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Abstract. We present the 𝑝-adic probability logic 𝐿𝑝𝑃𝑃 based on the paper
[5] by A. Khrennikov et al. The logical language contains formulas such as
𝑃=𝑠(𝛼) with the intended meaning “the probability of 𝛼 is equal to 𝑠", where
𝛼 is a propositional formula. We introduce a class of Kripke-like models that
combine properties of the usual Kripke models and finitely additive 𝑝-adic
probabilities. We propose an infinitary axiom system and prove that it is
sound and strongly complete with respect to the considered class of models.
In the paper the terms finitary and infinitary concern the meta language only,
i.e., the logical language is countable, formulas are finite, while only proofs
are allowed to be infinite. We analyze decidability of 𝐿𝑝𝑃𝑃 and provide a
procedure which decides satisfiability of a given probability formula.

1. Introduction

The Einsten–Podolsky–Rosen paradox and the empirical violations of Bell’s
inequality answered negatively the question whether quantum stochastics can be
reduced to the classical stochastics and led to the belief that the roots of these
paradoxes are in the mathematical foundation of Kolmogorov-style probability the-
ory. Several non-Archimedean approaches are introduced in order to develop a
probability theory suitable for applications in mathematical physics.

One of the noteworthy attempts to overcome these obstacles are 𝑝-adic valued
probabilities. The measure-theoretical 𝑝-adic probability is of the utmost impor-
tance for this paper and its details can be found in [4] and [5]. Also, for the basic
facts about 𝑝-adic numbers an interested reader can consult [1] and [8].

In this paper, for the 𝑝-adic probability logic 𝐿𝑝𝑃𝑃 are introduced syntax, the
corresponding class of models and the infinitary axiomatization, which is proved
to be sound and strongly complete with respect to the mentioned class of models.
An algorithm which decides satisfiability of a given 𝑝-adic probability formula is
presented too.

The significance of logic 𝐿𝑝𝑃𝑃 is comparable to the importance of Hailperin’s
propositional probability logic and logic 𝐿𝐿𝑃2, exposed in [2] and [6], respectively,
in the classical probability framework.
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2. Syntax

Let 𝑝 be a fixed prime natural number and 𝑆 be the set of all 𝑝-adic inte-
gers which are algebraic over Q, i.e., 𝑆 = Qalg

𝑝 ∩ Z𝑝. The language of the 𝑝-adic
probability logic 𝐿𝑝𝑃𝑃 consists of a denumerable set of propositional variables
Var = {𝑟1, 𝑟2, . . .}, logical connectives ∧ and ¬ , and probability operators 𝑃=𝑠 for
each 𝑠 ∈ 𝑆. The set of all propositional formulas is denoted by For𝑃 and its ele-
ments by 𝛼, 𝛽, 𝛾. Probability operators are applied to propositional formulas and in
that way basic probability formulas 𝑃=𝑠𝛼 are obtained. All Boolean combinations
of basic probabilistic formulas form the set For𝑝𝑃 with the elements 𝜑, 𝜓, 𝜃. The
set For of 𝐿𝑝𝑃𝑃−formulas is a disjoint union of For𝑃 and For𝑝𝑃 and its elements
are denoted by Φ,Ψ,Θ.

𝛼∧𝑃=𝑠(𝛽), 𝑃=𝑠(𝑃=𝑡(𝛾)) /∈ For because the above formation rules do not allow
neither mixing of propositional and probabilistic formulas nor nesting of probabilis-
tic operators.

3. Semantics

A class 𝐻 of subsets of a nonempty set 𝑉 is an algebra if it contains 𝑉
and is closed under finite unions and complementation. A finitely additive 𝑝-adic
probability measure 𝜇 is a function 𝜇 : 𝐻 → Q𝑝 with the following properties:
𝜇(𝑉 ) = 1, 𝜇(𝐻1 ∪ 𝐻2) = 𝜇(𝐻1) + 𝜇(𝐻2), for all disjoint sets 𝐻1, 𝐻2 ∈ 𝐻, and
‖𝐻‖𝜇 = sup{‖𝜇(𝐴)‖𝑝 | 𝐴 ∈ 𝑉, 𝐴 ⊆ 𝐻} < ∞. These properties correspond,
respectively, to normalization, additivity and boundedness in [4] and [5].

Semantics to the set of 𝐿𝑝𝑃𝑃 -formulas is given in the possible-world style.

