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Abstract. We present a sound and strongly complete axiomatization of a
reasoning about linear combinations of conditional probabilities, including
comparative statements. The developed logic is decidable, with a PSPACE
containment for the decision procedure.

1. Introduction

The present paper constitutes an effort to proceed along the lines of the research
presented in [1, 2, 3, 5, 6, 7], on the formal development of probabilistic logics,
where probability statements are expressed by probabilistic operators expressing
bounds on the probability of a propositional formula. It is an extension of [1],
which was presented at the 13th ESSLLI Student Session in Hamburg, 2008.

This extension consists of introducing multiple conditional probability opera-
tors 𝐶𝑃𝑖, 𝑖 ∈ ℐ, where ℐ is a finite nonempty set of indices. These operators can be
thought of as agents, with each of them having his own independent assessment of
the conditional probability of an event. For instance, we formally write the state-
ment “The conditional probability of 𝛼 given 𝛽 viewed by agent 𝑖 is at least the
sum of conditional probabilities of 𝛼 given 𝛾 viewed by agent 𝑗 and twice 𝛾 given
𝛼 viewed by agent 𝑘." as 𝐶𝑃𝑖(𝛼, 𝛽) > 𝐶𝑃𝑗(𝛼, 𝛾) + 2 ·𝐶𝑃𝑘(𝛾, 𝛼). We also prove that
the developed logic is decidable, and show how it can be used to represent evidence.

In the classical Kolmogorovian sense, the conditional event “𝛼 given 𝛽” can be
considered only in the case when 𝑃 (𝛽) > 0, and for such a conditional event, we
have that

𝑃 (𝛼|𝛽) = 𝑃 (𝛼 ∧ 𝛽)𝑃 (𝛽)−1.(1.1)
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This may introduce certain difficulties in the formal construction of probabilis-
tic formulas. It would be much easier if 𝑃 (𝛼|𝛽) was a well-defined term, regardless
of the formulas 𝛼 and 𝛽, and the possible value of 𝑃 (𝛽).

An elegant solution can be obtained by adopting the convention that −1 is
a total operation, so that we can extend Kolmogorov’s definition of conditional
probability onto all events: 𝑃 (𝛼|𝛽) = 𝑃 (𝛼 ∧ 𝛽)𝑃 (𝛽)−1. In particular, if 𝑃 (𝛽) = 0,
then 𝑃 (𝛼 ∧ 𝛽) = 0, so 𝑃 (𝛼|𝛽) = 𝑃 (𝛼 ∧ 𝛽)𝑃 (𝛽)−1 = 0 · 𝑃 (𝛽)−1 = 0.

From this we observe that the actual value of 0−1 is irrelevant for the compu-
tation of 𝑃 (𝛼|𝛽), and that in the case when 𝑃 (𝛽) = 0, the conditional probability
defined as above behaves correctly. For the sake of simplicity, we let 0−1 = 1.

The rest of the paper is organized as follows. In Section 2, the syntax of
the logic is given and the class of measurable probabilistic models is described.
Section 3 contains the corresponding axiomatization and introduces the notion of
deduction. A proof of the completeness theorem is presented in Section 4, whereas
the decidability of the logic is analyzed in Section 5. Representing evidence in the
developed logic is discussed in Section 6, and concluding remarks are in Section 7.

2. Syntax and semantics

Let Var = {𝑝𝑛 | 𝑛 < 𝜔} be the set of propositional variables. The corresponding
set of all propositional formulas over Var will be denoted by For𝐶 , and is defined
in the usual way. Propositional formulas will be denoted by 𝛼, 𝛽 and 𝛾, possibly
with indices. Let ℐ be a finite nonempty set of indices.

Definition 2.1. The set Term of all probabilistic terms is recursively defined
as follows:

∙ Term(0) = {𝑠 | 𝑠 ∈ Q} ∪ {𝐶𝑃𝑖(𝛼, 𝛽) | 𝛼, 𝛽 ∈ For𝐶 , 𝑖 ∈ ℐ}.
∙ Term(𝑛+ 1) = Term(𝑛) ∪ {(f + g), (𝑠 · g), (−f) | f, g ∈ Term(𝑛), 𝑠 ∈ Q}
∙ Term =

⋃︀∞
𝑛=0 Term(𝑛).

