PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 85(99) (2009), 131–137

DOI:10.2298/PIM0999131J

PROPERTIES OF ARMENDARIZ RINGS AND WEAK ARMENDARIZ RINGS

Dušan Jokanović

Communicated by Žarko Mijajlović

ABSTRACT. We consider some properties of Armendariz and rigid rings. We prove that the direct product of rigid (weak rigid), weak Armendariz rings is a rigid (weak rigid), weak Armendariz ring. On the assumption that the factor ring R/I is weak Armendariz, where I is nilpotent ideal, we prove that R is a weak Armendariz ring. We also prove that every ring isomorphism preserves weak skew Armendariz structure. Armendariz rings of Laurent power series are also considered.

1. Introduction

Throughout this paper R denotes an associative ring with identity, σ denotes an endomorphism of R and $R[x;\sigma]$ denotes a skew polynomial ring with the ordinary addition and the multiplication subject to the relation $xr = \sigma(r)x$. When σ is an automorphism, $R[x, x^{-1}; \sigma]$ denotes a skew Laurent polynomial ring with the multiplication subject to the relation $x^{-1}r = \sigma^{-1}(r)x$.

The notion of Armendariz ring is introduced by Rege and Chhawchharia [1]. They defined a ring R to be Armendariz if f(x)g(x) = 0 implies $a_ib_j = 0$, for all polynomials $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$ from R[x]. The motivation for those rings comes from the fact that Armendariz had shown that reduced rings $(a^2 = 0 \text{ implies } a = 0)$ satisfy this condition. The notion of Armendariz ring is natural and useful in understanding the relation between annihilators of rings R and R[x] (see [4]). Those rings were also studied by Armendariz himself, Hong and Kim [5], Chen and Tong [3], Krempa [6] and others.

An endomorphism σ is rigid if $a\sigma(a) = 0$ implies a = 0, for all $a \in R$ (Krempa [6]). Following Hong, a ring is said to be rigid if it has a rigid endomorphism. Hong also generalized the notions of Armendariz and rigid ring to σ -skew Armendariz ring. Ring R is called σ -skew Armendariz if f(x)g(x) = 0 implies $a_i\sigma^i(b_j) = 0$, for all $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{j=0}^m b_j x^j$ from $R[x;\sigma]$ (see [5]). As a generalization of σ -skew Armendariz rings, Ouyang (see [2]) introduced a notion of weak σ -skew

131

²⁰⁰⁰ Mathematics Subject Classification: Primary 16S36; Secondary 16U90.

JOKANOVIĆ

Armendariz ring R as a ring in which f(x)g(x) = 0 implies $a_i\sigma^i(b_j)$ is the nilpotent element of R for all $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{j=0}^m b_j x^j$ from $R[x;\sigma]$. Ouyang also introduced a notion of weak σ -rigid ring as a ring with an endomorphism σ that satisfies $a\sigma(a) \in \operatorname{nil}(R)$ if and only if $a \in \operatorname{nil}(R)$ for all $a \in R$ where $\operatorname{nil}(R)$ is the set of all nilpotent elements of R. In [3] is shown that R is σ -rigid if and only if R is weak σ -rigid and reduced. Here we show that if A is σ_1 -rigid and B is σ_2 -rigid, then $A \times B$ is γ -rigid, where endomorphism γ is such that $\gamma(a, b) = (\sigma_1(a), \sigma_2(b))$. In this paper we consider conditions which characterize σ -rigid rings and prove that R is σ -skew Armendariz ring if and only if $R[x, x^{-1}; \sigma]$ is σ -skew Armendariz ring. Chen and Tong (see [3]) have proved that if R and S are rings and σ is an isomorphism of rings R and S and R is α -skew Armendariz ring, then S is $\sigma\alpha\sigma^{-1}$ skew Armendariz ring. In this paper we prove a variant of this theorem for weak skew Armendariz rings. We also prove that if α is endomorphism of ring R, and the factor ring $R[x]/(x^n)$ is weak $\tilde{\alpha}$ -skew Armendariz, then $V_n(R)$ is weak $\tilde{\alpha}$ -skew Armendariz.

