} \\
\cup\{(A, A): A \subseteq[n] ;|A|=k\} \cup\{\hat{0}\}
\end{gathered}
$$

If we define an order on $L_{n-1}(k)$ with $(A, B) \leqslant(C, D) \Leftrightarrow A \supseteq C, B \subseteq D$, then $L\left(\Delta_{n-1}(k)\right) \cong L_{n-1}(k)$.

Proof. Note that H_{k} does not intersect the edges of C_{n} in their relative interior. Therefore, the only vertices of $\Delta_{n-1}(k)$ are vertices of C_{n} contained in H_{k}. The correspondence

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq[n], \quad(A, A) \leftrightarrow T_{A}=\left(t_{1}, t_{2}, \ldots, t_{n}\right), \quad t_{i}= \begin{cases}1, & i \in A \\ 0, & i \notin A\end{cases}
$$

gives us a bijection between the atoms of $L_{n-1}(k)$ and the vertices of $\Delta_{n-1}(k)$.
For any pair (A, B) of the subsets of $[n]$, such that

$$
\begin{equation*}
A \subset B \subseteq[n] ; \quad|A| \leqslant k-1 ; \quad|B| \geqslant k+1 \tag{8}
\end{equation*}
$$

the linear functional $x \mapsto \sum_{i \in A} x_{i}-\sum_{j \notin B} x_{j}$ reaches the maximum on the $\Delta_{n-1}(k)$ at the $(|B|-|A|-1)$-dimensional face

$$
S_{(A, B)}=\left\{x \in C_{n}: \sum_{i=1}^{n} x_{i}=k ; \forall i \in A, x_{i}=1 ; \forall j \notin B, x_{j}=0\right\}
$$

So, we establish a bijection between all of pairs (A, B) for which the relation (8) holds and all $(|B|-|A|-1)$-faces of $\Delta_{n-1}(k)$. Also, it is easy to see that the correspondence $(A, B) \mapsto S_{(A, B)}$ defines a poset isomorphism between $L_{n-1}(k)$ and the face lattice $L\left(\Delta_{n-1}(k)\right)$.

Note that the face lattice of the dual polytope $\Delta_{n-1}^{*}(k)$ can be obtained by applying the E_{t}-construction on the Boolean lattice B_{n}, see in $[\boldsymbol{7}]$.

Remark 4. For a vertex T_{A} of $\Delta_{n-1}(k)$, denote by F_{A} its corresponding facet in $\Delta_{n-1}^{*}(k)$. For $1<k<n$, note that $\Delta_{n-1}(k)$ has $2 n$ facets R_{i} and C_{j} :

$$
\begin{aligned}
& R_{i}=\left\{x \in \Delta_{n-1}(k): x_{i}=1\right\}=S_{(\{i\},[n])}=\operatorname{conv}\left(\left\{T_{A}: i \in A\right\}\right) \\
& C_{j}=\left\{x \in \Delta_{n-1}(k): x_{j}=0\right\}=S_{(\emptyset,[n] \backslash\{j\})}=\operatorname{conv}\left(\left\{T_{A}: j \notin A\right\}\right)
\end{aligned}
$$

Therefore, $\Delta_{n-1}^{*}(k)$ has 2 n vertices: $V\left(\Delta_{n-1}^{*}(k)\right)=\left\{r_{1}, \ldots, r_{n}, c_{1}, \ldots c_{n}\right\}$. The vertex T_{A} in $\Delta_{n-1}(k)$ is contained in the facets R_{i}, for $i \in A$ and C_{j}, for $j \notin A$. Therefore, the set of the vertices of F_{A} is $V\left(F_{A}\right)=\left\{r_{i}: i \in A\right\} \cup\left\{c_{j}: j \notin A\right\}$.

An edge $E=S_{\left(A \backslash\left\{i_{0}\right\}, A \cup\left\{j_{0}\right\}\right)}$ of $\Delta_{n-1}(k)$, which contains T_{A}, is contained in the facets R_{i}, for $i \in A \backslash\left\{i_{0}\right\}$ and C_{j}, for $j \in A^{c} \backslash\left\{j_{0}\right\}$. So, we have that the maximal face of F_{A}, which corresponds to E, is an $(n-3)$-simplex $G_{r_{i_{0}}, c_{j_{0}}}(A)=$ $\operatorname{conv}\left(V\left(F_{A}\right) \backslash\left\{r_{i_{0}}, c_{j_{0}}\right\}\right)$.