Probabilistic terms will be denoted by f, g and h, possibly with indices. To
simplify notation, we introduce the following convention: f + g is (f + g), f + g + h
is ((f + g) + h). For 𝑛 > 3,

∑︀𝑛
𝑖=1 f𝑖 is ((· · · ((f1 + f2) + f3) + · · · ) + f𝑛). Similarly,

−f is (−f) and f− g is (f + (−g)).
If 𝛼 and 𝛽 are propositional formulas, and 𝑖 ∈ ℐ, then the probabilistic term

𝐶𝑃𝑖(𝛼, 𝛽) reads “the conditional probability of 𝛼 given 𝛽 viewed by agent 𝑖". To
simplify notation, we will write 𝑃𝑖(𝛼) instead of 𝐶𝑃𝑖(𝛼,⊤), where ⊤ is an arbitrary
tautology instance.

Definition 2.2. A basic probabilistic formula is any formula of the form f > 0.
Furthermore, we define the following abbreviations:
∙ f 6 0 is −f > 0; ∙ f > 0 is ¬(f 6 0); ∙ f < 0 is ¬(f > 0);
∙ f = 0 is f 6 0 ∧ f > 0; ∙ f ̸= 0 is ¬(f = 0); ∙ f > g is f− g > 0.

We define f 6 g, f > g, f < g, f = g and f ̸= g in a similar way.
A probabilistic formula is a Boolean combination of basic probabilistic formulas.
As in the propositional case, ¬ and ∧ are the primitive connectives, while all

of the other connectives are introduced in the usual way. Probabilistic formulas



A LOGIC WITH CONDITIONAL PROBABILITY OPERATORS 87

will be denoted by 𝜑, 𝜓 and 𝜃, possibly with indices. The set of all probabilistic
formulas will be denoted by For𝑃 .

By “formula" we mean either a classical formula or a probabilistic formula. We
do not allow for the mixing of those types of formulas, nor for the nesting of the
probability operators 𝐶𝑃𝑖. Formulas will be denoted by Φ,Ψ and Θ, possibly with
indices. The set of all formulas will be denoted by For.

We define the notion of a model as a special kind of Kripke model. Namely, a
model 𝑀 is any tuple ⟨𝑊,𝐻, {𝜇𝑖|𝑖 ∈ ℐ}, 𝑣⟩ such that:

∙ 𝑊 is a nonempty set. As usual, its elements will be called worlds.
∙ 𝐻 is an algebra of sets over 𝑊 .
∙ for each 𝑖 ∈ ℐ, 𝜇𝑖 : 𝐻 −→ [0, 1] is a finitely additive probability measure.
∙ 𝑣 : For𝐶 ×𝑊 −→ {0, 1} is a truth assignment1 compatible with ¬ and ∧.

That is, 𝑣(¬𝛼,𝑤) = 1− 𝑣(𝛼,𝑤) and 𝑣(𝛼 ∧ 𝛽,𝑤) = 𝑣(𝛼,𝑤) · 𝑣(𝛽,𝑤).
For a given model 𝑀 , let [𝛼]𝑀 be the set of all 𝑤 ∈ 𝑊 such that 𝑣(𝛼,𝑤) = 1. If
the context is clear, we will write [𝛼] instead of [𝛼]𝑀 . We say that 𝑀 is measurable
if [𝛼] ∈ 𝐻 for all 𝛼 ∈ For𝐶 .

Definition 2.3. Let 𝑀 = ⟨𝑊,𝐻, {𝜇𝑖 | 𝑖 ∈ ℐ}, 𝑣⟩ be any measurable model.
We define the satisfiability relation � recursively as follows:

∙ 𝑀 � 𝛼 if 𝑣(𝛼,𝑤) = 1 for all 𝑤 ∈𝑊 .
∙ 𝑀 � f > 0 if f𝑀 > 0, where f𝑀 is recursively defined as follows:

– 𝑠𝑀 = 𝑠.
– 𝐶𝑃𝑖(𝛼, 𝛽)𝑀 = 𝜇𝑖([𝛼 ∧ 𝛽]) · 𝜇𝑖([𝛽])−1, for any 𝑖 ∈ ℐ.
– (f + g)𝑀 = f𝑀 + g𝑀 .
– (𝑠 · g)𝑀 = 𝑠 · g𝑀 .
– (−f)𝑀 = −(f𝑀 ).

∙ 𝑀 � ¬𝜑 if 𝑀 ̸� 𝜑.
∙ 𝑀 � 𝜑 ∧ 𝜓 if 𝑀 � 𝜑 and 𝑀 � 𝜓.

A formula Φ is satisfiable if there is a measurable model 𝑀 such that 𝑀 � Φ;
Φ is valid if it is satisfied in every measurable model. We say that the set 𝑇 of
formulas is satisfiable if there is a measurable model 𝑀 such that 𝑀 � Φ for all
Φ ∈ 𝑇 .

Notice that the last two clauses of Definition 2.3 provide the validity of each
tautology instance.

