THE KERZMAN-STEIN OPERATOR FOR THE ELLIPSE

Milutin R. Dostanić

Communicated by Stevan Pilipović

Abstract

We give, in the case of ellipse, a simple connection between the spectrum of the Kerzman-Stein operator and the eccentricity of the ellipse.

1. Introduction

Let $\Omega \subset \mathbb{C}$ be a bounded domain with twice differentiable boundary and $\tau=$ $\tau(\xi)$ be the unit tangent vector at a $\xi \in \partial \Omega$, oriented positively with respect to Ω. If $|d \xi|$ is the arclength measure on $\partial \Omega$, then the Kerzman-Stein operator is defined (on $L^{2}(\partial \Omega)$) by

$$
A f(z)=\int_{\partial \Omega} \mathcal{A}(z, \xi) f(\xi)|d \xi|, \quad \text { where } \quad \mathcal{A}(z, \xi)=\frac{1}{2 \pi i}\left(\frac{\tau(\xi)}{\xi-z}-\frac{\overline{\tau(z)}}{\bar{\xi}-\bar{z}}\right) .
$$

The space $L^{2}(\partial \Omega)$ is defined using the hermitian inner product

$$
(f, g)=\int_{\partial \Omega} f(\xi) \overline{g(\xi)}|d \xi|
$$

The kernel $\mathcal{A}(\cdot, \cdot)$ is bounded at the diagonal - the apparent singularities cancel each other. Having in mind that \mathcal{A} is bounded on $\partial \Omega$, it follows that A is a HilbertSchmidt operator. The operator A can be represented in the form $A=C-C^{*}$, where $C: L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega)$ is a (singular) Cauchy operator defined by

$$
C f(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(\xi)}{\xi-z} d \xi
$$

(Here, integral is interpreted in the sense of Principal Value.)

[^0]From this, it follows that $A^{*}=-A$ and the spectrum of the operator A is discrete and imaginary, except for an accumulation point at zero. The operator A first appeared in the paper of Kerzman and Stein [3] where they gave a new method for computing the Riemann map in one dimension. In a later article [4], Kerzman formulated some problems concerning the operator A, including the following.

Problem 1.1 (Kerzman 1979). Relate the spectrum of the Kerzman-Stein operator to the geometry of the domain.

The first paper giving some results concerning to above problem is [1] Bolt therein proved the following theorem.

Theorem 1.1. The Kerzman-Stein operator for an ellipse has eigenvalues $\pm i \lambda_{n}$ where each $\pm i \lambda_{n}$ has multiplicity two. If ellipse is parametrized by $t \mapsto$ $e^{i t}+\rho e^{-i t}(0<\rho<1)$ and $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant 0$, then $\lambda_{n}=\beta_{n} \rho^{2 n-1}(1+o(1))$, $\rho \rightarrow 0+$, where $0<\beta_{n} \leqslant 1$ and it can be computed explicitly.

In this paper (in the case of ellipse) we give a connection between the spectrum of the operator A and the eccentricity of ellipse. This connection is expressed through the Hilbert-Schmidt norm of the operator A using a double integral which depends on the eccentricity of an ellipse. This integral is hard for computation and we express it only in the form of a series.

2. Main result

Let $\Delta=\{z:|z|>1\}$ and $\Omega=\left\{(x, y): x^{2} / a^{2}+y^{2} / b^{2}<1\right\}$.
ThEOREM 2.1. a) If $\lambda_{n}(A)$ denotes the eigenvalues of the operator A for ellipse $\partial \Omega$, then

$$
\sum_{n} \lambda_{n}^{2}(A)=-\frac{1}{2 \pi^{2}} \int_{\partial \Delta} \int_{\partial \Delta} \frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|-|1-\omega z \xi|^{2}}{|\xi-z|^{2}|1-\omega z \xi|^{2}}|d z||d \xi|
$$

where $\omega=\frac{1-\sqrt{1-e^{2}}}{1+\sqrt{1-e^{2}}}$ and e denote the eccentricity of the ellipse $\partial \Omega$.
b) For ellipses with small (enough) eccentricity, the eccentricity is uniquely determined by the Hilbert-Schmidt norm of operator A (or by the spectrum of the operator A).

Remark 2.1. The Bolt result relates to the asymptotic behavior of the eigenvalues of the Kerzman-Stein operator for the family of ellipses (not only one ellipse) "tending" to unit circle.