For $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subset[n]$, we denote the i-th row of a $k \times(n-k)$ rectangle with $r_{a_{k+1-i}}$. If $A^{c}=\left\{b_{1}, b_{2}, \ldots, b_{n-k}\right\}$, then the j-th columns we denote with $c_{b_{j}}$. Now, from Remark 1 it follows that all of the facets of $\Delta_{n-1}^{*}(k)$ are combinatorially equivalent with T_{k-1}^{n-2}.

Note that $G_{r_{a}, c_{b}}(A)$ and $G_{r_{b}, c_{a}}(A \backslash\{a\} \cup\{b\})$ denote the same faces of $\Delta_{n-1}^{*}(k)$ (the common facets of F_{A} and $\left.F_{A \backslash\{a\} \cup\{b\}}\right)$. So, with

$$
G_{r_{a}, c_{b}}(A), \text { for } A \subset[n],|A|=k ; a<b, a \in A, b \notin A,
$$

we list all of $(n-3)$-faces of $\Delta_{n-1}^{*}(k)$.
Now, we consider a lexicographic order of the facets of $\Delta_{n-1}^{*}(k)$:

$$
\begin{equation*}
F_{A}<_{L} F_{B} \Leftrightarrow A<_{L} B \Leftrightarrow \min (A \triangle B) \in A \tag{9}
\end{equation*}
$$

If we denote with Γ_{A} the intersection of the facet F_{A} with the previous facets in this order, we can prove that

$$
\Gamma_{A}=F_{A} \cap\left(\bigcup_{F_{A^{\prime}}<L_{L} F_{A}} F_{A^{\prime}}\right)=\bigcup_{a \in A, b \in[n] \backslash A, b<a} G_{r_{a}, c_{b}}(A) .
$$

Now, we use well known bijection between k-subsets of an n-set (facets of $\Delta_{n-1}^{*}(k)$), and all shortest paths from lower left-hand corner, and ending at the upper righthand corner of a $k \times(n-k)$ rectangle. The squares above this path correspond with facets of F_{A} contained in Γ_{A}.

From Theorem 2, it follows that there exists a shelling for facets from Γ_{A}, and this shelling can be extended to the shelling of the whole F_{A}, and therefore $<_{L}$ is a shelling order for the facets of $\Delta_{n-1}^{*}(k)$.

Further, motivated by (6), we can define the linear order of the $(n-3)$-faces of $\Delta_{n-1}^{*}(k)$:

$$
G_{r_{a}, c_{b}}(A)<G_{r_{k}, c_{l}}\left(A^{\prime}\right) \Leftrightarrow \begin{cases}A<_{L} A^{\prime}, & \text { or } \\ A=A^{\prime}, r_{a}>r_{k}, & \text { or } \\ A=A^{\prime}, r_{a}=r_{k} \text { and } c_{b}<c_{l} . & \end{cases}
$$

It is easy to prove that this is a shelling order for $(n-3)$-skeleton of $\Delta_{n-1}^{*}(k)$. Also, we can note in the above list, that from a facet F_{A} we take just the facets which does not appear in Γ_{A}, i.e., facets whose corresponding squares are bellow corresponding path. When the simplex $G_{r_{a}, c_{b}}(A)$ corresponds with the square (i, j) in a $k \times(n-k)$ rectangle, then its type in described shelling is $i+j-2$. Therefore, the square (i, j) below the corresponding path, contributes the one to $i+j-2$ entry of h-vector of $\Delta_{n-1}^{*(n-3)}(k)$.

If we define a $k \times(n-k)$ matrix $A_{k, n-k}$ with $a_{i, j}=$ number of paths in $R_{k \times(n-k)}$, in which the square (i, j) are below, then we have that

$$
h_{k}\left(\Delta_{n-1}^{*(n-3)}(k)\right)=\sum_{i+j=k+2} a_{i, j}
$$

By considering the possibilities for the first step in a such path, it is easy to note that the matrices $A_{k, n-k}$ satisfy the following recursive relations:

$$
A_{k, n-k}=\left[\begin{array}{cc}
0 & \tag{10}\\
0 & \\
\vdots & A_{k, n-k-1} \\
0 &
\end{array}\right]+\left[\begin{array}{ccc}
& \begin{array}{c}
n k-1, n-k \\
\binom{n-1}{k-1}
\end{array} & \binom{n-1}{k-1} \\
\cdots & \binom{n-1}{k-1}
\end{array}\right]
$$