Definition 3.1. An 𝐿𝑝𝑃𝑃 -model is a structure 𝑀 = ⟨𝑊, 𝑣,𝐻, 𝜇⟩ where:
− 𝑊 is a nonempty set of objects called worlds;
− 𝑣 associates a valuation of variables 𝑣(𝑤) with each world 𝑤 ∈ 𝑊 , i.e.,
𝑣(𝑤) : Var→ {0, 1},

− 𝐻 is an algebra of subsets of 𝑊 ,
− 𝜇 : 𝐻 → 𝑆 is a finitely additive 𝑝-adic probability measure on 𝐻.

The class of all 𝐿𝑝𝑃𝑃 -models 𝑀 with the property that for every 𝛼 ∈ For𝑃 ,
[𝛼] = {𝑤 ∈ 𝑊 | 𝑤 � 𝛼} is a measurable set, i.e., [𝛼] ∈ 𝐻, will be denoted by
𝐿𝑝𝑃𝑃Meas. This class of models will be in the scope of our research.

Definition 3.2. The satisfiability relation � ⊂ 𝐿𝑝𝑃𝑃Meas × For fulfills the
following conditions for every 𝐿𝑝𝑃𝑃Meas-model 𝑀 = ⟨𝑊, 𝑣,𝐻, 𝜇⟩:

− if 𝛼 ∈ For𝑃 , then 𝑀 � 𝛼 if and only if 𝑤 � 𝛼 for each world 𝑤,
− if 𝛼 ∈ For𝑃 , then 𝑀 � 𝑃=𝑠(𝛼) if and only if 𝜇([𝛼]) = 𝑠,
− if 𝜑 ∈ For𝑝𝑃 , then 𝑀 � ¬𝜑 if and only if 𝑀 2 𝜑,
− if 𝜑, 𝜓 ∈ For𝑝𝑃 , then 𝑀 � 𝜑 ∧ 𝜓 if and only if 𝑀 � 𝜑 and 𝑀 � 𝜓.

4. Axioms

The axiomatic system𝐴𝑥𝐿𝑝𝑃𝑃 for 𝐿𝑝𝑃𝑃 contains the following axiom schemata:
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Axiom 1: all the axioms of the classical propositional logic, separately for
formulas from For𝑃 and separately for formulas from For𝑝𝑃 ,

Axiom 2: 𝑃=1(𝛼↔ 𝛽)→ (𝑃=𝑠(𝛼)→ 𝑃=𝑠(𝛽)),
Axiom 3: 𝑃=𝑠(𝛼)↔ 𝑃=1−𝑠(¬𝛼),
Axiom 4: (𝑃=𝑠1(𝛼) ∧ 𝑃=𝑠2(𝛽) ∧ 𝑃=1¬(𝛼 ∧ 𝛽))→ 𝑃𝑠1+𝑠2(𝛼 ∨ 𝛽),
Axiom 5: 𝑃=𝑠(𝛼)→ ¬𝑃=𝑡(𝛼), for 𝑠 ̸= 𝑡,

and inference rules:
Rule 1: modus ponens, separately for formulas from For𝑃 and separately for

formulas from For𝑝𝑃 ,
Rule 2: 𝛼

𝑃=1(𝛼) , 𝛼 ∈ For𝑃 ,

Rule 3: 𝜓 → ¬𝑃=𝑠(𝛼), for every 𝑠 ∈ 𝑆
𝜓 → ⊥

.

Axiom 1 and Rule 1 correspond to the classical propositional reasoning. Axioms
2–5 concern the probabilistic part of our system. Axiom 4 corresponds to the
finite additivity of measure. Rule 2 is a form of modal necessitation and secures
normalization of the measure, while infinitary Rule 3, which first was introduced
in [7], guarantees that to each formula is attached a probability.

Definition 4.1. Φ ∈ For is deducible from the theory 𝑇 , which we denote
by 𝑇 ⊢ Φ, if there exists a denumerable sequence of formulas Φ0,Φ1, . . . ,Φ called
the proof, such that each member of the sequence is an instance of some axiom
schemata or is contained in 𝑇 , or is obtained from the previous formulas using an
inference rule. Formula Ψ ∈ For is a theorem (denoted by ⊢ Ψ) if it is deducible
from the empty set.

Definition 4.2. A theory 𝑇 is consistent if there are at least one formula
from For𝑃 and at least one formula from For𝑝𝑃 which can not be deduced from 𝑇 .
A theory 𝑇 is maximal consistent if it is consistent and fulfills the following two
conditions:

− for each 𝛼 ∈ For𝑃 , if 𝑇 ⊢ 𝛼, then 𝛼 ∈ 𝑇 and 𝑃=1(𝛼) ∈ 𝑇 ,
− for each 𝜓 ∈ For𝑝𝑃 , either 𝜓 ∈ 𝑇 or ¬𝜓 ∈ 𝑇 .

