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Abstract. We consider a standard system of sequents and a system of ex-
tended natural deduction (which is a modification of natural deduction) for
intuitionistic predicate logic and connect the special cuts, maximum cuts, from
sequent derivations and maximum segments from derivations of extended nat-
ural deduction. We show that the image of a sequent derivation without
maximum cuts is a derivation without maximum segments (i.e., a normal
derivation) in extended natural deduction.

1. Introduction

In [6] Gentzen introduced a system of sequents for intuitionistic predicate logic,
the system LJ, and a natural deduction system for intuitionistic predicate logic,
the system NJ. In the papers [2, 4, 6, 8, 9, 10, 11, 15] the similarities and dif-
ferences between systems of sequents and systems of natural deduction for some
fragments of intuitionistic logic were presented. The main goal of most of these pa-
pers was to connect the cut-elimination theorem from systems of sequents and the
normalization theorem from natural deduction systems, the most important char-
acteristics of these systems. It is well known that there are problems to connect
reduction steps of the cut-elimination procedure from a system of sequents and
reduction steps of the normalization procedure from a natural deduction system
when these systems cover full intuitionistic predicate logic (see, for example, the
part 7 in [15]). To solve these problems the authors connected some modifications
of Gentzen’s systems LJ and NJ (see [2, 8, 9, 10, 15]), or they defined new re-
duction steps in cut-elimination and normalization procedures (see [2, 4, 10, 15]).
In some papers mentioned above (see, for example, [10, 15]) it was concluded that
“the cut-elimination theorem and the normalization theorem are equivalent”. It
seems that cut-free derivations, i.e., derivations without cuts (from the systems
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of sequents) correspond to normal derivations, i.e., derivations without maximum
segments (from the systems of natural deduction), and vice versa. So, it seems
that cuts correspond to maximum segments, and vice versa. However, the connec-
tion between cut-free and normal derivations is the following (see Theorem 3 and
Theorem 4 in Section 5 from [15]):

The image of a cut-free derivation is a normal derivation,
but
if a normal derivation is the image of a sequent derivation, then
that sequent derivation can have some cuts which can be eliminated.

Zucker’s systems for intuitionistic predicate logic (from [15]), the system of
sequents 𝒮 and the natural deduction system 𝒩 , were considered in [5]. In deriva-
tions of the system 𝒮 a special kind of cuts, maximum cuts, were defined. Roughly
speaking, maximum cuts are cuts whose left cut formula is connected with a princi-
pal formula of a right rule (i.e., an introduction rule of a connective or a quantifier)
and its right cut formula is connected with a principal formula of a left rule (i.e.,
an elimination rule of the connective or the quantifier). It was shown that the im-
age of a sequent derivation without maximum cuts from the system 𝒮 is a normal
derivation in the system 𝒩 , and the sequent image of a normal derivation from the
system 𝒩 is a derivation without maximum cuts in the system 𝒮.

In this paper a new pair systems will be considered. Our systems will be the
systems from [2] which cover intuitionistic predicate logic: the system of sequents
𝒮ℰ and the natural deduction system 𝒩ℰ . It will be shown that the image of a se-
quent derivation without maximum cuts from the system 𝒮ℰ is a normal derivation
in the system 𝒩ℰ .

The system 𝒮ℰ is the system 𝛿ℰ from [2] whose formulae have only upper in-
dices. The system 𝒩ℰ is a modification of the following systems: Gentzen’s system
NJ from [6] (i.e., Prawitz’s system from [11]) and Zucker’s system 𝒩 from [15].
In the system 𝒩ℰ the introduction rules are introduction rules from a standard
natural deduction system (i.e., Gentzen’s system NJ ). The most important charac-
teristic of the system 𝒩ℰ is that elimination rules for all connectives and quantifiers
are of the same form as the elimination rules of ∨ and ∃ in a standard natural de-
duction system. These rules were introduced in the system in [13] which was called
a natural extension of natural deduction, so our system 𝒩ℰ (which is the system
from [1] with different denotation) is called extended natural deduction. We note
that the system 𝒩ℰ is very similar to the system from [9] (see Note 5 in Section
2.3 in [2]). To connect derivations of the systems 𝒮ℰ and 𝒩ℰ we will use the map
𝜓 from the set of derivations of 𝒮ℰ onto the set of derivations of 𝒩ℰ (which was
also defined in [2]). The definition of maximum cuts in derivations of the system
𝒮ℰ will be the definition of maximum cuts in derivations of the system 𝒮 from
[5]. In the system 𝒩ℰ elimination rules for all connectives and quantifiers have
form as the elimination rules of ∨ and ∃ in a standard natural deduction system,
so all elimination rules of the system 𝒩ℰ can make maximum segments. Thus,
maximum segments in derivations of the system 𝒩ℰ and maximum segments in
derivations of a standard natural deduction system are different. We will show
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that maximum cuts from the system 𝒮ℰ , which is a standard system of sequents,
correspond to maximum segments from the system 𝒩ℰ , which is one no standard
natural deduction system.

In Section 2 the systems 𝒮ℰ and 𝒩ℰ and the map 𝜓, which connects their
derivations, will be presented. In the parts 3.1 and 3.2 of Section 3 we will define
maximum cuts and maximum segments in the system 𝒮ℰ and the system 𝒩ℰ ,
respectively. Finally, in the part 3.3 we will show the following: if 𝒟 is a derivation
without maximum cuts from the system 𝒮ℰ , then 𝜓𝒟 is a normal derivation in the
system 𝒩ℰ .

2. The systems 𝒮ℰ and 𝒩ℰ

Our language will be the language of the first order predicate calculus, i.e., it
will have the logical connectives ∧, ∨ and ⊃, quantifiers ∀ and ∃, and a propositional
constant ⊥ (for absurdity). Bound variables will be denoted by 𝑥, 𝑦, 𝑧, . . . , free
variables by 𝑎, 𝑏, 𝑐, . . . , and individual terms by 𝑟, 𝑠, 𝑡, . . . . Letters 𝑃,𝑄,𝑅, . . . will
denote atomic formulae and 𝐴,𝐵,𝐶, . . . will denote formulae.

2.1. The system 𝒮ℰ. A sequent of the system 𝒮ℰ has the form Γ → 𝐴,
where Γ is a finite set of formulae with upper indices (i.e., indices) and 𝐴 is one
unindexed formula. The upper indices are defined as indices in [15]: a finite non-
empty sequence of natural numbers will be called symbol; and a finite non-empty
set of symbols will be called an upper index (i.e., index). Symbols will be denoted
by 𝑠, 𝑡 and indices by 𝑎, 𝑏, 𝑐, . . . An index consisting of one symbol 𝑠, {𝑠}, will be
denoted just by 𝑠. For any number 𝑖, the index {𝑖} (containing the single symbol 𝑖
of length 1) will be called an unary index, and will be denoted just by 𝑖. Moreover,
there are the following operations on indices, which are completely the same as
the operations on indices in [15]: (i) the union of two indices 𝑎 and 𝑏, 𝑎 ∪ 𝑏, is
again an index and it is simply a set-theoretical union; (ii) the product of 𝑎 and 𝑏
is 𝑎× 𝑏 =𝑑𝑓 {𝑠 * 𝑡 : 𝑠 ∈ 𝑎, 𝑡 ∈ 𝑏}, where * is the concatenation of sequences.