3. Axiomatization

In this section we will introduce the axioms and inference rules for our logic.
The set of axioms of our axiomatic system, which we denote 𝐴𝑋LPCP, is divided into
three groups: axioms for propositional reasoning, axioms for probabilistic reasoning
and arithmetical axioms.
Axioms for propositional reasoning:

A1. 𝜏(Φ1, . . . ,Φ𝑛), where 𝜏(𝑝1, . . . , 𝑝𝑛) ∈ For𝐶 is any tautology and Φ𝑖 are
either all propositional or all probabilistic.

11 stands for “true", while 0 stands for “false"
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Axioms for probabilistic reasoning (𝑖 ∈ ℐ):
A2. 𝑃𝑖(𝛼) > 0; A5. 𝑃𝑖(𝛼↔ 𝛽) = 1 → 𝑃𝑖(𝛼) = 𝑃𝑖(𝛽);
A3. 𝑃𝑖(⊤) = 1; A6. 𝑃𝑖(𝛼 ∨ 𝛽) = 𝑃𝑖(𝛼) + 𝑃𝑖(𝛽)− 𝑃𝑖(𝛼 ∧ 𝛽);
A4. 𝑃𝑖(⊥) = 0; A7. 𝑃 (𝛽) = 0→ 𝐶𝑃 (𝛼, 𝛽) = 0;
A8. (𝑃𝑖(𝛼 ∧ 𝛽) > 𝑟 ∧ 𝑃𝑖(𝛽) 6 𝑠)→ 𝐶𝑃𝑖(𝛼, 𝛽) > 𝑟 · 𝑠−1, 𝑠 ̸= 0;
A9. (𝑃𝑖(𝛼 ∧ 𝛽) > 𝑟 ∧ 𝑃𝑖(𝛽) 6 𝑠)→ 𝐶𝑃𝑖(𝛼, 𝛽) > 𝑟 · 𝑠−1, 𝑠 ̸= 0;

A10. (𝑃𝑖(𝛼 ∧ 𝛽) > 𝑟 ∧ 𝑃𝑖(𝛽) < 𝑠)→ 𝐶𝑃𝑖(𝛼, 𝛽) > 𝑟 · 𝑠−1, 𝑠 ̸= 0;
A11. (𝑃𝑖(𝛼 ∧ 𝛽) 6 𝑟 ∧ 𝑃𝑖(𝛽) > 𝑠)→ 𝐶𝑃𝑖(𝛼, 𝛽) 6 𝑟 · 𝑠−1, 𝑠 ̸= 0;
A12. (𝑃𝑖(𝛼 ∧ 𝛽) < 𝑟 ∧ 𝑃𝑖(𝛽) > 𝑠)→ 𝐶𝑃𝑖(𝛼, 𝛽) < 𝑟 · 𝑠−1, 𝑠 ̸= 0;
A13. (𝑃𝑖(𝛼 ∧ 𝛽) 6 𝑟 ∧ 𝑃𝑖(𝛽) > 𝑠)→ 𝐶𝑃𝑖(𝛼, 𝛽) < 𝑟 · 𝑠−1, 𝑠 ̸= 0.

Arithmetical axioms:
A14. 𝑟 > 𝑠, whenever 𝑟 > 𝑠; A23. 𝑠 · (f + g) = (𝑠 · f) + (𝑠 · g);
A15. 𝑟 > 𝑠, whenever 𝑟 > 𝑠; A24. 𝑟 · (𝑠 · f) = 𝑟 · 𝑠 · f;
A16. 𝑠 · 𝑟 = 𝑠𝑟; A25. 1 · f = f;
A17. 𝑠+ 𝑟 = 𝑠+ 𝑟; A26. f > g ∨ g > f;
A18. f + g = g + f; A27. (f > g ∧ g > h)→ f > h;
A19. (f + g) + h = f + (g + h); A28. f > g → f + h > g + h;
A20. f + 0 = f; A29. (f > g ∧ 𝑠 > 0) → 𝑠 · f > 𝑠 · g;
A21. f− f = 0; A30. f = g→ (𝜑(. . . , f, . . .)→ 𝜑(. . . , g, . . .)).
A22. (𝑟 · f) + (𝑠 · 𝑓) = 𝑟 + 𝑠 · f;

Inference rules

R1. From Φ and Φ→ Ψ infer Ψ.
R2. From 𝛼 infer 𝑃𝑖(𝛼) = 1, for all 𝑖 ∈ ℐ.
R3. From the set of premises {𝜑→ f > −𝑛−1 | 𝑛 = 1, 2, 3, . . . } infer 𝜑→ f > 0.