The set of all formulas which are deducible from 𝑇 is called the deductive closure
of 𝑇 and denoted by 𝐶𝑛(𝑇 ). A theory 𝑇 is deductively closed if 𝑇 = 𝐶𝑛(𝑇 ).

5. Soundness and completeness

This section begins with proofs of Soundness and Deduction theorem for the
𝑝-adic probability logic 𝐿𝑝𝑃𝑃 .

Theorem 5.1 (Soundness). The axiomatic system 𝐴𝑥𝐿𝑝𝑃𝑃 is sound with re-
spect to the class of 𝐿𝑝𝑃𝑃Meas-models.

Proof. The soundness of propositional logic implies that every instance of
an axiom schemata for propositional formula holds in every model and that the
inference rule R1 preserves validity. We will prove validity of the axiom A4 and the
similar reasoning can be applied to the other axioms. Let 𝑀 � 𝑃=𝑠1(𝛼)∧𝑃=𝑠2(𝛽)∧
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𝑃=1¬(𝛼∧𝛽). This holds if and only if 𝜇([𝛼]) = 𝑠1, 𝜇([𝛽]) = 𝑠2 and 𝜇([¬(𝛼∧𝛽)]) = 1.
By the additivity of the measure we conclude that 𝜇([𝛼 ∨ 𝛽)]) = 𝑠1 + 𝑠2 meaning
𝑀 � 𝑃=𝑠1+𝑠2(𝛼 ∨ 𝛽).

Suppose that 𝛼 ∈ For𝑃 is a valid formula. Then for every 𝐿𝑝𝑃𝑃Meas-model
𝑀 = ⟨𝑊, 𝑣,𝐻, 𝜇⟩ holds [𝛼] = 𝑊 and 𝜇([𝛼]) = 1. So, 𝑀 � 𝑃=1(𝛼) and the rule R2
preserves validity. Consider the rule R3 and let 𝜓 → ¬𝑃=𝑠(𝛼) be valid for every
𝑠 ∈ 𝑆 and let 𝑀 be an 𝐿𝑝𝑃𝑃Meas-model such that 𝑀 2 𝜓 → ⊥. 𝑀 � 𝜓 implies
𝑀 � ¬𝑃=𝑠(𝛼), 𝑠 ∈ 𝑆 which is equivalent to 𝜇([𝛼]) ̸= 𝑠, for every 𝑠 ∈ 𝑆. In other
words, there is no measure attached to [𝛼] and this contradicts 𝑀 ∈ 𝐿𝑝𝑃𝑃Meas. �

Theorem 5.2 (Deduction theorem). If 𝑇 is a theory and Φ,Ψ ∈ For𝑃 or
Φ,Ψ ∈ For𝑝𝑃 , then 𝑇 ∪ {Φ} ⊢ Ψ if and only if 𝑇 ⊢ Φ→ Ψ.

Proof. If Φ,Ψ ∈ For𝑃 , then this is the well-known Deduction theorem for
propositional logic since there is no rule whose antecedents are formulas from For𝑝𝑃
and the consequent is in For𝑃 .

We use the transfinite induction on the length of the proof of Ψ from 𝑇 ∪{Φ} to
prove the implication from left to right for Φ,Ψ ∈ For𝑝𝑃 . The other direction and
the cases when either ⊢ Ψ or Φ = Ψ or Ψ is obtained by Rule 1 can be proved in the
same way as in the classical propositional calculus. If Ψ is of the form Ψ = 𝑃=1(𝛼),
𝛼 ∈ For𝑃 , and Ψ is deduced from 𝑇 ∪ {Φ} by an application of Rule 2, then:

1. 𝑇 ∪ {Φ} ⊢ 𝛼
2. 𝑇 ⊢ 𝛼, because Φ is not an essential member of any proof for 𝛼
3. 𝑇 ⊢ 𝑃=1(𝛼), by Rule 2
4. 𝑇 ⊢ 𝑃=1(𝛼)→ (Φ→ 𝑃=1(𝛼)), since 𝑃=1(𝛼)→ (Φ→ 𝑃=1(𝛼)) is an instance

of the classical propositional tautology 𝑟1 → (𝑟2 → 𝑟1)
5. 𝑇 ⊢ Φ→ 𝑃=1(𝛼), by Rule 1 applied on 3 and 4.