An indexed formula will be denoted by 𝐴𝑎, and a set of indexed formulae will be
denoted by Γ𝑎. (However, the indices of sets of formulae will usually be omitted.)
For a set of indexed formulae Γ we will make the set Γ×𝑎 in the following way
Γ×𝑎 = {𝐶𝑐×𝑎 : 𝐶𝑐 ∈ Γ}. A sequent representation such as 𝐴𝑎, 𝐴𝑏,Γ implies that
𝑎 ̸= 𝑏, and 𝐴𝑎 /∈ Γ and 𝐴𝑏 /∈ Γ, but possibly 𝐴𝑐 ∈ Γ for some 𝑐 ̸= 𝑎 and 𝑐 ̸= 𝑏.

Postulates for the system 𝒮ℰ .
Initial sequents
i-sequents: 𝐴𝑗 → 𝐴.
⊥-sequents: ⊥𝑗→ 𝑃 , where 𝑃 is any atomic formula different from ⊥.
Inference rules
structural rules:

(contraction)
𝐴𝑎, 𝐴𝑏,Γ→ 𝐶

𝐴𝑎∪𝑏,Γ→ 𝐶

(cut)
Γ→ 𝐴 𝐴𝑎,Δ→ 𝐶

Γ×𝑎,Δ→ 𝐶
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operational rules (i.e., rules for connectives):

left rules right rules

(⊃L)
Γ→ 𝐴 𝐵𝑏,Δ→ 𝐶

Γ, 𝐴 ⊃ 𝐵𝑖,Δ→ 𝐶
(⊃R)

(𝐴𝑎),Γ→ 𝐵

Γ→ 𝐴 ⊃ 𝐵

(∧L1)
𝐴𝑎,Γ→ 𝐶

𝐴 ∧𝐵𝑖,Γ→ 𝐶
(∧L2)

𝐵𝑏,Γ→ 𝐶

𝐴 ∧𝐵𝑖,Γ→ 𝐶
(∧R)

Γ→ 𝐴 Δ→ 𝐵

Γ,Δ→ 𝐴 ∧𝐵

(∨L)
(𝐴𝑎),Γ→ 𝐶 (𝐵𝑏),Δ→ 𝐶

𝐴 ∨𝐵𝑖,Γ,Δ→ 𝐶
(∨R1)

Γ→ 𝐴

Γ→ 𝐴 ∨𝐵
(∨R2)

Γ→ 𝐵

Γ→ 𝐴 ∨𝐵

(∀L)
𝐹 t𝑎,Γ→ 𝐶

∀𝑥𝐹𝑥𝑖,Γ→ 𝐶
(∀R)

Γ→ 𝐹a
Γ→ ∀𝑥𝐹𝑥

(∃L)
(𝐹a𝑎),Γ→ 𝐶

∃𝑥𝐹𝑥𝑖,Γ→ 𝐶
(∃R)

Γ→ 𝐹 t
Γ→ ∃𝑥𝐹𝑥

The unary indices 𝑖, 𝑗, 𝑑𝑜𝑡𝑠 from the initial sequents and the lower sequents
in the left rules are called initial indices (as Zucker’s unary indices, see 2.2.1 in
[15]), and they have to satisfy the restrictions on indices: in any derivation, all
initial indices have to be distinct. (In the examples below initial indices will be
denote by 𝑖, 𝑗, 𝑘, 𝑙,𝑚, 𝑛, ℎ, 𝑓, . . . .) The notation (𝐶𝑐),Θ→ 𝐷, which is used in the
rules (⊃R), (∨L) and (∃L), is interpreted as 𝐶𝑐,Θ → 𝐷, if 𝑐 ̸= ∅, and Θ → 𝐷, if
𝑐 = ∅ (and hence not strictly an index, by our definition, see 2.2.8.(b) in [15]). So,
(𝐶𝑐),Θ→ 𝐷 denotes either the sequent 𝐶𝑐,Θ→ 𝐷 or the sequent Θ→ 𝐷.

In the rules (∀R) and (∃L) the variable a is called the proper variable of these
rules, and, as usual, has to satisfy the restrictions on variables: in (∀R) the variable
a does not occur in formulae Γ∪{∀𝑥𝐹𝑥}; and in (∃L) the variable a does not occur
in formulae Γ ∪ {∃𝑥𝐹𝑥,𝐶}.

The new formula explicitly shown in the lower sequent of an operational rule
is the principal formula, and its subformulae from the upper sequents are the side
formulae of that rule. The formula 𝐴𝑎∪𝑏 is the principal formula, and 𝐴𝑎 and 𝐴𝑏

are the side formulae of the contraction. The formulae 𝐴 and 𝐴𝑎 from the upper
sequents of the cut are the cut formulae. In any inference rule, formulae which are
not side, principal or cut formulae, are passive formulae of that rule.
𝒞,𝒟,𝒟′,𝒟1 . . . will denote derivations in the system 𝒮ℰ . All formulae making

up sequents in a derivation 𝒟 of the system 𝒮ℰ will be called d-formulae of 𝒟.

𝒟
Γ→ 𝐴

will denote the derivation 𝒟 with the end sequent Γ → 𝐴, and

𝒟

Γ′ → 𝐴′

Γ→ 𝐴
r

will denote the derivation 𝒞 with the last rule r, the end sequent Γ → 𝐴 and the
subderivation 𝒟.

A derivation 𝒟 of the system 𝒮ℰ has the proper variable property (PVP) if in
𝒟 the proper variable of each operational rule (∀R) or (∃L) occurs only above the
lower sequent of that operational rule.

Remark 2.1. The proper variable property is a well-known property of deriva-
tions from systems of sequents from [6]. Moreover, each derivation can be effectively
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transformed into one with PVP (see III, 3.10 in [6] for details). Then we assume
that our derivations in the system 𝒮ℰ have PVP.

Remark 2.2. It is important to note that we will not make distinction between
derivations just on the basis of how their initial indices were chosen (see 2.2.12 in
[15]).

2.2. The system 𝒩ℰ. In the system 𝒩ℰ (as in Zucker’s system 𝒩 in [15])
the indices will be used as a meta-level in a derivation of 𝒩ℰ : each occurrence of
an assumption formula is associated with a distinct symbol, and each assumption
class, i.e., not-empty set of occurrences of the same formula, is associated with an
index. For example, 𝐴𝑠 will denote an assumption occurrence of a formula 𝐴; and
𝐴𝑎 will denote an assumption class of formulae 𝐴.

𝜋, 𝜋, 𝜋1, 𝜋
′, . . . will denote derivations of the system 𝒩ℰ , and Γ,Δ, . . . will

denote finite sets of assumption classes in the derivations of the system 𝒩ℰ .
Γ, (𝐴𝑎), (𝐴𝑏)

𝜋
𝐶

will denote the derivation 𝜋, i.e., the derivation of 𝐶 from Γ ∪

{𝐴𝑎, 𝐴𝑏}. As in Zucker’s system 𝒩 from [15] the set of all assumption classes of 𝜋
is Γ ∪ {𝐴𝑎, 𝐴𝑏}, if 𝑎 ̸= ∅ and 𝑏 ̸= ∅; or Γ ∪ {𝐴𝑏}, if 𝑎 = ∅; or Γ ∪ {𝐴𝑎}, if 𝑏 = ∅ (see
2.3.3(a) in [15]).