Proof. a) For our proof it is suitable to put $a=\alpha+\beta, b=\alpha-\beta, \alpha>\beta>0$. Then $\omega=\beta / \alpha$, and the function $\varphi(\xi)=\alpha \xi+\beta / \xi$ realizes a conformal mapping of Δ onto $\mathbb{C} \backslash \bar{\Omega}$. Let $A_{0}: L^{2}(\partial \Delta) \rightarrow L^{2}(\partial \Delta)$ and $V: L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Delta)$ be linear operators defined by

$$
A_{0} f(z)=\int_{\partial \Delta} K_{0}(z, \xi) f(\xi)|d \xi|, \quad V f(z)=f(\varphi(z)) \sqrt{\varphi^{\prime}(z)}
$$

Here $K_{0}(z, \xi)=\sqrt{\varphi^{\prime}(z)} \cdot \overline{\sqrt{\varphi^{\prime}(\xi)}} \cdot \mathcal{A}(\varphi(z), \varphi(\xi))$. Let us denote the eigenvalues of the operator A_{0} by $\lambda_{n}\left(A_{0}\right)$. The operator V is an isometry and we have $\lambda_{n}(A)=\lambda_{n}\left(A_{0}\right)$ and so, $\sum_{n} \lambda_{n}^{2}(A)=\sum_{n} \lambda_{n}^{2}\left(A_{0}\right)$. Having on mind that the eigenvalues of the operator $A\left(A_{0}\right)$ is imaginary, we have

$$
\begin{equation*}
\sum_{n} \lambda_{n}^{2}(A)=\sum_{n} \lambda_{n}^{2}\left(A_{0}\right)=-\sum_{n} s_{n}^{2}\left(A_{0}\right)=-\int_{\partial \Delta \partial \Delta} \int_{\partial \Delta}\left|K_{0}(z, \xi)\right|^{2}|d z||d \xi| \tag{2.1}
\end{equation*}
$$

(with $s_{n}(T)$, we denote the singular values of the operator T; for more information about singular values see [2]). If $\xi \in \partial \Delta$ we have

$$
\tau(\varphi(\xi))=\frac{\varphi^{\prime}(\xi)}{\left|\varphi^{\prime}(\xi)\right|} \frac{d \xi}{|d \xi|}=i \xi \frac{\varphi^{\prime}(\xi)}{\left|\varphi^{\prime}(\xi)\right|}
$$

and then we can transform $K_{0}(\cdot, \cdot)$ to the following form

$$
\begin{equation*}
K_{0}(z, \xi)=\frac{\xi}{2 \pi} \frac{\sqrt{\varphi^{\prime}(\xi)} \sqrt{\varphi^{\prime}(z)}}{\varphi(\xi)-\varphi(z)}+\frac{\bar{z}}{2 \pi} \overline{\left(\frac{\sqrt{\varphi^{\prime}(\xi)} \sqrt{\varphi^{\prime}(z)}}{\varphi(\xi)-\varphi(z)}\right)} \tag{2.2}
\end{equation*}
$$

Having on mind that for $z, \xi \in \partial \Delta$, we have

$$
\frac{\sqrt{\varphi^{\prime}(\xi)} \sqrt{\varphi^{\prime}(z)}}{\varphi(\xi)-\varphi(z)}=\frac{\sqrt{\alpha-\beta / z^{2}} \sqrt{\alpha-\beta / \xi^{2}}}{\alpha \xi+\beta / \xi-\alpha z-\beta / z}=\frac{\sqrt{1-\omega \bar{z}^{2}} \sqrt{1-\omega \bar{\xi}^{2}}}{(\xi-z)(1-\omega \bar{z} \bar{\xi})}
$$

and from 2.2 we conclude

$$
K_{0}(z, \xi)=\frac{\xi}{2 \pi} \frac{\sqrt{1-\omega \bar{z}^{2}} \sqrt{1-\omega \bar{\xi}^{2}}}{(\xi-z)(1-\omega \bar{z} \bar{\xi})}+\frac{\bar{z}}{2 \pi} \frac{\sqrt{1-\omega z^{2}} \sqrt{1-\omega \xi^{2}}}{(\bar{\xi}-\bar{z})(1-\omega z \xi)}
$$

i.e.,

$$
\begin{equation*}
K_{0}(z, \xi)=\frac{\xi}{2 \pi(\xi-z)}\left[\frac{\left(1-\omega \bar{z}^{2}\right)^{\frac{1}{2}}\left(1-\omega \bar{\xi}^{2}\right)^{\frac{1}{2}}}{1-\omega \bar{z} \bar{\xi}}-\frac{\left(1-\omega z^{2}\right)^{\frac{1}{2}}\left(1-\omega \xi^{2}\right)^{\frac{1}{2}}}{1-\omega z \xi}\right] \tag{2.3}
\end{equation*}
$$