If Ψ = 𝜓 → ⊥ is obtained from 𝑇 ∪ {Φ} using Rule 3, then:
1. 𝑇 ∪ {Φ} ⊢ 𝜓 → ¬𝑃=𝑠(𝛼), for each 𝑠 ∈ 𝑆
2. 𝑇 ⊢ Φ→ (𝜓 → ¬𝑃=𝑠(𝛼)), for each 𝑠 ∈ 𝑆 by the induction hypothesis
3. 𝑇 ⊢ (Φ∧𝜓)→ ¬𝑃=𝑠(𝛼), for 𝑠 ∈ 𝑆, using an instance of the classical propos-

itional tautology (𝑟1 → (𝑟2 → 𝑟3))↔ ((𝑟1 ∧ 𝑟2)→ 𝑟3)
4. 𝑇 ⊢ (Φ ∧ 𝜓)→ ⊥, by the application of Rule 4 on 3.
5. 𝑇 ⊢ Φ→ Ψ �

In order to prove the completeness theorem, we are going to show that every
consistent theory 𝑇 can be extended to a maximal consistent theory 𝑇 *, and use 𝑇 *
to construct the canonical model. We give the sketches for proofs of the preparatory
lemmas.

Lemma 5.1. For every consistent theory 𝑇 and every 𝛼 ∈ For𝑃 , there exists
𝑠 ∈ 𝑆 such that 𝑇 ∪ {𝑃=𝑠(𝛼)} is consistent.

Proof. Suppose that there is 𝜑 ∈ 𝑇 ∩ For𝑝𝑃 (if this intersection is empty we
set 𝜑 = ⊤). We denote 𝑇 r {𝜑} by 𝑇*. If for every 𝑠 ∈ 𝑆 : 𝑇*, 𝜑, 𝑃=𝑠(𝛼) ⊢ ⊥, then
by the deduction theorem

𝑇* ⊢ 𝜑→ ¬𝑃=𝑠(𝛼), for each s ∈ S,
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and we obtain by Rule 3 𝑇* ⊢ 𝜑 → ⊥. Another application of Theorem 5.2 gives
𝑇 ⊢ ⊥. �

Lemma 5.2. Let 𝑇 be a maximal consistent theory. Then:
a) for all 𝜑, 𝜓 ∈ For𝑝𝑃 , 𝜑 ∨ 𝜓 ∈ 𝑇 if and only if 𝜑 ∈ 𝑇 or 𝜓 ∈ 𝑇 ,
b) for all Φ,Ψ ∈ For, where either Φ,Ψ ∈ For𝑃 or Φ,Ψ ∈ For𝑝𝑃 , Φ ∧Ψ ∈ 𝑇

if and only if Φ,Ψ ∈ 𝑇 ,
c) for each Φ ∈ For, if 𝑇 ⊢ Φ, then Φ ∈ 𝑇 , i.e., every maximal consistent

theory is deductively closed,
d) for all formulas Φ,Ψ, where either Φ,Ψ ∈ For𝑃 or Φ,Ψ ∈ For𝑝𝑃 , if

Φ,Φ→ Ψ ∈ 𝑇 , then Ψ ∈ 𝑇 .

Theorem 5.3. Every consistent theory can be extended to a maximal consistent
theory.

Proof. Let 𝑇 be a consistent theory, 𝐶𝑛𝑃 (𝑇 ) the set of all propositional
formulas which are deducible from 𝑇 , 𝛼1, 𝛼2, . . . an enumeration of all formulas
from For𝑃 and 𝜑1, 𝜑2, . . . an enumeration of all formulas from For𝑝𝑃 . We construct
a sequence of theories (𝑇𝑖)𝑖<𝜔 in the following way:

− 𝑇0 = 𝑇 ∪ 𝐶𝑛𝑃 (𝑇 ) ∪ {𝑃=1(𝛼) | 𝛼 ∈ 𝐶𝑛𝑃 (𝑇 )};
− if 𝑇2𝑖 ∪ {𝜑𝑖} is consistent then 𝑇2𝑖+1 = 𝑇2𝑖 ∪ {𝜑𝑖}, otherwise 𝑇2𝑖+1 =
𝑇2𝑖 ∪ {¬𝜑𝑖};

− 𝑇2𝑖+2 = 𝑇2𝑖+1∪{𝑃=𝑠(𝛼𝑖)}, for some 𝑠 ∈ 𝑆, such that 𝑇2𝑖+2 is a consistent
theory.

We notice that the existence of 𝑠 in the step 2𝑖 + 2 is secured by Lemma 5.1.
𝑇 * =

⋃︀
𝑗<𝜔 𝑇𝑗 is a union of consistent theories 𝑇𝑗 and it will be proved that 𝑇 * is

maximal consistent. The first condition of maximality is achieved by constructing
𝑇0, which contains the propositional deductive closure of 𝑇 and all corresponding
formulas of the form 𝑃=1(𝛼). Concerning 𝜑 ∈ For𝑝𝑃 , 𝑇2𝑖+1 contains either 𝜑 = 𝜑𝑖
or ¬𝜑 = 𝜑𝑗 , but not both, because otherwise 𝑇2·max{𝑖,𝑗}+1 would be inconsistent.