2. Rigid rings and weak rigid rings

In this section we give a simple and straightforward proof that the finite direct product of rigid (weak rigid) rings is a rigid (weak rigid) ring. We also show how the notion of rigidity of a ring can be naturally transferred to the notion of rigidity of the corresponding ring of polynomials.

LEMMA 2.1. If A is σ_1 -rigid ring and B is σ_2 -rigid ring, then $A \times B$ is γ -rigid, where $\gamma(a, b) = (\sigma_1(a), \sigma_2(b))$.

PROOF. Suppose that $(a, b)\gamma(a, b) = (0, 0)$; then $(a, b)(\sigma_1(a), \sigma_2(b)) = (0, 0)$ so that $(a\sigma_1(a), b\sigma_2(b)) = (0, 0)$. Since $a\sigma_1(a) = 0$, $b\sigma_2(b) = 0$, from the fact that A, B are rigid rings we have (a, b) = (0, 0), which means that $A \times B$ is a γ -rigid ring. \Box

COROLLARY 2.1. Finite direct product of σ_i -rigid rings, $1 \leq i \leq n$, is γ -rigid ring, where $\gamma(a_1, a_2, \ldots, a_n) = (\sigma_1(a_1), \sigma_2(a_2), \ldots, \sigma_n(a_n))$.

LEMMA 2.2. If A is a weak σ_1 -rigid ring and B is a weak σ_2 -rigid ring, then $A \times B$ is a weak γ -rigid ring, where γ is such that $\gamma(a, b) = (\sigma_1(a), \sigma_2(b))$.

PROOF. Suppose that $(a, b)\gamma(a, b) \in \operatorname{nil}(A \times B)$. From the definition of γ , we have $(a, b)(\sigma_1(a), \sigma_2(b)) \in \operatorname{nil}(A \times B)$, so that $(a\sigma_1(a), b\sigma_2(b)) \in \operatorname{nil}(A \times B)$ which means that $(a\sigma_1(a), b\sigma_2(b))^n = (0, 0)$ for some $n \ge 2$. Therefore $(a\sigma_1(a))^n = 0$, $(b\sigma_2(b))^n = 0$ and $a\sigma_1(a) \in \operatorname{nil}(A)$, $b\sigma_2(b) \in \operatorname{nil}(B)$. From the assumption that A is weak σ_1 -rigid and B weak σ_2 -rigid we have $a \in \operatorname{nil}(A)$ and $b \in \operatorname{nil}(B)$, so that there exist n_1, n_2 such that $a^{n_1} = 0$, $b^{n_2} = 0$. Finally we have $(a, b)^{\max(n_1, n_2)} = (0, 0)$ which means that $(a, b) \in \operatorname{nil}(A \times B)$.

Conversely, if $(a, b) \in \operatorname{nil}(A \times B)$, using the same arguments we can show that $(a, b)\gamma(a, b) \in \operatorname{nil}(A \times B)$.

COROLLARY 2.2. The finite direct product of weak σ_i -rigid rings, $1 \leq i \leq n$, is a weak γ -rigid ring, where $\gamma(a_1, a_2, \ldots, a_n) = (\sigma_1(a_1), \sigma_2(a_2), \ldots, \sigma_n(a_n))$. We now show how the notion of rigidity naturally transferees from the ring R to the ring R[x]. If σ is an endomorphism of a ring R, then the map σ can be naturally extended to an endomorphism σ' of the ring R[x] by $\sigma'(\sum_{i=0}^{n} a_i x^i) = \sum_{i=0}^{n} \sigma(a_i) x^i$.

THEOREM 2.1. If R is σ -rigid, then R[x] is σ' -rigid ring.