In the derivations of 𝒩ℰ we will have the following operations with assumption
classes:

Contraction. Two assumption classes of the same formula are replaced by their
union. From the derivation 𝜋, Γ, 𝐴𝑎, 𝐴𝑏

𝜋
𝐶

, by a contraction of 𝐴𝑎 and 𝐴𝑏, we obtain the

derivation 𝜋′. The assumption classes of the same formulae which are contracted
will have stars as supindex. So, the derivation 𝜋′ has the form Γ, 𝐴𝑎*, 𝐴𝑏*

𝜋
𝐶

.

Substitution. From Δ
𝜋1
𝐴

and
Γ, 𝐴𝑎
𝜋2
𝐶

we define a derivation Γ,

Δ×𝑎
𝜋1

(𝐴𝑎)
𝜋2
𝐶

.

Discharging an assumption class (See the explanation below logical inference
rules.)

Postulates in the system 𝒩ℰ .
Trivial derivation of 𝐴 from 𝐴 itself, 𝐴 or 𝐴𝑖, where 𝑖 is any unary index.

Structural rule, contraction: If Γ, 𝐴𝑎, 𝐴𝑏
𝜋
𝐶

is a derivation, then so is Γ, 𝐴𝑎*, 𝐴𝑏*
𝜋
𝐶

.
Inference rules
elimination rules introduction rules

𝜋1
𝐴 ⊃ 𝐵

𝜋2
𝐴

[𝐵𝑏]
𝜋3
𝐶

𝐶
(⊃𝐸ℰ)

[𝐴𝑎]
𝜋
𝐵

𝐴 ⊃ 𝐵
(⊃𝐼ℰ)

𝜋1
𝐴 ∧𝐵

[𝐴𝑎]
𝜋2
𝐶

𝐶
(∧𝐸ℰ1)

𝜋1
𝐴 ∧𝐵

[𝐵𝑏]
𝜋2
𝐶

𝐶
(∧𝐸ℰ2) 𝐴 𝐵

𝐴 ∧𝐵
(∧𝐼ℰ)
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𝜋1
𝐴 ∨𝐵

[𝐴𝑎]
𝜋2
𝐶

[𝐵𝑏]
𝜋3
𝐶

𝐶
(∨𝐸ℰ) 𝐴

𝐴 ∨𝐵
(∨𝐼ℰ1) 𝐵

𝐴 ∨𝐵
(∨𝐼ℰ2)

𝜋1
∀𝑥𝐹𝑥

[𝐹 t𝑎]
𝜋2
𝐶

𝐶
(∀𝐸ℰ) 𝐹a

∀𝑥𝐹𝑥
(∀𝐼ℰ)

𝜋1
∃𝑥𝐹𝑥

[𝐹a𝑐]
𝜋2
𝐶

𝐶
(∃𝐸ℰ) 𝐹 t

∃𝑥𝐹𝑥
(∃𝐼ℰ)

⊥-rule:
⊥
𝑃

(⊥), where 𝑃 is any atomic formula different from ⊥.

In each of the rules (⊃𝐸ℰ), (⊃𝐼ℰ), (∧𝐸ℰ1), (∧𝐸ℰ2), (∨𝐸ℰ), (∀𝐸ℰ) and (∃𝐸ℰ)
(as in Zucker’s system 𝒩 , see 2.3.8.(a) in [15]) in the brackets [ ] there is the
assumption class which is discharged by that rule if its index is not empty, and if
it is empty, then nothing is discharged by that rule. Moreover, there may be other
assumption classes of the same formula (like the one discharged), and these are not
discharged by that rule.

In the rules (∀𝐼ℰ) and (∃𝐸ℰ) the variable a is the proper variable of these rules,
and it has to satisfy the well known restrictions on variables, which is similar to
the restrictions on variables in the system 𝒮ℰ (see also 2.3.8(b) in [15]).

In the system 𝒩ℰ for elimination rules of all connectives and quantifiers we
have the notions of minor and major premisses which are defined analogously to
these notions in [11]. For the rule (⊃𝐸ℰ) the formula 𝐴⊃𝐵 is the major premiss,
the formula 𝐴 is the first minor premiss and the formula 𝐶 is the second minor
premiss of that rule. We also have the notion of a connection in a derivation 𝜋
(for details see 2.5.1.(a),(b) in [15]), which is in fact Prawitz’s notion from [11,
pp. 28–29].

In the system𝒩ℰ (by using the notions above) we can define the proper variable
property (PVP) of a derivation 𝜋 which is very similar to PVP in the system 𝒮ℰ
(see 2.5.1(c) in [15] or p. 28 in [11]).

2.3. The map which connects derivations of 𝒮ℰ and 𝒩ℰ. The map 𝜓
from [2] connects the set of derivations of the system 𝒮ℰ , Der(𝒮ℰ), and the set of
derivations of the system 𝒩ℰ , Der(𝒩ℰ):

𝜓 : Der(𝒮ℰ) −→ Der(𝒩ℰ)

The map 𝜓 has the property that the image of a derivation 𝒟 with the end sequent
Γ→ 𝐴 is the derivation 𝜓𝒟 of the formula 𝐴 from the set of assumption classes Γ:

𝜓
(︁ 𝒟

Γ→ 𝐴

)︁
=

Γ
𝜓𝒟
𝐴

The lengths of derivations 𝒟 and 𝜋, 𝑙𝒟 and 𝑙𝜋, will be defined in the usual
way, as the number of all inferences rules in these derivations. The last rules of
derivations 𝒟 and 𝜋 will be denoted by 𝑟𝒟 and 𝑟𝜋, respectively.
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The map 𝜓 will be define by an induction on the length of the derivation 𝒟,
𝑙𝒟. There are several cases which depend on the last rule of the derivation 𝒟, 𝑟𝒟.

𝑟𝒟 𝒟 𝜓𝒟

𝐴𝑖 → 𝐴 𝐴𝑖

⊥ ⊥𝑖 → 𝑃
⊥𝑖
𝑃

cut

𝒟1

Γ→ 𝐴

𝒟2

𝐴𝑎,Δ→ 𝐶

Γ×𝑎,Δ→ 𝐶
Δ,

Γ×𝑎
𝜓𝒟1
(𝐴𝑎)

𝜓𝒟2
𝐶

contraction

𝒟1

𝐴𝑎, 𝐴𝑏,Γ→ 𝐶

𝐴𝑎∪𝑏,Γ→ 𝐶

𝐴𝑎*, 𝐴𝑏*,Γ
𝜓𝒟1
𝐶

⊃R

𝒟1

(𝐴𝑎),Γ→ 𝐵

Γ→ 𝐴 ⊃ 𝐵

Γ, [𝐴𝑎]
𝜓𝒟1
𝐵

𝐴 ⊃ 𝐵

⊃L

𝒟1

Γ→ 𝐴

𝒟2

𝐵𝑏,Δ→ 𝐶

Γ, 𝐴 ⊃ 𝐵𝑖,Δ→ 𝐶 𝐴 ⊃ 𝐵𝑖

Γ
𝜓𝒟1
𝐴

[𝐵𝑏],Δ
𝜓𝒟2
𝐶

𝐶

∧R

𝒟1

Γ→ 𝐴

𝒟2

Δ→ 𝐵

Γ,Δ→ 𝐴 ∧𝐵

Γ
𝜓𝒟1
𝐴

Δ
𝜓𝒟2
𝐵

𝐴 ∧𝐵

∧L1

𝒟1

𝐴𝑎,Γ→ 𝐶

𝐴 ∧𝐵𝑖,Γ→ 𝐶 𝐴 ∧𝐵𝑖

[𝐴𝑎],Γ
𝜓𝒟1
𝐶

𝐶

∧L2 The case when 𝑟𝒟 is ∧L2 is similar to the case when 𝑟𝒟 is ∧L1.