Let us briefly comment on the axioms and inference rules. The axioms A2-
A6 provide the required properties of probability, the axioms A7–A13 capture the
equality (1.1) using the fact that Q is dense in R, while the axioms A14–A30 provide
the properties required for computation. In the inference rules, R1 is modus ponens,
R2 resembles necessitation, while R3 enforces that non-Archimedean probabilites
are not permitted.

Definition 3.1. A formula Φ is deducible from a set 𝑇 of sentences (𝑇 ⊢ Φ) if
there is an at most countable sequence of formulas Φ0,Φ1, . . . ,Φ, such that every Φ𝑖
is an axiom or a formula from the set 𝑇 , or it is derived from the preceding formulas
by an inference rule. A formula Φ is a theorem (⊢ Φ) if it is deducible from the
empty set. A set of sentences 𝑇 is consistent if there is at least one formula from
For𝐶 , and at least one formula from For𝑃 that are not deducible from 𝑇 . Otherwise,
𝑇 is inconsistent. A consistent set 𝑇 of sentences is said to be maximally consistent
if for every 𝜑 ∈ For, either 𝜑 ∈ 𝑇 or ¬𝜑 ∈ 𝑇 . A set 𝑇 is deductively closed if for
every Φ ∈ For, if 𝑇 ⊢ Φ, then Φ ∈ 𝑇 .

Observe that the length of the inference may be any successor ordinal lesser
than the first uncountable ordinal 𝜔1.
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4. Completeness

In this section we will prove that the proposed axiomatization is sound and
strongly complete with respect to the class of all measurable models.

Using a straightforward induction on the length of the inference, one can eas-
ily show that the above axiomatization is sound with respect to the class of all
measurable models.

Theorem 4.1 (Deduction theorem). Suppose that 𝑇 is an arbitrary set of
formulas and that Φ,Ψ ∈ For. Then, 𝑇 ⊢ Φ→ Ψ iff 𝑇 ∪ {Φ} ⊢ Ψ.

Proof. If 𝑇 ⊢ Φ → Ψ, then clearly 𝑇 ∪ {Φ} ⊢ Φ → Ψ, so, by modus ponens
(R1), 𝑇 ∪ {Φ} ⊢ Ψ. Conversely, let 𝑇 ∪ {Φ} ⊢ Ψ. As in the classical case, we
will use induction on the length of the inference to prove that 𝑇 ⊢ Φ → Ψ. The
proof differs from the classical one only in the cases when we apply the infinitary
inference rule R3.

Suppose that Ψ is the formula 𝜑 → f > 0 and 𝑇 ⊢ Φ → (𝜑 → f > −𝑛−1) for
all 𝑛. Since the formula (𝑝0 → (𝑝1 → 𝑝2)) ↔ ((𝑝0 ∧ 𝑝1) → 𝑝2) is a tautology, we
obtain 𝑇 ⊢ (Φ∧𝜑)→ f > −𝑛−1, for all 𝑛 (A1). Now, by R3, 𝑇 ⊢ (Φ∧𝜑)→ f > 0.
Hence, by the same tautology, 𝑇 ⊢ Φ→ Ψ. �

The next technical lemma will be used in the construction of a maximally
consistent extension of a consistent set of formulas.

Lemma 4.1. Suppose that 𝑇 is a consistent set of formulas. If 𝑇 ∪{𝜑→ f > 0}
is inconsistent, then there exists a positive integer 𝑛 such that 𝑇 ∪{𝜑→ f < −𝑛−1}
is consistent.

Proof. The proof is based on the reductio ad absurdum argument. Thus,
let us suppose that 𝑇 ∪ {𝜑 → f < −𝑛−1} is inconsistent for all 𝑛. Due to the
Deduction theorem, we can conclude that 𝑇 ⊢ 𝜑 → f > −𝑛−1, for all 𝑛. By R3,
𝑇 ⊢ 𝜑→ f > 0, so 𝑇 is inconsistent; a contradiction. �

Definition 4.1. Suppose that 𝑇 is a consistent set of formulas and that For𝑃 =
{𝜑𝑖 | 𝑖 = 0, 1, 2, 3, . . . }. We define a completion 𝑇 * of 𝑇 inductively as follows:

(1) 𝑇0 = 𝑇 ∪ {𝛼 ∈ For𝐶 | 𝑇 ⊢ 𝛼} ∪ {𝑃𝑖(𝛼) = 1 | 𝑇 ⊢ 𝛼, 𝑖 ∈ ℐ}.
(2) If 𝑇𝑖 ∪ {𝜑𝑖} is consistent, then 𝑇𝑖+1 = 𝑇𝑖 ∪ {𝜑𝑖}.
(3) If 𝑇𝑖 ∪ {𝜑𝑖} is inconsistent, then:

(a) If 𝜑𝑖 has the form 𝜓 → f > 0, then 𝑇𝑖+1 = 𝑇𝑖 ∪ {𝜓 → f < −𝑛−1},
where 𝑛 is a positive integer such that 𝑇𝑖+1 is consistent. The exis-
tence of such an 𝑛 is provided by Lemma 4.1.