(because $z, \xi \in \partial \Delta$). From (2.1) and (2.3) we obtain

$$
\begin{equation*}
\sum_{n} \lambda_{n}^{2}(A)=-\frac{1}{4 \pi^{2}} \int_{\partial \Delta} \int_{\partial \Delta} \frac{1}{|\xi-z|^{2}}|\bar{D}-D|^{2}|d z| \cdot|d \xi| \tag{2.4}
\end{equation*}
$$

where

$$
D=\frac{\sqrt{1-\omega z^{2}} \sqrt{1-\omega \xi^{2}}}{(1-\omega z \xi)}
$$

Now, we prove that

$$
\begin{equation*}
\int_{\partial \Delta} \int_{\partial \Delta} \frac{1-D^{2}}{|\xi-z|^{2}}|d z||d \xi|=0 . \tag{2.5}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\int_{\partial \Delta \partial \Delta} \int_{\partial \Delta} \frac{1-A^{2}}{|\xi-z|^{2}}|d z||d \xi| & =\int_{\partial \Delta \partial \Delta} \int_{\partial \Delta)^{2}} \frac{\omega(z-\xi)^{2}}{|\xi-z|^{2}(1-\omega z \xi)^{2}}|d z||d \xi| \\
& =\iint_{\partial \Delta \partial \Delta} \frac{\omega(z-\xi)^{2}}{(\xi-z)(\bar{\xi}-\bar{z})(1-\omega z \xi)^{2}} \frac{d z}{i z} \frac{d \xi}{i \xi} \\
& =\omega \int_{\partial \Delta \partial \Delta} \int_{\partial z} \frac{d z d \xi}{(1-\omega z \xi)^{2}}=0 .
\end{aligned}
$$

From 2.4 and 2.5 we get

$$
\sum_{n} \lambda_{n}^{2}(A)=-\frac{1}{4 \pi^{2}} \int_{\partial \Delta} \int_{\partial \Delta} \frac{2\left(|D|^{2}-1\right)}{|\xi-z|^{2}}|d z||d \xi|
$$

i.e.

$$
\begin{equation*}
\sum_{n} \lambda_{n}^{2}(A)=-\frac{1}{2 \pi^{2}} \iint_{\partial \Delta} \int_{\partial \Delta} \frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|-|1-\omega z \xi|^{2}}{|\xi-z|^{2}|1-\omega z \xi|^{2}}|d z||d \xi| \tag{2.6}
\end{equation*}
$$

b) Let

$$
G(\omega)=-\frac{1}{2 \pi^{2}} \int_{\partial \Delta} \int_{\partial \Delta} \frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|-|1-\omega z \xi|^{2}}{|\xi-z|^{2}|1-\omega z \xi|^{2}}|d z||d \xi| .
$$

Now, we prove that the function G is monotone on some interval $\left[0, \omega_{0}\right], \omega_{0} \in(0,1)$. From that, the statement b) of Theorem 2 follows.

Let $|z|=1,0 \leqslant t<1$. Then we have

$$
\left|1-t z^{2}\right|=\left(1-t z^{2}\right)^{\frac{1}{2}}\left(1-t \bar{z}^{2}\right)^{\frac{1}{2}}=\sum_{n=0}^{\infty} A_{n}(z) t^{n}
$$

where

$$
A_{n}(z)=\sum_{k=0}^{n}\binom{1 / 2}{k}\left(-z^{2}\right)^{k}\binom{1 / 2}{n-k}\left(-\bar{z}^{2}\right)^{n-k}=(-1)^{n} z^{-2 n} \sum_{k=0}^{\infty}\binom{1 / 2}{k}\binom{1 / 2}{n-k} z^{4 k}
$$

So, if $|z|=|\xi|=1$, then we obtain

$$
\begin{equation*}
\left|1-t z^{2}\right|\left|1-t \xi^{2}\right|=\sum_{n=0}^{\infty} B_{n}(z, \xi) t^{n} \tag{2.7}
\end{equation*}
$$

where $B_{n}(z, \xi)=\sum_{k=0}^{n} A_{k}(z) A_{n-k}(\xi)$. If we put $z=\xi$ in 2.7, we get

$$
B_{n}(z, z)=\sum_{k=0}^{n} A_{k}(z) A_{n-k}(z)=0 \text { for } n \geqslant 3
$$