∨R1

𝒟1

Γ→ 𝐴

Γ→ 𝐴 ∨𝐵

Γ
𝜓𝒟1
𝐴

𝐴 ∨𝐵
∨R2 The case when 𝑟𝒟 is ∨R2 is similar to the case when 𝑟𝒟 is ∨R1.

∨L

𝒟1

(𝐴𝑎),Γ→ 𝐶

𝒟2

(𝐵𝑏),Δ→ 𝐶

𝐴 ∨𝐵𝑖,Γ,Δ→ 𝐶 𝐴 ∨𝐵𝑖

[𝐴𝑎],Γ
𝜓𝒟1
𝐶

[𝐵𝑏],Δ
𝜓𝒟2
𝐶

𝐶

∀R

𝒟1

Γ→ 𝐹a
Γ→ ∀𝑥𝐹𝑥

Γ
𝜓𝒟1
𝐹a
∀𝑥𝐹𝑥
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∀L

𝒟1

𝐹 t𝑎,Γ→ 𝐶

∀𝑥𝐹𝑥𝑖,Γ→ 𝐶 ∀𝑥𝐹𝑥𝑖

[𝐹 t𝑎],Γ
𝜓𝒟1
𝐶

𝐶

∃R

𝒟1

Γ→ 𝐹 t
Γ→ ∃𝑥𝐹𝑥

Γ
𝜓𝒟1
𝐹 t
∃𝑥𝐹𝑥

∃L

𝒟1

(𝐹a𝑎),Γ→ 𝐶

∃𝑥𝐹𝑥𝑖,Γ→ 𝐶 ∃𝑥𝐹𝑥𝑖

[𝐹a𝑎],Γ
𝜓𝒟1
𝐶

𝐶
By Remark 2.1 we can suppose that the derivation 𝒟 has the proper variable

property, so 𝜓𝒟 is a correct derivation with regard to the restrictions on variables
in the cases when 𝑟𝒟 is a cut.

3. Maximum cuts and maximum segments

3.1. Maximum cuts. In this section the definition of maximum cats in the
system 𝒮ℰ will be presented. (It is, in fact, the definition of maximum cats in the
system 𝒮 from [5].)

First we give an example of a maximum cut. In Example 3.1 below the last
cut, the cut c4, is a maximum cut. Roughly speaking, its left cut formula 𝐴 ∧ 𝐵
is connected with the rule ∧R (the introduction of ∧), and its right cut formula
𝐴 ∧𝐵𝑖𝑙𝑚 is connected with the rule ∧L1 (the elimination of ∧).

Example 3.1. The derivation ℰ :

𝐶
ℎ→𝐶 𝐴𝑞→𝐴

𝐶
ℎ
, 𝐶⊃𝐴𝑓→𝐴 𝐴

𝑒→𝐴

𝐶
ℎ𝑒
, 𝐶⊃𝐴𝑓𝑒→𝐴

c1
𝐵
𝑔→𝐵

𝐶
ℎ𝑒
, 𝐶⊃𝐴𝑓𝑒, 𝐵𝑔→A∧B

∧R
A∧B𝑛→A∧B

𝐶
ℎ𝑒
, (𝐶⊃𝐴)∨𝐹𝑘, 𝐵𝑔,A∧B𝑛→A∧B

A∧B𝑖→A∧B A∧B𝑙→A∧B

A∧B𝑖𝑙→A∧B
c2

𝐴
𝑝→𝐴

𝐴∧𝐵𝑚→𝐴
∧L1

𝐵
𝑗→𝐵

A∧B𝑚, 𝐵𝑗→𝐴∧𝐵

A∧B𝑖𝑙𝑚, 𝐵𝑗→𝐴∧𝐵
c3

𝐶
ℎ𝑒𝑖𝑙𝑚

, (𝐶⊃𝐴)∨𝐹𝑘𝑖𝑙𝑚, 𝐵𝑔𝑖𝑙𝑚,A∧B𝑛𝑖𝑙𝑚, 𝐵𝑗→𝐴∧𝐵
c4

To define a maximum cut of a derivation we need to introduce some notions
which is similar to well-known notions of branches and paths from natural deduction
and clusters from systems of sequents (see Remark 3.1 and Remark 3.3 below).

First we consider a formula 𝐹 . One of its subformulae, a subformula 𝐶, will be
called a d-subformula 𝐶 of 𝐹 , when the form of 𝐶 and the place of its appearance
in the formula 𝐹 will be important. For example, the formula 𝐹 ≡ (𝐶 ⊃ 𝐷) ∧ 𝐶
has two different d-subformulae 𝐶. We note that the relation ”. . . is a d-subformula
of . . . ” is reflexive and transitive. A d-subformula of a formula 𝐹 will be called
a proper d-subformula when it is not that formula 𝐹 itself. We also note that in
a derivation, two d-formulae of the same form have the same d-subformulae which
constitute them. (In the definition of a d-branch below we will use the following
convention: the indices of d-formulae will denote their place in a sequence of d-
formulae where these formulae can or cannot be indexed formulae.)
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Let 𝐹 be a d-formula from a derivation 𝒟. A d-branch of the d-formula 𝐹 in
the derivation 𝒟 will be a sequence of d-formulae 𝐹1, . . . , 𝐹𝑛, 𝑛 ≥ 1, where 𝐹1 is
that d-formula 𝐹 , and for each 𝑖, 𝑖 ≥ 1, if the d-formula 𝐹𝑖 is

(i) either a passive formula in the lower sequent of a rule, or a principal formula
of a contraction, then 𝐹𝑖+1 is the corresponding passive formula from one of the
upper sequents of that rule or one of the corresponding side formulae from the
upper sequent of that contraction, respectively;

(ii) a principal formula in the lower sequent of an operational rule, then 𝐹𝑖+1 is
one of the side formulae (if they exist) from the upper sequents of the rule (which
need not be on the same side of → as 𝐹𝑖);

(iii) a d-formula from an initial sequent, or the principal formula of a rule which
does not have one of side formulae, then 𝑖 = 𝑛.

In Example 3.1 above the d-formula (𝐶 ⊃ 𝐴) ∨ 𝐹 𝑘𝑖𝑙𝑚 has the following d-
branches:

𝑏 : (𝐶⊃𝐴)∨𝐹 𝑘𝑖𝑙𝑚, (𝐶⊃𝐴)∨𝐹 𝑘, 𝐶⊃𝐴𝑓𝑒, 𝐶⊃𝐴𝑓𝑒, 𝐶⊃𝐴𝑓 , 𝐶;
𝑏′ : (𝐶⊃𝐴)∨𝐹 𝑘𝑖𝑙𝑚, (𝐶⊃𝐴)∨𝐹 𝑘, 𝐶⊃𝐴𝑓𝑒, 𝐶⊃𝐴𝑓𝑒, 𝐶⊃𝐴𝑓 , 𝐴𝑞; and
𝑏′′ : (𝐶⊃𝐴)∨𝐹 𝑘𝑖𝑙𝑚, (𝐶⊃𝐴)∨𝐹 𝑘.