(b) Otherwise, 𝑇𝑖+1 = 𝑇𝑖.
(4) 𝑇 * =

⋃︀
𝑛∈𝜔 𝑇𝑛.

Obviously, each 𝑇𝑖 is consistent. In the next theorem we will prove that 𝑇 * is
deductively closed, consistent and maximal with respect to For𝑃 .

Theorem 4.2. Suppose that 𝑇 is a consistent set of formulas and that 𝑇 * is
constructed as above. Then:
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(1) 𝑇 * is deductively closed, id est, 𝑇 * ⊢ Φ implies Φ ∈ 𝑇 *.
(2) There is 𝜑 ∈ For𝑃 such that 𝜑 /∈ 𝑇 *.
(3) There is 𝛼 ∈ For𝐶 such that 𝛼 /∈ 𝑇 *.
(4) For each 𝜑 ∈ For𝑃 , either 𝜑 ∈ 𝑇 *, or ¬𝜑 ∈ 𝑇 *.

Proof. We will prove only the first clause, since the remaining clauses can be
proved in the same way as in the classical case. In order to do so, it is sufficient to
prove the following four claims:

(i): Each instance of any axiom is in 𝑇 *.
(ii): If Φ ∈ 𝑇 * and Φ→ Ψ ∈ 𝑇 *, then Ψ ∈ 𝑇 *.

(iii): If 𝛼 ∈ 𝑇 *, then 𝑃𝑖(𝛼) = 1 ∈ 𝑇 *, for all 𝑖 ∈ ℐ.
(iv): If {𝜑→ f>−𝑛−1 | 𝑛 = 1, 2, 3, . . . } is a subset of 𝑇 *, then 𝜑→ f > 0 ∈ 𝑇 *.
(i): If Φ ∈ For𝐶 , then Φ ∈ 𝑇0. Otherwise, there exists a nonnegative integer 𝑖,

such that Φ = 𝜑𝑖. Since ⊢ 𝜑𝑖, 𝑇𝑖 ⊢ 𝜑𝑖 as well, and so 𝜑𝑖 ∈ 𝑇𝑖+1.
(ii): If Φ,Φ → Ψ ∈ For𝐶 , then Ψ ∈ 𝑇0. Otherwise, let Φ = 𝜑𝑖, Ψ = 𝜑𝑗 ,

and Φ → Ψ = 𝜑𝑘. Then, Ψ is a deductive consequence of each 𝑇𝑙, where 𝑙 >
max(𝑖, 𝑘) + 1. Let ¬Ψ = 𝜑𝑚. If 𝜑𝑚 ∈ 𝑇𝑚+1, then ¬Ψ is a deductive consequence
of each 𝑇𝑛, where 𝑛 > 𝑚 + 1. So, for every 𝑛 > max(𝑖, 𝑘,𝑚) + 1, 𝑇𝑛 ⊢ Ψ ∧ ¬Ψ, a
contradiction. Thus, ¬Ψ ̸∈ 𝑇 *. On the other hand, if also Ψ ̸∈ 𝑇 *, we have that
𝑇𝑛 ∪{Ψ} ⊢ ⊥, and 𝑇𝑛 ∪{¬Ψ} ⊢ ⊥, for 𝑛 > max(𝑗,𝑚) + 1, a contradiction with the
consistency of 𝑇𝑛. Thus, Ψ ∈ 𝑇 *.

(iii): If 𝛼 ∈ 𝑇 *, then 𝛼 ∈ 𝑇0, so 𝑃𝑖(𝛼) = 1 ∈ 𝑇0 for all 𝑖 ∈ ℐ.
(iv): Suppose that {𝜑 → f > −𝑛−1 | 𝑛 = 0, 1, 2, . . . } is a subset of 𝑇 *. We

want to prove that 𝜑 → f > 0 ∈ 𝑇 *. The proof uses the reductio ad absurdum
argument. So, let 𝜑→ f > 0 = 𝜑𝑖 and let us suppose that 𝑇𝑖 ∪{𝜑𝑖} is inconsistent.
By 3.(a) of Definition 4.1, there is a positive integer 𝑛 such that