We are going to prove that 𝑇 * is deductively closed using the transfinite induc-
tion on the length of the proof. It will be sufficient to claim its consistency, since
𝑇 * does not contain all formulas. In the case of the finite proof for 𝜑, there is a 𝑇𝑙
such that 𝑇𝑙 ⊢ 𝜑, and, thus, 𝜑 ∈ 𝑇 *.

Suppose that for 𝜑 = 𝜓 → ⊥, 𝑇 * ⊢ 𝜓 → ⊥ is obtained using the infinitary rule
from 𝜓 → ¬𝑃=𝑠(𝛼𝑖), 𝑠 ∈ 𝑆, for some 𝛼𝑖 ∈ For𝑃 , but 𝜓 → ⊥ /∈ 𝑇 *. In the step
2𝑖+ 2, 𝑇2𝑖+2 is constructed adding 𝑃=𝑡(𝛼𝑖), where 𝑡 is a fixed element of 𝑆. There
is 𝑙 ∈ 𝜔 such that ¬(𝜓 → ⊥) ∈ 𝑇𝑙 and 𝑇𝑙 ⊢ 𝜓. For some 𝑘 > 2𝑖+ 2, 𝑙, it is fulfilled
𝑃=𝑡(𝛼𝑖), 𝜓, 𝜓 → ¬𝑃=𝑡(𝛼𝑖) ∈ 𝑇𝑘. It implies 𝑇𝑘 ⊢ 𝑃=𝑡(𝛼𝑖) ∧ ¬𝑃=𝑡(𝛼𝑖), meaning that
𝑇𝑘 is inconsistent. �

Corollary 5.1. Axiom 3 is deducible from other axioms and rules of 𝐴𝑥𝐿𝑝𝑃𝑃 .

Proof. Let 𝐴𝑥−𝐴3
𝐿𝑝𝑃𝑃 denote the axiomatic system which contains all axioms

and rules of 𝐴𝑥𝐿𝑝𝑃𝑃 except Axiom 3 and 𝐿𝑝𝑃𝑃−𝐴3 denote the corresponding logic.
One can prove variants of theorems 5.1, 5.2 and 5.3 for 𝐿𝑝𝑃𝑃−𝐴3 in exactly the
same way as above.
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Let 𝑇 * be a maximal consistent theory in 𝐿𝑝𝑃𝑃−𝐴3. Suppose there are 𝑠1, 𝑠2 ∈
𝑆 and 𝛼 ∈ For𝑃 such that 𝑃=𝑠1(𝛼), 𝑃=𝑠2(¬𝛼) ∈ 𝑇 * and 𝑠2 ̸= 1− 𝑠1. Since 𝛼 ∨ ¬𝛼
is a tautology, it is possible to conclude 𝑃=1(𝛼 ∨ ¬𝛼) ∈ 𝑇 *, according to Rule R2,
and 𝑃=𝑠1+𝑠2(𝛼 ∨ ¬𝛼) ∈ 𝑇 *, using an instance of A4 and the deduction theorem.
The instance 𝑃=1(𝛼 ∨ ¬𝛼)→ ¬𝑃=𝑠1+𝑠2(𝛼 ∨ ¬𝛼) of A5 and the deduction theorem
imply ¬𝑃=𝑠1+𝑠2(𝛼∨¬𝛼) ∈ 𝑇 *. The fact 𝑃=𝑠1+𝑠2(𝛼∨¬𝛼)∧¬𝑃=𝑠1+𝑠2(𝛼∨¬𝛼) ∈ 𝑇 *
contradicts the assumed consistency of 𝑇 *. Since there is no maximal consistent
theory in 𝐿𝑝𝑃𝑃−𝐴3 containing ¬A3, we conclude ¬A3 ⊢𝐿𝑝𝑃𝑃−𝐴3 ⊥, i.e., ⊢𝐿𝑝𝑃𝑃−𝐴3

A3. �

Let 𝑇 be a consistent theory and its 𝑇 * fixed maximal consistent extension.
The canonical model 𝑀𝑇 = ⟨𝑊, 𝑣,𝐻, 𝜇⟩ is defined as follows:

− 𝑊 = {𝑤 : Var→ 2 | 𝑤 � 𝐶𝑛𝑃 (𝑇 )} and we identify 𝑣(𝑤) with 𝑤;
− [𝛼] = {𝑤 ∈𝑊 : 𝑤 � 𝛼} and 𝐻 = {[𝛼] : 𝛼 ∈ For𝑃 };
− we set 𝜇([𝛼]) = 𝑠 iff 𝑃=𝑠(𝛼) ∈ 𝑇 *.