Remark 3.1. Our notion of a d-branch is very similar to the notion of the
path in a derivation from natural deduction (see [11, p. 52]).

In a derivation 𝒟 the d-branch 𝑏 of a d-formula 𝐹 which is not a part of d-
branches of any other d-formula from 𝒟 will be called a long d-branch of that
d-formula 𝐹 . The d-branches 𝑏, 𝑏′ and 𝑏′′ mentioned above are the long d-branches
of the d-formula (𝐶⊃𝐴) ∨ 𝐹 𝑘𝑖𝑙𝑚.

Remark 3.2. If in a derivation 𝒟 the d-branch 𝑏 is a long d-branch of a d-
formula 𝐹 , then the d-formula 𝐹 is either a cut formula or a formula from the end
sequent of the derivation 𝒟.

In a derivation 𝒟 for a d-branch 𝑏 of a d-formula 𝐹 we define a branch of the
d-formula 𝐹 in 𝒟 as the sequence of consecutive d-formulae (equal to 𝐹 ) from 𝑏
whose first formula is the first formula of 𝑏, the d-formula 𝐹 , and the last formula
is a d-formula from 𝑏 such that the next d-formula from 𝑏 (if it exists) is different
from 𝐹 .

In Example 3.1 the part of the d-branches 𝑏, 𝑏′ and 𝑏′′: (𝐶 ⊃ 𝐴)∨𝐹 𝑘𝑖𝑙𝑚,
(𝐶⊃𝐴)∨𝐹 𝑘 is the branch of the d-formula (𝐶⊃𝐴)∨𝐹 𝑘𝑖𝑙𝑚.

Remark 3.3. All branches of a d-formula in a derivation form Gentzen’s cluster
(see [7, p. 267]) of that d-formula in the derivation.

In Example 3.1 the left cut formula of the cut c4 has the d-branch 𝑏𝑙1 (which is
also the branch of that d-formula): 𝐴∧𝐵 (the left cut formula of the cut c4 itself),
𝐴∧𝐵 (from the sequent 𝐴∧𝐵𝑛 → 𝐴∧𝐵); and the branch 𝑏𝑙2: 𝐴∧𝐵 (the left cut
formula of the cut c4 itself), 𝐴 ∧ 𝐵 (the principal formula of ∧R). On the other
hand, the right cut formula of the cut c4 has the d-branch 𝑏𝑟: 𝐴 ∧ 𝐵𝑖𝑙𝑚, 𝐴 ∧ 𝐵𝑖𝑙,
𝐴 ∧ 𝐵𝑖 (which is also the branch of 𝐴 ∧ 𝐵𝑖𝑙𝑚). The branch 𝑏𝑙2 connects the left
cut formula of the cut c4 with the rule ∧R, but the d-branch 𝑏𝑟 does not connect
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the right cut formula of the cut c4 with the rule ∧L1. To make that connection we
need to define the notion of the o-tree of a d-formula. In Example 3.1 the sequences
of the bold emphasized d-formulae are the o-trees of the left and right cut formula
of the cut c4. The o-tree 𝑡𝑟𝑟 : 𝑡1𝑡2𝑡3𝑡4𝑡5 of the d-formula 𝐴 ∧ 𝐵𝑖𝑙𝑚 consists of the
following parts: 𝑡1 is 𝑏𝑟; 𝑡2 is the inverted long d-branch (i.e., the long d-branch
written in the inverse order) of the left cut formula 𝐴 ∧ 𝐵 of the cut c2, which is
that d-formula itself; 𝑡3 is the d-branch of the right cut formula 𝐴∧𝐵𝑙 of the cut c2,
which is that d-formula itself; 𝑡4 is the inverted long d-branch of the d-formula 𝐴∧𝐵
from 𝐴 ∧ 𝐵𝑖𝑙 → 𝐴 ∧ 𝐵 which consists of that d-formula and the d-formula 𝐴 ∧ 𝐵
from 𝐴∧𝐵𝑙 → 𝐴∧𝐵; 𝑡5 is the right cut formula 𝐴∧𝐵𝑚 of the cut c3. On the other
hand, the left cut formula of the cut c4 has two o-trees 𝑡𝑟𝑙1 and 𝑡𝑟𝑙2. The o-tree
𝑡𝑟𝑙1 is 𝑡𝑙11 𝑡𝑙12 , where 𝑡𝑙11 is 𝑏𝑙1 and 𝑡𝑙12 is the inverted long d-branch of the d-formula
𝐴 ∧𝐵𝑛𝑖𝑙𝑚 : 𝐴 ∧𝐵𝑛, 𝐴 ∧𝐵𝑛, 𝐴 ∧𝐵𝑛𝑖𝑙𝑚. The o-tree 𝑡𝑟𝑙2 is the branch 𝑏𝑙2. Roughly
speaking, in a derivation one o-tree of a d-formula 𝐹 will consist of its branch and
d-branches and inverted long d-branches of some d-formulae, alternately. The first
part of an o-tree of a d-formula 𝐹 will be one branch of that d-formula 𝐹 . The next
parts (if they exist) which make that o-tree will be the d-branches of cut formulae
and inverted long d-branches of cut formulae, alternately. The last part of that
o-tree can be: the branch of the d-formula 𝐹 which ends with the principal formula
of an operational rule (see 𝑡𝑟𝑙2 above); a cut formula (see 𝑡𝑟𝑟 above); the inverted
long d-branch of a d-formula from the end sequent of the derivation (see 𝑡𝑟𝑙1 above);
or a d-formula from an initial sequent.

Now we define the notion of the o-tree of a d-formula in a derivation.
First, for a d-branch 𝑏 : 𝐹1, . . . , 𝐹𝑛 of a d-formula 𝐹 and one d-subformula

of 𝐹 , the d-subformula 𝐶, we define the following notions: (i) the sequence of d-
formulae 𝑏−1 is 𝐹𝑛, . . . , 𝐹1; (ii) the d-branch 𝑏 is a part of 𝐶 when 𝐹𝑛 is a proper
d-subformula of 𝐶; (iii) 𝐶 is a part of the d-branch 𝑏 when 𝐶 is a d-subformula of
𝐹𝑛.

