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A FEW REMARKS ON
n-INFINITE FORCING COMPANIONS

Milan Z. Grulović

Abstract. We show that the basic properties of Robinson’s infinite forcing
companions are naturally transmitted to the so called n-infinite forcing com-
panions and start with the examination of mutual relations of n-infinite forcing
companions of Peano arithmetic.

1. Preliminaries

Throughout the article L is a first order language. In general discussions mostly
it is irrelevant whether it is with equality or not; however, in some cases, for instance
when it comes to finite models, the supposition of the existence of the equality
relation could be of significance – see 2.6.

For a theory T of the language L, µ(T ) will be the slass of all its models (as
usual, by a theory we assume a consistent deductively closed set of sentences – thus,
T � ϕ means ϕ ∈ T ). By Σn-formula we mean any formula equivalent to a formula
in prenex normal form whose prenex consists of n blocks of quantifiers, the first
one is the block of existential quantifiers (Πn-formulas are defined analoguosly).
The models (of the language L) will be denote by A,B . . ., while their domains
will be A,B, . . .. For a model A, Diagn(A) is the set of all Σn-, Πn-senteneces of
the language L(A) (the simple expansion of the language L obtained by adding a
new set of constants which is in one to one correspendence with domain A) which
hold in A. In particular, for n = 0, Diag0(A) is not the diagram of A in the sense
in which it is used in model theory, but this difference is of no importance for the
text (the same situation we had when we were dealing with the generalization of
finite forcing). As usual, we will not distinguish an element a from A and to it
the corresponding constant. If A is a submodel of B and (B, a)a∈A � Diagn(A),
we say that A is an n-elementary submodel of B (i.e., that B is an n-elementary
extension of A), in notation A ≺n B. In general, A is n-embedded in B if for some
embedding f of A into B, f(A) is an n-elementary submodel of B. A Σn+1-chain
of models is a chain of models A0 < A1 < · · · < Aα < · · · , α < γ, where for each
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α < β (< γ), Aα is an n-elementary submodel of Aβ ; we use A < B to denote
that A is a submodel of B, therefore < is “equal” to ≺0.

The definition of n-infinite forcing follows the definition of (Robinson’s) infinite
forcing with the exception of the the case of ”negation”. So if K is a class of models
of the language L, A its element and ϕ a sentence of the language L(A), we say
that A n-infinitely forces ¬ϕ (with respect to the class K), in notation A �n ϕ,
iff no n-elementary extension of A n-infinitely forces ϕ. A model A from K is
n-infinitely generic iff for any sentence ϕ of the language L(A) either A �n ϕ or
A �n ¬ϕ.

On condition that K is n-inductive, i.e., closed under unions of Σn+1-chains, it
holds:

Lemma 1.1. Any model of class K is an n-elementary submodel of some n-
infinitely generic model.

Lemma 1.2. (a) If A and B are n-infinitely generic models of the class K and
if A is an n-elementary submodel of B, then A is an elementary submodel of B;

(b) every n-infinitely generic model of the class K is an n-existentially closed
model in K.

Theorem 1.3. The class Ln
K of all n-infinitely generic models of the class K

is the unique subclass C of the class K satisfying the following:
(1) C is n-mutually-consistent or, in other words, n-model-consistent with K

(which means in fact that any model of K is an n-elementary submodel of
some model from C);

(2) C is n-model-complete;
(3) C contains any other subclass of K satisfying the conditions (1) and (2).

For the readers who are not willing to bother themselves by recalling the basic
facts from the theory of infinite forcing the proof of these (and some other) analogies
of the corresponding assertions of n-infinite forcing are given in [9].

2. n-infinite forcing companion

Definition 2.1. For a given theory T of the language L let Ln
T be the subclass

of the n-infinitely generic models of the class µ(T ∩Πn+1). Then the theory Th(Ln
T )

is called the n-infinite forcing companion of the theory T and is denoted by TFn .
The theory T is n-infinite forcing complete iff T = TFn .

Lemma 2.2. (a) If a (first-order) theory T of the language L has the n-model
companion – T ∗, then En

T = Ln
T = µ(T ∗), where En

T is the class of n-existentially
complete models of the theory T ;

(b) If one of the subclasses En
T , Ln

T of the class µ(T ∩ Πn+1) is a generalized
elementary class, then so is the other and in that case these classes have the same
theory (Th(En

T ) = Th(Ln
T )) which is the n-model companion of the theory T .

Proof. We recall that in the case it exists, the n-model companion of the
theory T is the theory which is n-mutually-consistent with T and n-model complete.
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(a) It is known that En
T = µ(T ∗) (see [9], [10]). Thus, En

T is n-model complete
and, by 1.2(b) and 1.3, En

T = Ln
T .