PROOF. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $f(x)\sigma'(f(x)) = 0$. We have to prove that f(x) = 0. From the relation

$$(a_0 + a_1 x + \dots + a_n x^n)(\sigma(a_0) + \sigma(a_1) x + \dots + \sigma(a_n) x^n) = 0,$$

we have that $a_0\sigma(a_0) = 0$, which means $a_0 = 0$. Since the coefficient of x^2 has to be zero, we have $a_0\sigma(a_2) + a_1\sigma(a_1) + a_2\sigma(a_0) = 0$, so that $a_1\sigma(a_1) = 0$, and since R is σ -rigid, we have $a_1 = 0$. Continuing in this way, since the coefficient of x^{2n-2} has to be zero, and since $a_{n-2} = 0$, from the previous step, we have

$$a_{n-2}\sigma(a_n) + a_{n-1}\sigma(a_{n-1}) + a_n\sigma(a_{n-2}) = 0$$

which means that $a_{n-1}\sigma(a_{n-1}) = 0$, so that from the rigidity of the ring R we have $a_{n-1} = 0$. Finally, from the fact that the coefficient of x^{2n} has to be zero, we obtain $a_n\sigma(a_n) = 0$, which means that $a_n = 0$ and so f(x) = 0.

3. Skew Polynomial Laurent series Rings

In this section we introduce Laurent σ -Armendariz rings and Laurent σ -skew power series rings and we give their useful characterization in terms of σ -skew Armendariz rings. Throughout this section σ is a ring automorphism.

A ring R is a σ -skew Armendariz ring of Laurent type if for every two polynomials $f(x) = \sum_{i=-p}^{q} a_i x^i$, and $g(x) = \sum_{j=-t}^{s} b_j x^j$ from $R[x, x^{-1}; \sigma]$,

$$f(x)g(x) = 0$$
 implies $a_i \sigma^i(b_i) = 0, -p \leq i \leq q, -t \leq j \leq s.$

We say that R is a σ -skew power series Armendariz ring of Laurent type if for every $f(x) = \sum_{i=-p}^{\infty} a_i x^i$, and $g(x) = \sum_{j=-t}^{\infty} b_j x^j$ from the power series ring $R[[x, x^{-1}; \sigma]]$,

$$f(x)g(x) = 0$$
 implies $a_i \sigma^i(b_j) = 0, -p \leq i \leq \infty, -t \leq j \leq \infty.$

In the following two theorems we give a useful characterization of Laurent σ -skew Armendariz rings and Laurent σ -skew power series rings.

THEOREM 3.1. The following conditions are equivalent:

- (1) R is a σ -skew Armendariz ring,
- (2) R is a σ -skew Armendariz ring of Laurent type.

PROOF. Suppose that $f(x) = \sum_{i=-p}^{q} a_i x^i$ and $g(x) = \sum_{j=-t}^{s} b_j x^j$ are polynomials from the ring $R[x, x^{-1}; \sigma]$ such that f(x)g(x) = 0. Since $x^p f(x)$ and $x^t g(x)$ are polynomials from the ring $R[x; \sigma]$ we have that $x^p f(x)g(x)x^t = 0$ which gives $\sigma^p(a_i)\sigma^{i+p}(b_j) = 0, -p \leq i \leq q, -t \leq j \leq s$. Since σ is an automorphism,

$$\sigma^p(a_i\sigma^i(b_i)) = 0,$$

so that we have $a_i \sigma^i(b_j) = 0$. The converse is evident since $R[x; \sigma] \subset R[x, x^{-1}; \sigma]$.

JOKANOVIĆ

THEOREM 3.2. The following conditions are equivalent:

- (1) R is a σ -skew power series Armendariz ring,
- (2) R is a σ -skew power series Armendariz ring of Laurent type.

PROOF. The same as the proof of the previous theorem.

We close this section with an interesting remark which gives a sufficient condition for the power series ring $R[[x; \sigma]]$ to be reduced.

THEOREM 3.3. If an endomorphism σ of a reduced ring R satisfies the so-called compatibility condition: $a\sigma(b) = 0 \Leftrightarrow ab = 0$, then the power series ring $R[[x;\sigma]]$ is reduced.