Theorem 5.4. Let 𝑀𝑇 = ⟨𝑊, 𝑣,𝐻, 𝜇⟩ be as above and 𝛼, 𝛽 ∈ For𝑃 . Then, the
following hold:

a) 𝐻 is an algebra of subsets of 𝑊 ,
b) if [𝛼] = [𝛽], then 𝜇([𝛼]) = 𝜇([𝛽]),
c) 𝜇([𝛼]) = 1− 𝜇([¬𝛼]), 𝜇(∅) = 0, 𝜇(𝑊 ) = 1,
d) 𝜇([𝛼] ∪ [𝛽]) = 𝜇([𝛼]) + 𝜇([𝛽]), for all disjoint [𝛼] and [𝛽],
e) ‖𝜇([𝛼])‖𝑝 6 1,
f) 𝑀𝑇 is an 𝐿𝑝𝑃𝑃Meas-model.

Proof. a) All conditions for 𝐻 to be an algebra of subsets of 𝑊 are fulfilled:
𝑊 = [𝛼 ∨ ¬𝛼] ∈ 𝐻, [𝛼], [𝛽] ∈ 𝐻 imply that [𝛼]𝑐 = [¬𝛼], [𝛼] ∪ [𝛽] = [𝛼 ∨ 𝛽] ∈ 𝐻.

b) [𝛼] = [𝛽] implies 𝐶𝑛𝑃 (𝑇 ) � 𝛼↔ 𝛽 and, by the completeness of propositional
calculus, 𝐶𝑛𝑃 (𝑇 ) ⊢ 𝛼 ↔ 𝛽. Applying Rule 2 we obtain 𝑃=1(𝛼 ↔ 𝛽) and the
statement follows by A2.

c)–d) These properties are provided by axioms 3 and 4; 𝑊 = [𝛼∨¬𝛼] and each
tautology has a measure 1 by the rule R2.

f) This is a straightforward consequence of parts a)–e). �

Theorem 5.5 (Extended completeness theorem for 𝐿𝑝𝑃𝑃Meas). A theory 𝑇 is
consistent if and only if it has an 𝐿𝑝𝑃𝑃Meas-model.

Proof. The direction from right to left follows from the soundness theorem.
For the other direction we consider the canonical model 𝑀𝑇 and prove by the
induction on complexity of formulas that for each Φ ∈ For, 𝑀𝑇 � Φ if and only if
Φ ∈ 𝑇 *.

Let Φ ∈ For𝑃 . If Φ ∈ 𝐶𝑛𝑃 (𝑇 ), then 𝑀𝑇 � Φ by the definition of 𝑀𝑇 . If
𝑀𝑇 � Φ then 𝐶𝑛𝑃 (𝑇 ) � Φ, and thus, by the completeness of the propositional
calculus and the completeness of the propositional theory 𝐶𝑛𝑃 (𝑇 ), Φ ∈ 𝐶𝑛𝑃 (𝑇 ).

It is an immediate consequence of Definition 2 that 𝑃=𝑠(𝛼) ∈ 𝑇 * iff 𝑀𝑇 �
𝑃=𝑠(𝛼). If Φ ∈ For𝑝𝑃 is of the form ¬𝜑, then 𝑀𝑇 � ¬𝜑 iff 𝑀𝑇 2 𝜑 iff 𝜑 /∈ 𝑇 * iff
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¬𝜑 ∈ 𝑇 *. For Φ = 𝜑 ∧ 𝜓 ∈ For𝑝𝑃 , 𝑀𝑇 � 𝜑 ∧ 𝜓 iff 𝑀𝑇 � 𝜑 and 𝑀𝑇 � 𝜓 iff 𝜑 ∈ 𝑇 *
and 𝜓 ∈ 𝑇 * iff 𝜑 ∧ 𝜓 ∈ 𝑇 *. �

6. Decidability

Firstly, we prove that 𝑆 is a computable ring, which is one of the crucial facts
for the proof that 𝐿𝑝𝑃𝑃 is decidable.

Theorem 6.1. 𝑆 = Q𝑎𝑙𝑔𝑝 ∩ Z𝑝 is a computable ring, i.e., 𝑆 is a decidable set,
and there are algorithms which for given 𝑠, 𝑡 ∈ 𝑆 compute 𝑠+ 𝑡, 𝑠 · 𝑡,−𝑠.