𝑇𝑖+1 = 𝑇𝑖 ∪ {𝜑→ f < −𝑛−1}
and 𝑇𝑖+1 is consistent. Then, for all sufficiently large 𝑘, 𝑇𝑘 ⊢ 𝜑 → f < −𝑛−1

and 𝑇𝑘 ⊢ 𝜑 → f > −𝑛−1, so 𝑇𝑘 ⊢ 𝜑 → 𝜓 for all 𝜓 ∈ For𝑃 . In particular,
𝑇𝑘 ⊢ 𝜑 → f > 0, i. e. 𝑇𝑘 ⊢ 𝜑𝑖 for all sufficiently large 𝑘. But, 𝜑𝑖 /∈ 𝑇 *, so 𝜑𝑖 is
inconsistent with all 𝑇𝑘, 𝑘 > 𝑖. It follows that each 𝑇𝑘 is inconsistent for sufficiently
large 𝑘, a contradiction.

Thus, 𝑇𝑖 ∪ {𝜑𝑖} is consistent, so 𝜑→ f > 0 ∈ 𝑇𝑖+1. �

For the given completion 𝑇 *, we define a canonical model 𝑀* as follows:
∙ 𝑊 is the set of all functions 𝑤 : For𝐶 −→ {0, 1} with the following properties:

– 𝑤 is compatible with ¬ and ∧.
– 𝑤(𝛼) = 1 for each 𝛼 ∈ 𝑇 *.

∙ 𝑣 : For𝐶 ×𝑊 −→ {0, 1} is defined by 𝑣(𝛼,𝑤) = 1 iff 𝑤(𝛼) = 1.
∙ 𝐻 = {[𝛼] | 𝛼 ∈ For𝐶}.
∙ 𝜇𝑖 : 𝐻 −→ [0, 1] is defined by 𝜇𝑖([𝛼]) = sup{𝑠 ∈ [0, 1] ∩Q | 𝑇 * ⊢ 𝑃𝑖(𝛼) > 𝑠},

for all 𝑖 ∈ ℐ.

Lemma 4.2. 𝑀* is a measurable model.
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Proof. We need to prove that 𝐻 is an algebra of sets and that each 𝜇𝑖 is a
finitely additive probability measure. It is easy to see that 𝐻 is an algebra of sets,
since [𝛼] ∩ [𝛽] = [𝛼 ∧ 𝛽], [𝛼] ∪ [𝛽] = [𝛼 ∨ 𝛽] and 𝐻 r [𝛼] = [¬𝛼]. Concerning 𝜇𝑖,
the nonnegativity (𝜇𝑖([𝛼]) > 0) is the consequence of A2 and the definition of 𝜇𝑖,
while 𝜇𝑖(𝑊 ) = 1 follows from A3, since 𝑊 = [⊤]. We will give the proof of finite
additivity.

Let 𝜇𝑖([𝛼]) = 𝑎, 𝜇𝑖([𝛽]) = 𝑏 and 𝜇𝑖([𝛼 ∧ 𝛽]) = 𝑐. We claim that

𝜇𝑖([𝛼 ∨ 𝛽]) = 𝑎+ 𝑏− 𝑐.

Since Q is dense in R, we may choose an increasing sequence 𝑎0 < 𝑎1 < 𝑎2 < · · ·
and a decreasing sequence 𝑎0 > 𝑎1 > 𝑎2 > · · · in Q such that lim 𝑎𝑛 = lim 𝑎𝑛 = 𝑎.
Using the definition of 𝜇𝑖 and Theorem 4.2(4), we obtain that 𝑇 * ⊢ 𝑃𝑖(𝛼) > 𝑎𝑛
and that 𝑇 * ⊢ 𝑃𝑖(𝜑) < 𝑎𝑛, for all 𝑛.

We may also choose increasing sequences (𝑏𝑛)𝑛∈𝜔 and (𝑐𝑛)𝑛∈𝜔, and decreasing
sequences (𝑏𝑛)𝑛∈𝜔 and (𝑐𝑛)𝑛∈𝜔 in Q, such that lim 𝑏𝑛 = lim 𝑏𝑛 = 𝑏 and lim 𝑐𝑛 =
lim 𝑐𝑛=𝑐. So, 𝑇 * ⊢ 𝑃𝑖(𝛽) > 𝑏𝑛∧𝑃𝑖(𝛽) < 𝑏𝑛 and 𝑇 * ⊢ 𝑃𝑖(𝛼∧𝛽) > 𝑐𝑛∧𝑃𝑖(𝛼∧𝛽) < 𝑐𝑛.