PROOF. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$ and $(f(x))^2 = 0$. We have to prove that f(x) = 0. It is clear that $a_0^2 = 0$, so that $a_0 = 0$. Now, since the coefficient of x^2 has to be zero, we have $a_0a_2 + a_1\sigma(a_1) + a_2\sigma^2(a_0) = 0$, so that we obtain $a_1\sigma(a_1) = 0$. From the compatibility condition we obtain $a_1^2 = 0$ and since R is reduced, we have $a_1 = 0$. Continuing in this way, since the coefficient of x^{2n} is zero, we have $a_n\sigma^n(a_n) = 0$ and, using compatibility condition once again, we have $a_n\sigma^{n-1}(a_n) = 0$ and in the same way $a_n\sigma(a_n) = 0$, so that $a_n = 0$. By induction, we have $a_i = 0$, for all i. This means that f(x) = 0 and so the ring $R[[x; \sigma]]$ is reduced.

Without compatibility condition the previous theorem is not true. Since if the ring $R = Z_2 \oplus Z_2$ and σ is defined by $\sigma(a,b) = (b,a)$, it is easy to check that $R[[x;\sigma]]$ is not reduced. Observe that (1,0)(0,1) = (0,0) but $(1,0)\sigma(0,1) \neq (0,0)$.

4. Weak Armendariz rings

In this section we generalize some results from [3], which are related to σ -skew Armendariz rings, to the weak σ -skew Armendariz case.

A ring R is weak Armendariz if f(x)g(x) = 0 implies $a_ib_j \in \operatorname{nil}(R)$ for every two polynomials $f(x) = a_0 + a_1x + \cdots + a_nx^n$, $g(x) = b_0 + b_1x + \cdots + b_mx^m$ from the ring R[x]. This definition is equivalent with the fact that ideal 0 is weak Armendariz ideal. We will prove that the class of weak Armendariz rings is closed for direct products. Also, if the factor ring R/I is a weak Armendariz ring, for some nilpotent ideal I, then the ring R is weak Armendariz.

THEOREM 4.1. The finite direct product of weak Armendariz rings is a weak Armendariz ring.

PROOF. Suppose that R_1, R_2, \ldots, R_n are weak Armendariz rings and $R = \prod_{i=1}^n R_i$. If f(x)g(x) = 0 for some polynomials

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \ g(x) = b_0 + b_1 x + \dots + b_m x^m \in R[x],$$

where $a_i = (a_{i1}, a_{i2}, \ldots, a_{in}), b_i = (b_{i1}, b_{i2}, \ldots, b_{in})$ are elements of the product ring R, define

 $f_k(x) = a_{0k} + a_{1k}x + \dots + a_{nk}x^n, \ g_k(x) = b_{0k} + b_{1k}x + \dots + b_{mk}x^m.$

134

From f(x)g(x) = 0, we have $a_0b_0 = 0$, $a_0b_1 + a_1b_0 = 0, ..., a_nb_m = 0$, and this implies

$$a_{01}b_{01} = a_{02}b_{02} = \dots = a_{0n}b_{0n} = 0$$

$$a_{01}b_{11} + a_{11}b_{01} = \dots = a_{0n}b_{1n} + a_{1n}b_{0n} = 0$$

$$a_{n1}b_{m1} = a_{n2}b_{m2} = \dots = a_{nn}b_{mn} = 0$$

This means that $f_k(x)g_k(x) = 0$ in $R_k[x]$, $1 \leq k \leq n$, and since R_k are weak Armendariz rings, we have $a_{ik}b_{jk} \in \operatorname{nil}(R_k)$. Now, for each i, j, there exists positive integers m_{ijk} such that $(a_{ik}b_{jk})^{m_{ijk}} = 0$ in the ring R_k , $1 \leq k \leq n$. If we take $m_{ij} = \max\{m_{ijk} : 1 \leq k \leq n\}$, then it is clear that $(a_ib_j)^{m_{ij}} = 0$ and this means that R is a weak Armendariz ring.