If $|z|=1$, by differentiation of both sides of the equality

$$
\left(1-t z^{2}\right)^{\frac{1}{2}}\left(1-t z^{-2}\right)^{\frac{1}{2}}=\sum_{n=0}^{\infty} A_{n}(z) t^{n}
$$

with respect to z and multiplying the resulting equality with $\left(1-t z^{2}\right)^{\frac{1}{2}}\left(1-t z^{-2}\right)^{\frac{1}{2}}$ we get

$$
\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n} A_{k}^{\prime}(z) A_{n-k}(z)\right)=t\left(z^{-3}-z\right)
$$

i.e., $\sum_{k=0}^{n} A_{k}^{\prime}(z) A_{n-k}(z)=0$ for $n \geqslant 2$. So, we obtained (for $|z|=1$)

$$
\begin{equation*}
\sum_{k=0}^{n} A_{k}^{\prime}(z) A_{n-k}(z)=0, \quad \sum_{k=0}^{n} A_{k}(z) A_{n-k}(z)=0 \quad \text { for } n \geqslant 3 \tag{2.8}
\end{equation*}
$$

From (2.7) we get

$$
\begin{align*}
& \left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|-|1-\omega z \xi|^{2} \tag{2.9}\\
= & \left(B_{1}(z, \xi)+\bar{z} \bar{\xi}+z \xi\right) \omega+\left(B_{2}(z, \xi)-1\right) \omega^{2}+\sum_{n=3}^{\infty} B_{n}(z, \xi) \omega^{n}, \quad(0<\omega<1)
\end{align*}
$$

By direct calculation we obtain

$$
\begin{align*}
& B_{1}(z, \xi)+\bar{z} \bar{\xi}+z \xi=-\frac{1}{2}(z-\xi)^{2}-\frac{1}{2}(\bar{z}-\bar{\xi})^{2} \tag{2.10}\\
& B_{2}(z, \xi)-1=-\frac{1}{8}(z-\xi)^{2}(z+\xi)^{2}\left(1-\bar{z}^{2} \bar{\xi}^{2}\right)^{2}
\end{align*}
$$

where $z, \xi \in \partial \Delta$. From 2.8 it follows that $B_{n}(z, z)=0,\left.\frac{\partial B_{n}}{\partial \xi}\right|_{\xi=z}=0$ for $n \geqslant 3$
and

$$
\begin{equation*}
B_{n}(z, \xi)=\left.\frac{1}{2!} \frac{\partial^{2} B_{n}}{\partial \xi^{2}}\right|_{\xi=z}(\xi-z)^{2}+\cdots \tag{2.11}
\end{equation*}
$$

From 2.9, 2.10), and (2.11), it follows that the integral on the right-hand side in (2.6) is not singular and so we have

$$
G^{\prime}(\omega)=-\frac{1}{2 \pi^{2}} \int_{\partial \Delta} \int_{\partial \Delta} \frac{1}{|\xi-z|^{2}} \frac{d}{d \omega}\left(\frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|}{|1-\omega z \xi|^{2}}\right)|d z||d \xi|
$$

Since

$$
\begin{aligned}
& \frac{d}{d \omega}\left(\frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|}{|1-\omega z \xi|^{2}}\right) \\
& =\frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|}{|1-\omega z \xi|^{2}} \operatorname{Re}\left[\frac{d}{d \omega}\left(\ln \left(1-\omega z^{2}\right)+\ln \left(1-\omega \xi^{2}\right)-2 \ln (1-\omega z \xi)\right)\right] \\
& =-\frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|}{|1-\omega z \xi|^{2}} \operatorname{Re}\left[\sum_{n=1}^{\infty} \omega^{n-1}\left(\xi^{n}-z^{n}\right)^{2}\right]
\end{aligned}
$$

we get

$$
G^{\prime}(\omega)=\sum_{n=1}^{\infty} \omega^{n-1} \operatorname{Re}\left(\frac{1}{2 \pi^{2}} \int_{\partial \Delta} \int_{\partial \Delta} \frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|}{|\xi-z|^{2}|1-\omega z \xi|^{2}}\left(\xi^{n}-z^{n}\right)^{2}|d z||d \xi|\right)
$$

Let

$$
K_{n}(\omega)=\frac{1}{2 \pi^{2}} \int_{\partial \Delta \partial \Delta} \int_{\partial \Delta} \frac{\left|1-\omega z^{2}\right|\left|1-\omega \xi^{2}\right|}{|\xi-z|^{2}|1-\omega z \xi|^{2}}\left(\xi^{n}-z^{n}\right)^{2}|d z||d \xi| .
$$