Proof. We will represent each element 𝑠 ∈ 𝑆 as a pair (𝑓,𝐵(𝑑, 𝑟)), where 𝑓
is a polynomial with rational coefficients such that 𝑓(𝑠) = 0, 𝑑 ∈ Z and 𝑟 ∈ N, and
𝐵(𝑑, 𝑟) = {𝑥 ∈ Q𝑝 | ‖𝑥 − 𝑑‖𝑝 < 1/𝑝𝑟} is a 𝑝-adic open ball containing 𝑠 and no
other root of 𝑓 .

Let 𝑠 = (𝑓,𝐵(𝑑1, 𝑟1)) and 𝑡 = (𝑔,𝐵(𝑑2, 𝑟2)) be two elements of 𝑆, and 𝑚 =
deg(𝑓), 𝑛 = deg(𝑔). We will sketch an algorithm which decides whether 𝑠 and 𝑡
are equal. Without loss of generality suppose that 𝑟1 6 𝑟2. If ‖𝑑1 − 𝑑2‖𝑝 > 1/𝑝𝑟1 ,
then 𝐵(𝑑1, 𝑟1) and 𝐵(𝑑2, 𝑟2) are disjoint, and thus 𝑠 ̸= 𝑡. Otherwise, we compute
ℎ = GCD(𝑓, 𝑔) and two possible cases may occur:

− ℎ = 1 implies 𝑠 ̸= 𝑡
− for ℎ ̸= 1 we perform root isolation for ℎ and, if needed, root refinement

to obtain isolating intervals of the radius 𝑝−𝑟1 (see [9] for details on these
procedures); we have to check, in the same way as we did it for 𝐵(𝑑2, 𝑟2),
if among these isolating intervals exists a subset of 𝐵(𝑑1, 𝑟1); affirmative
answer implies 𝑠 = 𝑡, and negative leads to the opposite conclusion.

We are going to find a representation for 𝑠 + 𝑡. 𝑠𝑘, where 𝑘 ∈ 𝜔, is a lin-
ear combination of 𝑠0, . . . , 𝑠𝑚−1, while each power of 𝑡 is a linear combination of
𝑡0, . . . , 𝑡𝑛−1. So, 𝑠𝑘𝑡𝑙, 𝑘, 𝑙 ∈ 𝜔, and therefore (𝑠 + 𝑡)𝑘, are linear combinations of
𝑚 · 𝑛 elements 𝑠𝑖𝑡𝑗 , 0 6 𝑖 6 𝑚− 1, 0 6 𝑗 6 𝑛− 1:

(𝑠+ 𝑡)𝑘 = 𝑐𝑘0,0𝑠
0𝑡0 + · · ·+ 𝑐𝑘𝑚−1,𝑛−1𝑠

𝑚−1𝑡𝑛−1.

We will denote by 𝐴 a matrix having 𝑚 · 𝑛 + 1 rows and 𝑚 · 𝑛 columns: its 𝑖-th
row 𝑅𝑖 consists of the coefficients 𝑐𝑖−1

0,0 , . . . , 𝑐
𝑖−1
𝑚−1,𝑛−1 corresponding to (𝑠 + 𝑡)𝑖−1.

Since 𝐴 has more rows than columns, by solving a system of linear equations, we
can find rational numbers 𝑞1, . . . , 𝑞𝑚·𝑛+1 such that 𝑞1𝑅1 + · · ·+ 𝑞𝑚·𝑛+1𝑅𝑚·𝑛+1 = 0.
Thus, 𝑠+ 𝑡 is a zero of the polynomial ℎ* = 𝑞1 + 𝑞2𝑋 + · · ·+ 𝑞𝑚·𝑛+1𝑋

𝑚·𝑛. Bearing
in mind that ‖(𝑠+ 𝑡)− (𝑑1 + 𝑑2)‖𝑝 6 max{‖𝑠− 𝑑1‖𝑝, ‖𝑡− 𝑑2‖𝑝}, it is necessary to
perform root isolation for ℎ*, and possibly root refinement for 𝑓 and 𝑔, and find
the isolation interval 𝒪 for ℎ* which contains 𝑑1 + 𝑑2. (ℎ*,𝒪) is a representation
for 𝑠+ 𝑡.