THEOREM 4.2. If I is a nilpotent ideal of ring R such that R/I is a weak Armendariz ring, then R is a weak Armendariz ring.

PROOF. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_mx^m$ are polynomials from R[x] such that f(x)g(x) = 0. This implies

$$(\overline{a_0} + \overline{a_1}x + \dots + \overline{a_n}x^n)(\overline{b_0} + \overline{b_1}x + \dots + \overline{b_m}x^m) = 0,$$

and since R/I is weak Armendariz, we have that $\overline{a_i}\overline{b_j} \in \operatorname{nil}(R|I)$. From the fact that the ideal I is nilpotent, we obtain that $a_ib_j \in \operatorname{nil}(R)$.

Recall that a ring R is weak σ -rigid if $a\sigma(a) \in \operatorname{nil}(R) \Leftrightarrow a \in \operatorname{nil}(R)$. It is easy to see that the notion of weak σ -rigid ring generalizes the notion of a σ -rigid ring. Every homomorphism σ of rings R and S can be extended to the homomorphism of rings R[x] and S[x] by $\sum_{i=0}^{m} a_i x^i \mapsto \sum_{i=0}^{m} \sigma(a_i) x^i$, which we also denote by σ . Chen and Tong in [3] prove that if σ is a ring isomorphism of rings R and S and R is α -skew Armendariz, then S is a $\sigma\alpha\sigma^{-1}$ skew Armendariz ring. We prove the weak skew Armendariz variant of this theorem.

THEOREM 4.3. Let R and S be rings with a ring isomorphism $\sigma : R \to S$. If R is weak α -skew Armendariz, then S is weak $\sigma \alpha \sigma^{-1}$ -skew Armendariz.

PROOF. Let $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$ are polynomials from the ring $S[x; \sigma \alpha \sigma^{-1}]$. We have to prove that f(x)g(x) = 0 implies $a_i(\sigma \alpha \sigma^{-1})^i(b_j) \in nil(S)$, for all *i* and *j*.

As we noted, σ extends to the isomorphism of the corresponding polynomial rings, so that there exist polynomials $f_1(x) = \sum_{i=0}^m a'_i x^i$ and $g_1(x) = \sum_{j=0}^m b'_j x^j$ from R[x] such that

$$f(x) = \sigma(f_1(x)) = \sum_{i=0}^m \sigma(a'_i) x^i$$
 and $g(x) = \sigma(g_1(x)) = \sum_{j=0}^m \sigma(b'_j) x^j$.

First, we shall show that f(x)g(x) = 0 implies $f_1(x)g_1(x) = 0$. If f(x)g(x) = 0, we have

 $a_0b_k + a_1(\sigma\alpha\sigma^{-1})(b_{k-1}) + \dots + a_k(\sigma\alpha\sigma^{-1})^k(b_0) = 0,$

for any $0 \leq k \leq m$. From the definition of $f_1(x)$ and $g_1(x)$, we have,

$$\sigma(a_0')\sigma(b_k') + \sigma(a_1')(\sigma\alpha\sigma^{-1})\sigma(b_{k-1}') + \dots + \sigma(a_k')(\sigma\alpha\sigma^{-1})^k\sigma(b_0') = 0,$$

so that $(\sigma \alpha \sigma^{-1})^t = \sigma \alpha^t \sigma^{-1}$ we obtain

$$a_0'b_k' + a_1'\alpha(b_{k-1}') + \dots + a_k'\alpha^k(b_0') = 0,$$

which means that $f_1(x)g_1(x) = 0$ in the ring $R[x; \alpha]$.