Using the arithmetical axioms, we have

𝑇 * ⊢ 𝑃𝑖(𝛼) + 𝑃𝑖(𝛽)− 𝑃𝑖(𝛼 ∧ 𝛽) > 𝑎𝑛 + 𝑏𝑛 − 𝑐𝑛,
𝑇 * ⊢ 𝑃𝑖(𝛼) + 𝑃𝑖(𝛽)− 𝑃𝑖(𝛼 ∧ 𝛽) < 𝑎𝑛 + 𝑏𝑛 − 𝑐𝑛

for all 𝑛. Using A6 and A30, we obtain that 𝑇 * ⊢ 𝑃𝑖(𝛼 ∨ 𝛽) > 𝑎𝑛 + 𝑏𝑛 − 𝑐𝑛 and
that 𝑇 * ⊢ 𝑃𝑖(𝛼 ∨ 𝛽) < 𝑎𝑛 + 𝑏𝑛 − 𝑐𝑛, for all 𝑛.

Finally, from

𝜇𝑖([𝛼 ∨ 𝛽]) = sup{𝑟 ∈ Q | 𝑇 * ⊢ 𝑃𝑖(𝛼 ∨ 𝛽) > 𝑟}

and lim 𝑎𝑛 + 𝑏𝑛 − 𝑐𝑛 = lim 𝑎𝑛 + 𝑏𝑛 − 𝑐𝑛 = 𝑎 + 𝑏− 𝑐, we obtain that 𝜇𝑖([𝛼 ∨ 𝛽]) =
𝑎+ 𝑏− 𝑐. �

Theorem 4.3 (Strong completeness theorem). Every consistent set of formulas
has a measurable model.

Proof. Let 𝑇 be a consistent set of formulas. We can extend it to a maximally
consistent set 𝑇 *, and define a canonical model 𝑀*, as above. By induction on the
complexity of the formulas, we can prove that 𝑀* � Φ iff Φ ∈ 𝑇 *.

To begin the induction, let Φ = 𝛼 ∈ For𝐶 . If 𝛼 ∈ 𝑇 *, i.e., 𝑇 * ⊢ 𝛼, then, by
definition of 𝑀*, 𝑀* � 𝛼. Conversely, if 𝑀* � 𝛼, by the completeness of classical
propositional logic, 𝑇 * ⊢ 𝛼, and 𝛼 ∈ 𝑇 *.

Let us suppose that f > 0 ∈ 𝑇 *. Then, using the axioms A16–A19, A22–A25
and A30, we can prove that

𝑇 * ⊢ f = 𝑠+
𝑚∑︁
𝑖=1

𝑠𝑖 · 𝐶𝑃𝑛𝑖(𝛼𝑖, 𝛽𝑖) and 𝑇 * ⊢ 𝑠+
𝑚∑︁
𝑖=1

𝑠𝑖 · 𝐶𝑃𝑛𝑖(𝛼𝑖, 𝛽𝑖) > 0,

for some 𝑠, 𝑠𝑖 ∈ Q and some 𝛼𝑖, 𝛽𝑖 ∈ For𝐶 , 𝑛𝑖 ∈ ℐ. Moreover, according to the
axioms A7, A16, A20 and A30, we may assume that 𝑇 * ⊢ 𝑃𝑛𝑖(𝛽𝑖) > 0.
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For example, let 𝑇 * ⊢ f > 0, where f = 4𝐶𝑃1(𝛼1, 𝛽1) + 3(5 + 2𝐶𝑃2(𝛼2, 𝛽2)) +

1 +𝐶𝑃2(𝛼2, 𝛽2). Using the axioms A16, A17, A18,A19, A22, A23 and A24, we can
prove that

𝑇 * ⊢ f = 16 + 4𝐶𝑃1(𝛼1, 𝛽1) + 7𝐶𝑃2(𝛼2, 𝛽2),
𝑇 * ⊢ 16 + 4𝐶𝑃1(𝛼1, 𝛽1) + 7𝐶𝑃2(𝛼2, 𝛽2) > 0.(4.1)

Moreover, if 𝑇 * ⊢ 𝑃1(𝛽1) = 0, then, by A7, 𝑇 * ⊢ 𝐶𝑃1(𝛼1, 𝛽1) = 0. Using A30,
we obtain that 𝑇 * ⊢ 4𝐶𝑃1(𝛼1, 𝛽1) = 4 · 0. Since ⊢ 0 = 4 · 0 (A16), it follows from
A30 that 𝑇 * ⊢ 4𝐶𝑃1(𝛼1, 𝛽1) = 0 Finally, by (4.1), A20 and A30, we obtain that
𝑇 * ⊢ 16 + 7𝐶𝑃2(𝛼2, 𝛽2) > 0, and, similarly, that 𝑇 * ⊢ f = 16 + 7𝐶𝑃2(𝛼2, 𝛽2).