Theorem 5. For all $n \in \mathbb{N}$ and $0 \leqslant k \leqslant n-k$ it holds:

$$
\left.h\left(\Delta_{n-1}^{*}(k)\right)=\left(\begin{array}{c}
\binom{n}{0} \tag{11}\\
\binom{n}{0}+\binom{n}{1} \\
\vdots \\
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1} \\
\vdots \\
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1} \\
\vdots \\
\binom{n}{0}
\end{array}\right)-\binom{n}{k}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
1 \\
\vdots \\
1 \\
0
\end{array}\right)\right\}_{\text {zeros }}^{n-k}
$$

Proof. From Euler-Poincaré formula we know that the last entry of h-vector is always equal 1. The above combinatorial interpretation for the h-vector of the $(n-3)$-skeleton of $\Delta_{n-1}^{*}(k)$ and relation (10) gives us that:
$\left.h^{(n-3)}\left(\Delta_{n-1}^{*}(k)\right)=\binom{0}{h^{(n-4)}\left(\Delta_{n-2}^{*}(k)\right)}+\binom{h^{(n-4)}\left(\Delta_{n-2}^{*}(k-1)\right)}{0}+\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ \binom{n-1}{k-1} \\ \vdots \\ (n-1 \\ k-1\end{array}\right)\right\}^{\substack{k-1 \\ \text { zeros } \\ 0}}$
Let us to denote with $\widetilde{h}(P)$ "the reduced" h vector of a polytope P, i.e., $h(P)=$ $(\widetilde{h}(P), 1)$. Now we use Stanley's trick to compute the h-vector of $\Delta_{n-1}^{*}(k)$. From the above we obtain the following recursive relations

$$
\begin{aligned}
\widetilde{h}\left(\Delta_{n-1}^{*}(k)\right)=\left(0, \widetilde{h}\left(\Delta_{n-2}^{*}(k)\right)\right) & +\left(\widetilde{h}\left(\Delta_{n-2}^{*}(k-1)\right), 0\right) \\
& +(\underbrace{0, \ldots, 0}_{k-1},\binom{n-1}{k-1}, 0, \ldots, 0,1-\binom{n-1}{k-1}) .
\end{aligned}
$$

Note that $\binom{n-1}{k-1}-1$ is the last entry of $h^{(n-4)}\left(\Delta_{n-2}^{*}(k-1)\right)$. The formulae (11) will follow from the above relation and beginning conditions; $\Delta_{2}^{*}(1)$ i $\Delta_{2}^{*}(2)$ are 2-simplexes.

Now, we consider the toric h-vector of $\Delta_{n-1}^{*}(k)$. The polytopes $\Delta_{n-1}^{*}(k)$ are quasisimplicial, and from the formulae (4), for $0 \leqslant k \leqslant n-k$ we have that

$$
\begin{aligned}
h^{T}\left(\Delta_{n-1}^{*}(k)\right)= & \left(\binom{n}{0},\binom{n}{0}+\binom{n}{1}, \ldots,\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1},\right. \\
& \left.\ldots,\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}, \ldots,\binom{n}{0}+\binom{n}{1},\binom{n}{0}\right) .
\end{aligned}
$$

Bayer showed in [1] how the shelling of the ordinary polytope could be used to compute the toric h-vector. Here, we are able to compute the toric h-vector of $\Delta_{n-1}^{*}(k)$ from the shelling order described in (9). For this we need the following theorem, see [3].

Theorem 6. For a d-disk Γ whose h-vector is $h(\Gamma)=\left(h_{0}, h_{1}, \ldots, h_{d}, 0\right)$ and its boundary $(d-1)$-sphere $\partial \Gamma$ the following equality holds

$$
h_{i}(\partial \Gamma)=h_{0}+h_{1}+\cdots+h_{i}-h_{d+1-i}-\cdots-h_{d+1}, \text { for } 0<i \leqslant[d / 2] .
$$

With $h_{A}^{T}(t)$ we denote the contributions to $h\left(\Delta_{n-1}^{*}(k), t\right)$ of the faces that appear for the first time when we add facet F_{A} :

$$
h_{A}^{T}(t)=\sum_{G \subseteq F_{A}, G \notin \bigcup_{B<A} F_{B}} g(G, t)(t-1)^{n-\operatorname{dim} G} .
$$

ThEOREM 7. For $1 \leqslant a_{1}<a_{2}<\cdots<a_{k} \leqslant n$ and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ we have $h_{A}^{T}(t)=t^{n-k-1} \sum_{i=1}^{k} t^{2 i-a_{i}}$.