It remains to prove that $f_1(x)g_1(x) = 0$ implies $a_i(\sigma\alpha\sigma^{-1})^i(b_j) \in \operatorname{nil}(S)$. From the fact that R is weak α -skew Armendariz we have $a'_i\alpha^i(b'_j) \in \operatorname{nil}(R)$, and since $a'_i = \sigma^{-1}(a_i), b'_j = \sigma^{-1}(b_j)$, we have $\sigma^{-1}(a_i)\alpha^i\sigma^{-1}(b_j) \in \operatorname{nil}(R)$. This implies

$$\sigma^{-1}(a_i)\sigma^{-1}\sigma\alpha^i\sigma^{-1}(b_j) = \sigma^{-1}(a_i(\sigma\alpha\sigma^{-1})^i(b_j)) \in \operatorname{nil}(R)$$

and finally we obtain

 θ^{-}

$$a_i(\sigma\alpha\sigma^{-1})^i(b_j) \in \operatorname{nil}(S), \ 0 \leq i, j \leq m.$$

Hence S is weak $\sigma \alpha \sigma^{-1}$ -skew Armendariz.

In our closing result, we shall show that, under certain condition, the subring of upper triangular skew matrices over a ring R has a weak skew Armendariz structure.

Let $E_{ij} = (e_{st} : 1 \leq s, t \leq n)$ denotes $n \times n$ unit matrices over ring R, in which $e_{ij} = 1$ and $e_{st} = 0$ when $s \neq i$ or $t \neq j$, $0 \leq i, j \leq n$, for all $n \geq 2$. If $V = \sum_{i=1}^{n-1} E_{i,i+1}$, then $V_n(R) = RI_n + RV + \cdots + RV^{n-1}$ is the subring of upper triangular skew matrices.

COROLLARY 4.1. Suppose that α is an endomorphism of ring R. If the factor ring $R[x]/(x^n)$ is weak $\tilde{\alpha}$ -skew Armendariz, then $V_n(R)$ is weak $\tilde{\alpha}$ -skew Armendariz.

PROOF. Suppose that $R[x]/(x^n)$ is weak $\tilde{\alpha}$ -skew Armendariz and define the ring isomorphism $\theta: V_n(R) \to R[x]/(x^n)$ by

$$\theta(r_0 I_n + r_1 V + \dots + r_{n-1} V^{n-1}) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1} + (x^n).$$

Now we have that $V_n(R)$ is weak $\theta^{-1} \widetilde{\alpha} \theta$ -skew Armendariz and

$$\begin{aligned} {}^{1}\widetilde{\alpha}\theta(r_{0}I_{n}+r_{1}V+\dots+r_{n-1}V^{n-1}) \\ &=\theta^{-1}\widetilde{\alpha}(r_{0}+r_{1}x+\dots+r_{n-1}x^{n-1}+(x^{n})) \\ &=\theta^{-1}(\alpha(r_{0})+\alpha(r_{1})x+\dots+\alpha(r_{n-1})x^{n-1}+(x^{n})) \\ &=\alpha(r_{0})I_{n}+\alpha(r_{1})V+\dots+\alpha(r_{n-1})V^{n-1} \\ &=\widetilde{\alpha}(r_{0}I_{n}+r_{1}V+\dots+r_{n-1}V^{n-1}), \end{aligned}$$

which means that $V_n(R)$ is a weak $\tilde{\alpha}$ -skew Armendariz ring.

References

- M. R. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A. Math. Sci. 73 (1997), 14–17
- [2] L. Ouyang, Extensions of generalized $\alpha\text{-rigid}$ rings, Internat. J. Algebra 3 (2008), 105–116
- [3] W. Chen, W. Tong, On skew Armendariz and rigid rings, Houston J. Math. 22(2) (2007)
- [4] Y. Hirano, On annihilator ideals of polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 151(3) (2000), 105–122

136

- [5] C. Y. Hong, N. K. Kim, T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31(2) (2003), 105–122
- [6] J. Krempa, Some examples of reduced rings, Algebra Colloq. $\mathbf{3}(4)$ (1996), 289–330

Prirodno-matematički fakultet 81000 Podgorica Montenegro dusanjok@yahoo.com (Received 17 08 2008) (Revised 06 02 2009)