(b) If, for instance, Ln
T is a generalized elementary class, then Th(Ln

T ) is n-
model complete and n-mutually-consistent with T (1.3), hence the n-model com-
panion of T , and, by (a), Ln

T = En
T . The similarly case we have when En

T is a
generalized elementary class, only now we use the fact that a theory, whose each
model is Σn+1-existentially complete is n-model complete. �

Theorem 2.3. For given (first-order) theories (T ) and their n-infinite forcing
companions it holds:

(1) TFn = (T ∩ Πn+1)Fn ;
(2) T ∩ Πn+1 = TFn ∩ Πn+1;
(3) TFnFn

def= (TFn)Fn = TFn ;
(4) T1 ∩ Πn+1 = T2 ∩ Πn+1 iff TFn

1 = TFn
2 ;

(5) TFn is a complete theory iff T has the n-joint embedding property [8];
(6) T ∩ Πn+2 ⊆ Th(En

T ) ⊆ TFn ;
(7) If T has n-model companion – T ∗, then T ∗ = TFn .

Proof. (1) A direct consequence of the definition of n-infinite forcing com-
panion.

(2) It is clear that T ∩ Πn+1 ⊆ TFn ∩ Πn+1. The other inclusion follows from
1.1; if ϕ is Πn+1-sentence which is not a consequence of T , then for some model
A of T , A � ¬ϕ, and if the an n-infinitely generic model B is an n-elementary
extension of A, it follows B � ¬ϕ, whence ϕ �∈ TFn .

(3) By the previous items we have:

TFnFn = (TFn)Fn = (TFn ∩ Πn+1)Fn = (T ∩ Πn+1)Fn = TFn .

(4) An immediate consequence of (1) and (2).
(5) Suppose that T has the n-joint embedding property but that TFn is not

complete. Then, for some sentence ϕ of the language L and some n-infinitely
generic models A and B, A � ϕ and B � ¬ϕ. Let A1 and B1 be models of T ,
which are, respectively, n-elementary extensions of A and B (such models exist
since A,B ∈ µ(T ∩ Πn+1)). Let futher C be a model of T into which the models
A1 and B1 are n-embedded and let D be an n-infinitely generic model which is
an n-extension of C. Then A and B are elementary embedded into D, hence D
satisfies both ϕ and ¬ϕ, a contradiction. The other implication is also obvious;
we use the facts that any complete theory has the n-joint embedding property and
that Ln

T is n-model consistent with µ(T ∩ Πn+1).
(6) The relation T ∩ Πn+2 ⊆ Th(En

T ) is already known and the relation
Th(En

T ) ⊆ TFn follows directly from 1.2(b).
(7) By the previous lemma, Ln

T = µ(T ∗), whence TFn = Th(µ(T ∗)) = T ∗. �

Corollary 2.4. (a) If T is a complete, n-inductive theory, then T = TFk for
each k � n;

(b) If for some n, TFn = TFk for each k > n, then T = TFn ;
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(c) If for some n > 0, TFn is a complete theory, then, for each k < n, TFk is
also complete.

Lemma 2.5. Let A be a model of T ∩Πn+1. If the theory (T ∩Πn+2)∪Diagn(A)
is complete (i.e., if A n-completes T ∩ Πn+2), then A is an n-infinitely generic
model.

Proof. Trivial. There is some n-infinitely generic model B which is also an
n-elementary extension of A. By condition of the lemma, A is an elementary
submodel of B, thus itself an n-infinitely generic model. �

Corollary 2.6. Let T be a theory defined in the language (L) with equality
and with finite models. Then any its finite model is n-infinitely generic for any
n � 1.

Proof. Let A be a finite model of T . By a Π1-sentence from Diag1(A) we
can say that A has exactly |A| elements, so the only n-elementary extension of A
(for n � 1) is A itself. �

Corollary 2.7. (a) If T is an n-inductive theory and for each sentence ϕ
consistent with T there exists a model of T ∪ {ϕ} which n-completes T , then T is
n-infinite forcing complete.

(b) Any n-model complete theory is n-infinite forcing complete and, in fact, it
is its own n-model completion.

Proof. (a) By 2.3(6), T ⊆ TFn . Suppose ϕ �∈ T . Then, by the condition of
the corollary, there exists a model A of T ∪ {¬ϕ} which n-completes T and thus it
is n-infinitely generic. It follows that ϕ is not in TFn .

Part (b) is a direct consequence of (a) and the uniqueness of n-companion
operator. �

Lemma 2.8. Let A be a model of T ∩ Πn+1 and a an enumeration of its ele-
ments. Further, let �n and �A

n be the n-infinite forcing relations corresponding,
respectively, to the theories T and T ∪ Diagn(A). Then:

(a) If B is an n-elementary extension of A in µ(T ∩ Πn+1) and ϕ a sentence
defined in B, then

B �n ϕ iff (B, a) �A
n ϕ;

in particular, B ∈ Ln
T iff (B, a) ∈ Ln

T∪Diagn(A);

(b) TFn ∪ Diagn(A) ⊆ (T ∪ Diagn(A))Fn .