Proof. If we denote with Λ_{A} the intersection of the facet F_{A} with the facets that came after F_{A} in the shelling order given in the relation (9), new faces are exactly those from $\Lambda_{A} \backslash \partial \Lambda_{A}$. Therefore, from the definition of h_{A}^{T} we obtain:

$$
h_{A}^{T}=\sum_{F \in \Lambda_{A}} g(F, t)(t-1)^{n-1-\operatorname{dim} F}-\sum_{F \in \partial \Lambda_{A}} g(F, t)(t-1)^{n-1-\operatorname{dim} F}+g\left(F_{A}, t\right) .
$$

The face posets of Λ_{A} and $\partial \Lambda_{A}$ are simplicial, and therefore we can compute their contribution to the h_{A}^{T} from the usual (simplicial) h-vector of Λ and $\partial \Lambda$. So, we have

$$
\begin{equation*}
h_{A}^{T}=(t-1) h\left(\Lambda_{A}, t\right)-(t-1)^{2} h\left(\partial \Lambda_{A}, t\right)+t^{k-1}+t^{k-2}+\cdots+t+1 \tag{12}
\end{equation*}
$$

In a shelling order for Λ_{A}, the reverse order of the one given in (6), the contribution of the squares from the $(k+1-i)$-th row (the row denoted with $r_{a_{i}}$) to the h-vector of Λ_{A} is

$$
h_{a_{i}}=(\overbrace{0,0, \ldots, 0}^{i-1}, \overbrace{1,1, \ldots, 1}^{n-k-a_{i}+i}, \overbrace{0, \ldots, 0}^{k-2 i+a_{i}}) .
$$

If $i-1 \leqslant k-2 i+a_{i}$, from Theorem 6 , we know that the contribution of a_{i} to the h-vector of $\partial \Lambda_{A}$ is

$$
(\overbrace{0,0, \ldots, 0}^{i-1}, 1,2, \ldots, r, r \ldots, r, r, \ldots, 2,1, \overbrace{0,0, \ldots, 0}^{i-1})
$$

When we put this in (12), we obtain that the contribution of the a_{i} to h_{A}^{T} is exactly $t^{n+2 i-k-a_{i}-1}$.

A similar calculation goes for the case $i-1>k-2 i+a_{i}$, and the theorem follows.

References

[1] M. Bayer, Shelling and the h-vector of the (extra)ordinary polytope, In: Jacob Eli Goodman et al. (eds.), Combinatorial and Computational Geometry, Cambridge University Press, 2005, pp. 97-120.
[2] M. Bayer, L. Billera, Counting faces and chains in polytopes and posets, In: C. Greene (ed.): Combinatorics and Algebra, Contemporary Math. 34, American Mathematical Society, 1984, 207-252.
[3] L. Billera , A. Björner, Face numbers of polytopes and complexes, In: J. E. Goodman, J. O'Rourke (eds.), CRC Handbook on Discrete and Computational Geometry, CRC Press, Boca Ration (Florida), 1997, 291-310.
[4] M. Bruggeser, P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197-205.
[5] T. H. Huntington, Counterexamples in Discrete Geometry, PhD thesis, University of California, Berkeley, 2004.
[6] M. Henk, J. Richter-Gebert, and G. M. Ziegler, Basic properties of convex polytopes, In: J. E. Goodman, J. O'Rourke (eds.), CRC Handbook on Discrete and Computational Geometry, CRC Press, Boca Ration (Florida), 1997, 243-270.
[7] A. Paffenholz, G. M. Ziegler, The E_{t}-construction for lattices, spheres and polytopes, Discrete Comput. Geom. 32:4 (2004), 601-621.
[8] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, Pacific Grove, 1986.
[9] G. M. Ziegler, Shelling polyhedral 3-balls and 4-polytopes, Discrete Comput. Geom. 19:2 (1998), 159-174.
[10] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.

Prirodno-matematički fakultet
78000 Banja Luka
Bosnia and Herzegovina
ducci68@blic.net

[^0]: 2000 Mathematics Subject Classification: Primary 52B22; Secondary 52B05.
 Key words and phrases: extendable shellability, hypersimplex, toric h-vector.