It is easy to see that K_{n} is real and so we have

$$
\begin{equation*}
G^{\prime}(\omega)=\sum_{n=1}^{\infty} \omega^{n-1} K_{n}(\omega) \tag{2.12}
\end{equation*}
$$

Using the binomial expansion we obtain (for $|z|=1$)

$$
\begin{equation*}
\left|1-\omega z^{2}\right|=\sum_{k \in \mathbb{Z}} c_{k}(\omega) z^{2 k} \tag{2.13}
\end{equation*}
$$

where

$$
c_{n}(\omega)=\sum_{\substack{k, l \geqslant 0 \\ k-l=n}}\binom{1 / 2}{k}\binom{1 / 2}{l}(-\omega)^{k+l} .
$$

It is clear that $c_{-n}(\omega)=c_{n}(\omega)$. If $n \geqslant 0$, we can easily conclude that

$$
\begin{equation*}
c_{n}(\omega)=(-1)^{n} \omega^{n} \sum_{\nu=0}^{\infty}\binom{1 / 2}{\nu}\binom{1 / 2}{\nu+n} \omega^{2 \nu} . \tag{2.14}
\end{equation*}
$$

Since $\left|\binom{1 / 2}{n}\right| \leqslant L_{1} n^{-3 / 2}$, (L_{1} does not depend on n) from 2.14 we obtain

$$
\begin{equation*}
\left|c_{n}(\omega)\right| \leqslant \frac{L_{2}}{(1+|n|)^{3 / 2}} \omega^{|n|}, \quad(0<\omega<1) \tag{2.15}
\end{equation*}
$$

where the constant L_{2} does not depend on n and ω. Using (2.13) we calculate K_{n}. Namely

$$
\begin{equation*}
K_{1}(\omega)=-\frac{2}{1-\omega^{2}} \sum_{n \in \mathbb{Z}} c_{n}^{2}(\omega) \cdot \omega^{|2 n+1|} \tag{2.16}
\end{equation*}
$$

$$
\begin{align*}
& K_{n}(\omega)=-\frac{2}{1-\omega^{2}} \tag{2.17}\\
& \quad \times\left[n \sum_{m \in \mathbb{Z}} c_{m}^{2}(\omega) \omega^{|n+2 m|}+2 \sum_{r=1}^{n-1}(n-r) \sum_{m \in \mathbb{Z}} c_{m}(\omega) c_{m+r}(\omega) \omega^{|n+2 m+r|}\right]
\end{align*}
$$

in the case $n \geqslant 2$. From (2.14) and 2.16 it follows that

$$
\begin{equation*}
K_{1}(\omega)=-\frac{2 \omega}{1-\omega^{2}}(1+o(1)), \quad \omega \rightarrow 0+ \tag{2.18}
\end{equation*}
$$

If $n \geqslant 2$, from 2.15 and 2.17 we obtain the estimate

$$
\begin{equation*}
\left|K_{n}(\omega)\right| \leqslant L_{3} n \omega^{n} \frac{1}{1-\omega^{2}} \tag{2.19}
\end{equation*}
$$

where the constant L_{3} does not depend on n and $\omega \in(0,1)$. From (2.12), (2.18) and 2.19 we conclude that there exists $\omega_{0} \in(0,1)$ such that $G^{\prime}(\omega)<0$ for $\omega \in\left(0, \omega_{0}\right)$ i.e., the function G is monotone on $\left[0, \omega_{0}\right]$. Theorem 2 is proved.

References

[1] M. Bolt, Spectrum of the Kerzman-Stein operator for ellipse, Integral Equations Oper. Theory 57 (2007), 167-184
[2] I. C. Gohberg, M. G. Krein, Theory of linear nonselfadjoint operators, Trans. Math. Monographs 18, Am. Math. Soc., Providence, R.I., 1969.
[3] N. Kerzman and E. M. Stein, The Cauchy kernel, the Szegö kernel and the Riemann mapping function, Math. Ann. 236(1) (1978), 85-93.
[4] N. Kerzman, Singular integrals in complex analysis; in: Harmonic analysis in Euclidean spaces, Part 2, Williamstown/Massachusetts 1978, Proc. Symp. Pure Math. 35, pp. 3-41 (1979).

Matematički fakultet
Beogradski univerzitet
(Revised 0402 2010)
Begrad
Serbia
domi@matf.bg.ac.rs

[^0]: 2010 Mathematics Subject Classification: Primary 47G10.
 Key words and phrases: Kerzman-Stein operator, eigenvalues, singular values.
 Partially supported by MNZZS Grant ON144010.