Let 𝐹 be a d-formula from a derivation 𝒟. An o-tree of the d-formula 𝐹 in
the derivation 𝒟 (a 𝒟-tree of 𝐹 ) will be a sequence 𝑡1 . . . 𝑡𝑛 (𝑛 ≥ 1), where 𝑡1 is
a branch of the d-formula 𝐹 in 𝒟, and 𝑡𝑖, 𝑖 > 1, are some sequences of d-formulae
from 𝒟 which are made in the following way.
− If the last d-formula of 𝑡1 is a principal formula of an operational rule, then

𝑛 = 1.
− If the last d-formula of 𝑡1 belongs to an initial sequent, then 𝑛> 1 and for

each 𝑘, 𝑘≥1:
If the last d-formula of 𝑡2𝑘−1 is
(i) one d-formula of an i-sequent and 𝐶𝑚 is other d-formula of that i-sequent,

then 𝑡2𝑘 is 𝑏−1, where 𝑏 : 𝐶1, . . . , 𝐶𝑚 is a long d-branch which ends in 𝐶𝑚;
(ii) a d-formula from a ⊥-sequent, then 𝑡2𝑘 is the other d-formula from that

⊥-sequent and 𝑛 is 2𝑘.
If the last d-formula of 𝑡2𝑘 is
(i) a d-formula from the end sequent of 𝒟, then 𝑛 is 2𝑘;
(ii) the d-formula 𝐶1, which is a cut formula of a cut whose other cut formula

is 𝐶 (𝐶1 and 𝐶 have the same form), then 𝑡2𝑘+1 can be
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(a) only the d-formula 𝐶, when there is a d-branch of 𝐶 which is a part of 𝐹
and 𝑛 = 2𝑘 + 1;

(b) a d-branch of 𝐶 which ends in an initial sequent and whose part is 𝐹
(if it exists);

(c) one empty sequence, i.e., 𝑛 = 2𝑘, and 𝑡2𝑘 has to be changed, it becomes
only its first d-formula, otherwise.

Remark 3.4. In a derivation 𝒟 we have the following picture: if a d-formula
𝐹 has an o-tree 𝑡𝑟 : 𝑡1 . . . 𝑡𝑛 where 𝑛 is an odd number, then either 𝑛 = 1, i.e., the
last formula of 𝑡1 is the principal formula of an operational rule, or 𝑛 = 2𝑘 + 1
(for some 𝑘, 𝑘 ≥ 1), i.e., 𝑡𝑛 is a cut formula whose d-branch contains the principal
formula (which is equal to 𝐹 ) of an operational rule. So, if 𝑛 is an odd number,
then we conclude that the d-formula 𝐹 is connected with a rule which makes 𝐹
(i.e., an operational rule whose principal formula is equal to 𝐹 ).

In a derivation 𝒟 an o-tree 𝑡𝑟 : 𝑡1 . . . 𝑡𝑛 of a d-formula 𝐹 is solid if 𝑛 is an even
number, otherwise the o-tree 𝑡𝑟 is not solid.

Lemma 3.1. Let 𝐴 be a d-formula in a derivation 𝒟 and 𝑡𝑟 : 𝑡1 . . . 𝑡𝑛 be an
o-tree of the d-formula 𝐴.

(1) 𝑛 is an even number iff the last d-formula of the o-tree 𝑡𝑟 belongs to the
end sequent of 𝒟 or an initial sequent.

(2) 𝑛 is an odd number iff the last d-formula of the o-tree 𝑡𝑟 is either the prin-
cipal formula of an operational rule or a cut formula whose one d-branch contains
the principal formula 𝐴 of an operational rule.

Proof. By the definition of o-trees of a d-formula in a derivation. �

In Example 3.1 the left cut formula of the cut c4 has one no solid o-tree, the
o-tree 𝑡𝑟𝑙2 and one solid o-tree, the o-tree 𝑡𝑟𝑙1.

All possible o-trees of a d-formula 𝐹 in a derivation 𝒟 form the origin of the
d-formula 𝐹 in the derivation 𝒟. A d-formula 𝐹 has the safe origin in a derivation
𝒟 if all its o-trees are solid; otherwise that d-formula 𝐹 has no safe origin in that
derivation.

Lemma 3.2. A d-formula 𝐴 has the safe origin in a derivation 𝒟 iff the last
d-formula of each o-tree of 𝐴 in 𝒟 belongs to either the end sequent of 𝒟 or one
initial sequent.

Proof. By the definition of the safe origin and Lemma 3.1. �

Lemma 3.3. Let 𝐴 be a d-formula from the end sequent of a derivation 𝒟 which
has the corresponding d-formula in an upper sequent of the last rule of 𝒟. If the
d-formula 𝐴 has the safe origin in 𝒟, then its corresponding d-formula from the
upper sequent has the safe origin in the subderivation of 𝒟 which ends with that
sequent.

Proof. There are several cases which depend on the last rule of the derivation
𝒟. It can be either a rule with the d-formula 𝐴 as its passive formula, or a contrac-
tion whose principal formula is the d-formula 𝐴. We will only consider the most
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interesting case when the last rule of 𝒟 is a cut. (The other cases are similar and

easier.) The derivation 𝒟 is
𝒟1

𝐴,Γ→ 𝐵

𝒟2
𝐵𝑏,Δ→ 𝐶

𝐴×𝑏,Γ×𝑏,Δ→ 𝐶
cut. We consider the d-formula

𝐴×𝑏 from the end sequent of 𝒟 with the safe origin in 𝒟, and its corresponding
d-formula 𝐴 from the left upper sequent of the last rule in 𝒟, the sequent 𝐴,Γ→𝐵.
We should show that 𝐴 from the sequent 𝐴,Γ→𝐵 has the safe origin in the deriva-
tion 𝒟1. By Lemma 3.2, each 𝒟-tree of 𝐴×𝑏 ends in 𝐴×𝑏,Γ×𝑏,Δ→ 𝐶 or in an
initial sequent from 𝒟 (from 𝒟1 or 𝒟2). So, by the definition of o-trees each 𝒟-tree
of 𝐴×𝑏 of the first kind and each 𝒟-tree of 𝐴×𝑏 of the second kind which ends in
𝒟2 can contain the d-formulae 𝐵 from 𝐴,Γ→𝐵 and 𝐵𝑏 from 𝐵𝑏,Δ→𝐶. On the
other hand, each 𝒟1-tree of 𝐴 from 𝐴,Γ→𝐵 has to be one part of one 𝒟-tree of
𝐴×𝑏. Thus, 𝒟-trees of 𝐴×𝑏 make all 𝒟1-trees of the d-formula 𝐴 from 𝐴,Γ→𝐵, and
there are the following cases: (i) if one 𝒟-tree of 𝐴×𝑏 ends in an initial sequent from
𝒟1, then that 𝒟-tree without the d-formula 𝐴×𝑏 is one 𝒟1-tree of the d-formula 𝐴
from 𝐴,Γ→𝐵; (ii) if one 𝒟-tree of 𝐴×𝑏 ends in an initial sequent from 𝒟2 or in the
end sequent of 𝒟, then the part of that 𝒟-tree which ends in 𝐴,Γ→𝐵 and does
not contain 𝐴×𝑏 is one 𝒟1-tree of the d-formula 𝐴 from 𝐴,Γ→𝐵. So, all 𝒟1-trees
of that d-formula 𝐴 from 𝐴,Γ→𝐵 end either in an initial sequent from 𝒟1, or in
𝐴,Γ→𝐵. Thus, by Lemma 3.2, the d-formula 𝐴 from 𝐴,Γ→𝐵 has the safe origin
in the derivation 𝒟1. �

Let
𝒟1

Γ→ 𝐴

𝒟2
𝐴𝑎,Δ→ 𝐷

Γ×𝑎,Δ→ 𝐷
cut be a subderivation of a derivation 𝒟. The last

rule of that subderivation, will be called a maximum cut of the derivation 𝒟 (one
m-cut of 𝒟) if neither the d-formula 𝐴 from Γ → 𝐴 nor the d-formula 𝐴𝑎 from
𝐴𝑎,Δ→ 𝐷 has safe origin in the derivation 𝒟.