In order to find a representation for 𝑠 · 𝑡 we consider the matrix 𝐵 having
𝑚 · 𝑛+ 1 rows and 𝑚 · 𝑛 columns whose 𝑖-th row is defined by (𝑠 · 𝑡)𝑖−1. −𝑠 can be
seen as 𝑠 · (−1). �

Theorem 6.2. There is an algorithm which for given Φ ∈ For decides its
satisfiability.
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Proof. If the propositional formula Φ is not a contradiction, then the theory
{Φ} has a model by Theorem 5.5. The decidability procedure for Φ ∈ For𝑝𝑃 is
based on the following steps and remarks:
− the input is a formula Φ ∈ For𝑝𝑃 ,
− transform Φ into disjunctive normal form DNF(Φ) = Φ1 ∨ . . . ∨ Φ𝑘 with

respect to the basic 𝑝-adic probabilistic formulas 𝑃=𝑠(𝛼),
− Φ is satisfiable iff at least one disjunct Φ𝑚,𝑚 = 1, . . . , 𝑟, is satisfiable,
− repeat the following procedure for each disjunct of Φ𝑚 until one is satisfied

or all are already checked: Φ𝑚 is a conjunction of formulas

𝑃=𝑠1(𝛼1)𝑖1 , . . . , 𝑃=𝑠𝑛(𝛼𝑛)𝑖𝑛 , 𝑖𝑗 ∈ {0, 1},

where 𝑃=𝑠𝑘(𝛼𝑘)0 ≡ ¬𝑃=𝑠𝑘(𝛼𝑘) and 𝑃=𝑠𝑘(𝛼𝑘)1 ≡ 𝑃=𝑠𝑘(𝛼𝑘); it is necessary to exam-
ine if there is any collision with axioms 2, 4 and 5, and the fact deducible by Rule 2
that each tautology has a probability 1; for example a collision with Axiom 5 means
that there is a pair of formulas 𝑃=𝑠𝑘(𝛼𝑘), 𝑃=𝑠𝑙(𝛼𝑙) such that 𝑠𝑘 ̸= 𝑠𝑙 and ⊢𝑃 𝛼𝑘 ↔
𝛼𝑙; if no such collision is detected, then the theory {𝑃=𝑠1(𝛼1)𝑖1 , . . . , 𝑃=𝑠𝑛(𝛼𝑛)𝑖𝑛} is
consistent and, by the extended completeness theorem, has a 𝐿𝑝𝑃𝑃Meas-model. �

7. Final remarks and future work

Instead of 𝑆, the previous results could be easily modified for any recursive ring
or field 𝐹 without ordering compatible with operations. Basic probability formulas
of these new logics would be 𝑃=𝑠(𝛼), 𝑠 ∈ 𝐹 .

In [3] is mentioned the following partial ordering on Z𝑝: for 𝑥 =
∑︀+∞
𝑖=0 𝑥𝑖 · 𝑝𝑖

and 𝑦 =
∑︀+∞
𝑖=0 𝑦𝑖 · 𝑝𝑖 we set 𝑥 < 𝑦 if there exists 𝑛 such that 𝑥𝑛 < 𝑦𝑛 and 𝑥𝑘 6 𝑦𝑘

for all 𝑘 > 𝑛. For the purpose of this paper we alter the above ordering as follows:
we set that 0 is the minimum, and for 𝑥, 𝑦 ∈ 𝑆 r {0}, 𝑥 > 𝑦 iff there exists 𝑛
such that 𝑥𝑛 < 𝑦𝑛 and 𝑥𝑘 6 𝑦𝑘 for all 𝑘 > 𝑛. This ordering has the maximum,
namely it is 1, and for integers it holds: 0 < −1 < −2 < −3 < · · · < 3 < 2 < 1.
Each 𝑠 ∈ 𝑆 r Z is greater than any negative integer and less than any positive
integer, but 𝑠1, 𝑠2 ∈ 𝑆 r Z are not comparable. It makes sense to say that a
propositional formula with negative integer measure has a probability close to 0,
while a propositional formula with positive integer measure has a probability close
to 1. In such a way the zero probability is split to a set of probabilities [0, 0+), and
the probability 1 is split to a set of probabilities (1−, 1].

Finally, we announce papers on the following topics:
− propositional 𝑝-adic probability logic with iterations;
− first-order 𝑝-adic probability logic without iterations;
− first-order 𝑝-adic probability logic with iterations;
− 𝑝-adic probability logic and default reasoning;
− 𝑝-adic probability logic which corresponds to the notion of 𝑝-adic proportional

probability introduced in [3]
− 𝑝-adic probability logics with basic probability formulas of the form 𝑃 (𝛼) ∈
𝐵(𝑑, 𝑟), where 𝐵(𝑑, 𝑟) is an open 𝑝-adic ball of rational radius 𝑟 containing the
rational number 𝑑.
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