Proof. (a) By induction on the complexity of the formula ϕ. Obviously, only
the case ϕ ≡ ¬ψ is of some interest. Suppose B �n ϕ, but not (B, a) �A

n ϕ. Then,
for some n-elementary extension (C, a) of (B, a) in µ((T ∪ Diagn(A)) ∩ Πn+1),
(C, a) �A

n ψ, whence, by inductive hypothesis, C �n ψ. But, because of B ≺n C,
C n-infinitely forces ¬ψ as well, a contradiction. The inverse implication is clear
too.

(b) Suppose that a sentence ϕ of the language L(A) is not in (T ∪Diagn(A))Fn .
Then, for some (B, a) ∈ Ln

T∪Diagn(A), (B, a) � ¬ϕ, i.e. (B, a) �A
n ¬ϕ. Hence,
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B �n ¬ϕ, i.e. B � ¬ϕ. Since B is a model of TFn ∪ Diagn(A), it follows that
ϕ �∈ TFn ∪ Diagn(A). �

Corollary 2.9. If A is an n-infinitely generic model, then (T∪Diagn(A))Fn =
Th((A, a)) – the complete diagram of A (a is still an enumeration of the elements
of A).

Proof. Directly, by 1.2(a) and the previous lemma (again the item (a)). �
The next two propositions have the equivalents in the theory of n-finite forcing

(see [7]) and the proofs of the equivalent assertions are based on the same facts –
for they are direct consequences of Theorem 2.3 which has the analogy in n-finite
forcing.

Lemma 2.10. Let TDLOM be the theory of dense linear order with minimal and
maximal elements defined in the language with equality and just one binary relation.
Then TDLOM = TFn

DLOM for any n � 1 and TF
DLOM

def= TF0
DLOM is the theory of

dense linear order without minimal and maximal elements.

Proof. TDLOM is a complete, Π3-axiomatizable theory, whence TDLOM =
TFn

DLOM for each n � 1. On the other side, the existentially closed models of
this theory are exactly dense linear orderings without endpoints, which implies the
second part of the proposition (2.2(b)). �

Theorem 2.11. Let TPA be Peano arithmetic (defined in the language L =
{+, ·,=, 0, 1}). Then:

(a) For each (natural number) n there exists (a natural number) k > n such
that TFn

PA �= TFk

PA;

(b) None of the theories TFn

PA, n � 0, is complete;
(c) The standard model of Peano arithmetic (N) is not infinitely generic model;
(d) None of the theories TFn

PA, n � 0 is model complete; in paricular TF
PA is not

a model companion of TPA.

Proof. (a) Let us suppose that for some n it holds: for any k > n, TFn

PA =
TFk

PA. Then by 2.4(b), TPA = TFn

PA. By 1.2(b), there exists a nonstandard model
of Peano arithmetic which is n-existentially complete, contradictory to Theorem 5
from [4].

(b) It is known that Peano arithmetic does not have the joint embedding
property (see [11], or, for more details [14], [15], [16]).

(c) Due to (one) Gödel’s result, for any subtheory T of Th(N) with an effec-
tively recursively enumerable set of axioms there exists an universal sentence which
is satisfied in N but does not belong to T . Let us take for T the Π2-segment of
Peano arithmetic and let ϕ be an universal sentence from Th(N) which is not in
TPA ∩Π2. If we supposed that N is an infinitely generic model, then, by 1.2(a), it
would follow that ϕ ∈ TF

PA, whence (by 2.3(2)) ϕ ∈ TPA, a contradiction.
(d) In [5, Theorem 3.1] it is shown: no theory extending Π2-segment of Peano

arithmetic is model complete. �
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Let us still note the following. It is known that N is the only finitely generic
model of the (finitely forcing complete) theory Th(N) defined in the language
L = {+, ·,=, 0, 1} [1, Theorem 5.7]. On the other side, N is not infinitely generic
model for the same theory. Otherwise, by 1.2(a), Th(N) would be infinitely forcing
complete, but no existentially closed model of Th(N), except N, is model of Peano
arithmetic (see Theorems 2.20 and 2.21 in [17]). This example shows that in gen-
eral the condition in Lemma 2.5 cannot be weakened: T ∪ Diagn(A) is complete
does not necessarily imply that A is n-infinitely generic (but it implies that A is
n-finitely generic model – see the proof of Theorem 4.9 in [1] and Theorem 0.1 in
[7]).

By 2.5 and 2.3(6), any finite model in the theory with equality and with finite
models, which includes a lot of interesting theories – groups, rings, fields and so
on, is both 1-finitely and 1-infinitely generic model and, surely, in the cases of
mentioned theories it is neither finitely nor infinitely generic model. Thus for these
theories the intersection of the classes of 1-finitely and 1-infinitely generic models
is nonempty. However, the classes of finitely and infinitely generic models can be
disjoint, for instance in the case of groups [13, Theorem 11], commutative rings
with identity [3, Theorem 61] etc. It follows that for these theories infinite and
1-infinite forcing companions do not coincide (the first one contains the sentences
which provide the existence of infinitely many elements). Of course, in the case the
theory has the joint embedding property, but not the 1-joint embedding property
we obtain immediately that the infinite forcing companion is complete, while the
1-infinite forcing companion is not complete.
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