In the Example 3.1 the cuts c2, c3 and c4 are m-cuts of the derivation ℰ .
However, the cut c1 is not m-cut of ℰ .

Example 3.2. The derivation 𝒟:

𝐶
𝑓→𝐶

𝐸∧𝐶ℎ→𝐶
∧𝐿2

𝐸∧𝐶ℎ→𝐶∨𝐷
∨𝑅1

C∨D𝑒→C∨D

𝐸∧𝐶ℎ𝑒→C∨D
c1
𝐵
𝑙→𝐵

𝐸∧𝐶ℎ𝑒, 𝐵𝑙→(C∨D)∧B
∧𝑅

(𝐶∨𝐷)∧𝐵𝑛→(𝐶∨𝐷)∧𝐵

(𝐸∧𝐶)∨𝐹𝑘, 𝐵𝑙, (𝐶∨𝐷)∧𝐵𝑛→(C∨D)∧B
∨𝐿

C∨D𝑚→C∨D 𝐸𝑔→ 𝐸

C∨D𝑚, (C∨D)⊃E𝑖→𝐸
⊃𝐿

(C∨D)∧B𝑗 , (C∨D)⊃E𝑖→𝐸
∧𝐿1

(𝐸∧𝐶)∨𝐹𝑘𝑗 , 𝐵𝑙𝑗 , (𝐶∨𝐷)∧𝐵𝑛𝑗 , (C∨D)⊃E𝑖→𝐸
c2

In Example 3.2 the left formula of the cut c1, the d-formula 𝐶 ∨ 𝐷 has not
safe origin. The right cut formula of the cut c1, the d-formula 𝐶 ∨𝐷𝑒, has the safe
origin which consists of the solid o-tree 𝑡1𝑡2𝑡3𝑡4 (the bold emphasized d-formulae),
where

𝑡1 : 𝐶 ∨𝐷𝑒;
𝑡2 : 𝐶 ∨𝐷,𝐶 ∨𝐷, (𝐶 ∨𝐷) ∧𝐵, (𝐶 ∨𝐷) ∧𝐵;
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𝑡3 : (𝐶 ∨𝐷) ∧𝐵𝑗 , 𝐶 ∨𝐷𝑚, 𝐶 ∨𝐷𝑚;
𝑡4 : 𝐶 ∨𝐷, (𝐶 ∨𝐷) ⊃ 𝐸𝑖, (𝐶 ∨𝐷) ⊃ 𝐸𝑖, (𝐶 ∨𝐷) ⊃ 𝐸𝑖.
So, the cut c1 is not m-cut of the derivation 𝒟.
The following lemma is a simple consequence of the definition of m-cuts.

Lemma 3.4. If 𝒟 is a derivation without m-cuts, then each subderivation of 𝒟
is a derivation without m-cuts.

3.2. Maximum segments. Normal derivations in the system 𝒩ℰ will be de-
fined in an usual way as derivations without maximum segments, where maximum
segments are parts of derivations which begin with the consequence of an introduc-
tion rule for a connective (or a quantifier) and end with the major premiss of an
elimination rule for that connective (that quantifier).

To define maximum segments we first need the notion of a thread in a deriva-
tion 𝜋. (It is in fact Prawitz’s notion from [?, ]. 25]DP.) A sequence 𝐴1, . . . , 𝐴𝑛 of
consecutive formulae in a derivation 𝜋 is a thread if (1) 𝐴1 is a top formula; (2) 𝐴𝑖,
for each 𝑖 < 𝑛, stands immediately above 𝐴𝑖+1 in 𝜋; and (3) 𝐴𝑛 is the end formula
in the derivation 𝜋.

The most important difference between the system 𝒩ℰ and a standard natural
deduction system, (for example Prawitz’s system from [11]) is that in 𝒩ℰ the
elimination rule for each connective and quantifier has the form as the elimination
rules for ∨ and ∃ from Prawitz’s system. So, the definitions of a segment in a
derivation from Prawitz’s system (see [11, p. 49]) and the system 𝒩ℰ are different.
In a derivation 𝜋 of the system 𝒩ℰ a segment is a sequence of consecutive formulae
𝐶1, . . . , 𝐶𝑛 in a thread of that derivation 𝜋 which are of the same form and (1) 𝐶1
is not the consequence of an elimination rule; (2) 𝐶𝑖, for all 𝑖 < 𝑛, is either a minor
premiss of an elimination rule for ∧, ∨, ∀ or ∃, or the second minor premiss of an
elimination rule for ⊃; (3) 𝐶𝑛 is not the minor premiss of an elimination rule. A
maximum segment is a segment that begins with the consequence of an introduction
rule and ends with the major premiss of an elimination rule.

Now we present one example of a maximum segment in derivations from the
system 𝒩ℰ . (All forms of maximum segments in derivations of the system 𝒩ℰ were
presented in Section 5.3 in [2].)

Example 3.3. We consider the derivation 𝜋:
Γ
𝜋1

𝐴 ⊃ 𝐵

Δ
𝜋2
𝐴

[𝐵𝑏],Λ
𝜋3

𝐶 ∧𝐷
𝐶 ∧𝐷 ⊃ 𝐸ℰ

[𝐶𝑐],Θ
𝜋4
𝐺

𝐺
∧𝐸ℰ1,

where in the subderivation 𝜋3 there is an introduction rule whose consequence is
a formula 𝐶 ∧𝐷. The segment which begins with that formula and ends with the
major premiss 𝐶 ∧𝐷 of the rule ∧Eℰ1 is a maximum segment of the derivation 𝜋.

The notion of maximum formula is a special case of the notion of maximum
segment, i.e., a maximum segment which consists of one formula is a maximum
formula. Namely, if a formula is the consequence of an introduction rule and
also the major premiss of an elimination rule, then that formula will be called a
maximum formula.
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Example 3.4. We consider the derivation 𝜋′:
[𝐶𝑐],Γ
𝜋1
𝐷

𝐶 ⊃ 𝐷 ⊃𝐼ℰ
Δ
𝜋2
𝐶

[𝐷𝑑],Λ
𝜋3
𝐵

𝐵
⊃𝐸ℰ.

The formula 𝐶⊃𝐷 is the consequence of the introduction rule ⊃𝐼ℰ and the major
premiss of the elimination rule ⊃𝐸ℰ , so that formula is one maximum formula of
the derivation 𝜋′.

A derivation 𝜋 which contains no maximum segments will be called a normal
derivation in the system 𝒩ℰ .

3.3. The connection between maximum cuts and segments.
Lemma 3.5. Let 𝒟 be a derivation without m-cuts whose end sequent is Γ→𝐴.

If in the derivation 𝒟 the d-formula 𝐴 from Γ→ 𝐴 has the safe origin, then the
derivation 𝜓𝒟 does not have a segment which contains its last formula 𝐴 and the
consequence of an introduction rule.

Proof. By an induction on the length of the derivation 𝒟. The d-formula 𝐴
has the safe origin in 𝒟, so the last rule of 𝒟 cannot be a right rule. If 𝒟 is an
initial sequent, then the proof is trivial.

(1) The last rule of 𝒟 is a left rule or a contraction. Let 𝒟 end with ∧L1. (The
other cases when 𝒟 ends with some other left rule or a contraction are completely

analogous.) The derivations 𝒟 and 𝜓𝒟 are
𝒟1

𝐶𝑐,Λ→ 𝐴

𝐶 ∧𝐷𝑖,Λ→ 𝐴
∧𝐿1 and

𝐶 ∧𝐷𝑖

[𝐶𝑐],Λ
𝜓𝒟1
𝐴

𝐴
∧𝐸ℰ1

where the d-formula 𝐴 from 𝐶∧𝐷𝑖,Λ→𝐴 has the safe origin in 𝒟. By Lemma 3.4,
the derivation 𝒟1 does not have m-cuts, and by Lemma 3.3, the d-formula 𝐴 from
𝐶𝑐,Λ→𝐴 has the safe origin in 𝒟1. The length of 𝒟1 is smaller than the length
of 𝒟. So, by the induction hypothesis, the lemma holds for the derivation 𝒟1 and
its image 𝜓𝒟1. Thus, the lemma also holds for the derivation 𝒟 and its image 𝜓𝒟.

(2) The case when the last rule of 𝒟 is a cut which is not m-cut. The derivations

𝒟 and 𝜓𝒟 are
𝒟1

Λ→ 𝐵
𝒟2

𝐵𝑏,Δ→ 𝐴

Λ×𝑏,Δ→ 𝐴
cut and Δ,

Λ×𝑏
𝜓𝒟1
(𝐵𝑏)
𝜓𝒟2
𝐴

, where the d-formula 𝐴 from

Λ×𝑏,Δ → 𝐴 has the safe origin in 𝒟. By Lemma 3.4, the derivation 𝒟2 does
not have m-cuts, and by Lemma 3.3, the d-formula 𝐴 from 𝐵𝑏,Δ→𝐴 has the safe
origin in 𝒟2. The length of 𝒟2 is smaller than the length of 𝒟. So, by the induction
hypothesis the lemma holds for the derivation 𝒟2 and its image 𝜓𝒟2. Thus, the
lemma also holds for the derivation 𝒟 and its image 𝜓𝒟. �

Lemma 3.6. Let 𝒟 be a derivation without m-cuts whose end sequent is the
sequent 𝐴𝑎,Γ → 𝐵. If the d-formula 𝐴𝑎 has the safe origin in 𝒟, then in the
derivation 𝜓𝒟 any 𝐴 from the class 𝐴𝑎 does not belong to a segment which contains
the major premiss of an elimination rule.

Proof. By an induction on the length of the derivation 𝒟. The formula 𝐴𝑎
has the safe origin in 𝒟, so the last rule of 𝒟 cannot be a left rule with principal
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formula 𝐴𝑎. If 𝒟 is an initial sequent, then the proof is trivial. The cases when
the last rule of 𝒟 is an operational rule whose principal formula is not 𝐴𝑎 or a
contraction are similar to the part (1) in the proof of Lemma 3.5. We consider the
case when the last rule of 𝒟 is a cut which is not m-cut. The derivations 𝒟 and
𝜓𝒟 are

𝒟1
𝐴𝑎
′
,Λ→ 𝐶

𝒟2
𝐶𝑐,Δ→ 𝐵

𝐴𝑎
′×𝑐,Λ×𝑐,Δ→ 𝐵

cut and Δ,

𝐴𝑎
′×𝑐,Λ×𝑐
𝜓𝒟1
(𝐶𝑐)
𝜓𝒟2
𝐵

,

where 𝑎 is 𝑎′×𝑐. (The case when 𝐴𝑎′ belongs to the end sequent of 𝒟2 is analogous.)
The d-formula 𝐴𝑎

′×𝑐 has the safe origin in 𝒟. By Lemma 3.4, the derivation 𝒟1
does not have m-cuts, and by Lemma 3.3, the d-formula 𝐴𝑎

′ from 𝐴𝑎
′
,Λ → 𝐶

has the safe origin in 𝒟1. So, by the induction hypothesis the lemma holds for
any formula from 𝐴𝑎

′ in the derivation 𝜓𝒟1. Thus, the lemma also holds for any
formula from 𝐴𝑎

′×𝑐 in the derivation 𝜓𝒟. �

The following lemma is a simple consequence of the definition of maximum
segments in derivations of the system 𝒩ℰ .

Lemma 3.7. Let 𝜓𝒟 be Δ,

Γ×𝑎
𝜓𝒟1
(𝐴𝑎)

𝜓𝒟2
𝐵

, where the derivations 𝜓𝒟1 and 𝜓𝒟2 are normal

derivations. The derivation 𝜓𝒟 has one maximum segment iff
(1) the derivation 𝜓𝒟1 has a segment which contains the consequence 𝐴 of an

introduction rule and a formula 𝐴 from the class 𝐴𝑎 and
(2) in the derivation 𝜓𝒟2 a formula 𝐴 from the class 𝐴𝑎 belongs to a segment

which contains the major premiss of an elimination rule.

The main result is the following theorem.

Theorem 3.1. If 𝒟 is a derivation without m-cuts in the system 𝒮ℰ, then 𝜓𝒟
is a normal derivation in the system 𝒩ℰ.

Proof. By an induction on the length of the derivation 𝒟. It is obvious that
if 𝒟 is an initial sequent, then 𝜓𝒟 is a normal derivation. If the last rule of 𝒟 is
an operational rule or a contraction, then (by Lemma 3.4) the subderivations of 𝒟
which end with the upper sequents of the last rule of 𝒟 do not have m-cuts. So,
by the induction hypothesis their 𝜓-images are normal derivations. Thus, 𝜓𝒟 is a
normal derivation (by the definition of the map 𝜓). The most interesting case is
when the last rule of 𝒟 is a cut which is not m-cut. The derivations 𝒟 and 𝜓𝒟 are

𝒟1
Γ→ 𝐴

𝒟2
𝐴𝑎,Δ→ 𝐵

Γ×𝑎,Δ→ 𝐵
cut and Δ,

Γ×𝑎
𝜓𝒟1
(𝐴𝑎)
𝜓𝒟2
𝐵

The derivation 𝒟1 and 𝒟2 do not have m-cuts (by Lemma 3.4) and lengths of 𝒟1
and 𝒟2 are smaller than the length of 𝒟. So, by the induction hypothesis, 𝜓𝒟1 and
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𝜓𝒟2 are normal derivations in the system 𝒩ℰ . The last rule of 𝒟 is not m-cut, so,
the d-formula 𝐴 from Γ→𝐴 has safe origin or the d-formula 𝐴𝑎 from 𝐴𝑎,Δ→𝐵 has
safe origin in 𝒟. By Lemma 3.3 and the definition of the o-tree: 𝐴 from Γ→𝐴 has
safe origin in 𝒟1, or 𝐴𝑎 from 𝐴𝑎,Δ→𝐵 has safe origin in 𝒟2. Thus, by Lemma 3.5
and Lemma 3.6: 𝜓𝒟1 does not have a segment which contains its last formula 𝐴
and the consequence of an introduction rule, or in 𝜓𝒟2 any 𝐴 from the class 𝐴𝑎
does not belong to a segment which contains the major premiss of an elimination
rule. So, by Lemma 3.7, the derivation 𝜓𝒟 does not have maximum segments, i.e.,
𝜓𝒟 is a normal derivation in the system 𝒩ℰ . �
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