)︀
Let 𝑎𝑖 = 𝜇𝑛𝑖([𝛼𝑖 ∧ 𝛽𝑖]) and 𝑏𝑖 = 𝜇𝑛𝑖([𝛽𝑖]). We need to prove that

(4.2) 𝑠+
𝑚∑︁
𝑖=1

𝑠𝑖 · 𝑎𝑖 · 𝑏−1
𝑖 > 0.

Note that 𝑇 * ⊢ 𝐶𝑃𝑖(𝛼, 𝛽) > 𝑟 implies 𝜇𝑖([𝛼𝑖 ∧ 𝛽𝑖])𝜇𝑖([𝛽𝑖])−1 > 𝑟. Indeed,
if 𝜇𝑖([𝛼𝑖 ∧ 𝛽𝑖])𝜇𝑖([𝛽𝑖])−1 < 𝑟, there exist 𝑎, 𝑏 ∈ Q such that 𝑎 > 𝜇𝑖([𝛼𝑖 ∧ 𝛽𝑖]),
𝑏 6 𝜇𝑖([𝛽𝑖]) and 𝜇𝑖([𝛼𝑖 ∧ 𝛽𝑖])𝜇𝑖([𝛽𝑖])−1 < 𝑎

𝑏 < 𝑟. Consequently, 𝑇 * ⊢ 𝑃𝑖(𝛼 ∧ 𝛽) < 𝑎

and 𝑇 * ⊢ 𝑃𝑖(𝛽) > 𝑏, hence, by A12, 𝑇 * ⊢ 𝐶𝑃𝑖(𝛼, 𝛽) < 𝑎 · 𝑏−1; a contradiction.
Similarly, we can show that 𝑇 * ⊢ 𝐶𝑃𝑖(𝛼, 𝛽) 6 𝑟 implies 𝜇𝑖([𝛼𝑖 ∧ 𝛽𝑖])𝜇𝑖([𝛽𝑖])−1 6 𝑟.
As a consequence, we have that 𝜇𝑖([𝛼𝑖]|[𝛽𝑖]) = sup{𝑟 ∈ Q | 𝑇 * ⊢ 𝐶𝑃𝑛𝑖(𝛼, 𝛽) > 𝑟}.

So, we may choose increasing sequences (𝑐inc
𝑖,𝑘 )𝑘∈𝜔 and decreasing sequences

(𝑐dec
𝑖,𝑘 )𝑘∈𝜔 in Q, such that lim 𝑐inc

𝑖,𝑘 = lim 𝑐dec
𝑖,𝑘 = 𝑎𝑖𝑏

−1
𝑖 , for 𝑖 ∈ {1, . . . ,𝑚}. Hence,

𝑇 * ⊢ 𝐶𝑃𝑛𝑖(𝛼, 𝛽) > 𝑐inc
𝑖,𝑘 ∧ 𝐶𝑃𝑛𝑖(𝛼, 𝛽) < 𝑐dec

𝑖,𝑘 , for 𝑖 ∈ {1, . . . ,𝑚} and 𝑘 ∈ 𝜔.
Without the loss of generality, suppose that 𝑇 * ⊢ 𝑠𝑖 > 0, for 1 6 𝑖 6 𝑙, and

𝑇 * ⊢ 𝑠𝑖 < 0, for 𝑙 < 𝑖 6 𝑚. Then, by the arithmetical axioms,

𝑇 * ⊢ 𝑠+
𝑙∑︁
𝑖=1

𝑠𝑖 · 𝑐inc
𝑖,𝑘 +

𝑚∑︁
𝑖=𝑙+1

𝑠𝑖 · 𝑐dec
𝑖,𝑘 6 𝑠+

𝑚∑︁
𝑖=1

𝑠𝑖 · 𝐶𝑃𝑛𝑖(𝛼𝑖, 𝛽𝑖),

𝑇 * ⊢ 𝑠+
𝑙∑︁
𝑖=1

𝑠𝑖 · 𝑐dec
𝑖,𝑘 +

𝑚∑︁
𝑖=𝑙+1

𝑠𝑖 · 𝑐inc
𝑖,𝑘 > 𝑠+

𝑚∑︁
𝑖=1

𝑠𝑖 · 𝐶𝑃𝑛𝑖(𝛼𝑖, 𝛽𝑖)

for all 𝑘. Consequently,

𝑠+
𝑚∑︁
𝑖=1

𝑠𝑖 · 𝑎𝑖 · 𝑏−1
𝑖 = sup

{︂
𝑟 ∈ Q | 𝑇 * ⊢ 𝑠+

𝑚∑︁
𝑖=1

𝑠𝑖 · 𝐶𝑃𝑛𝑖(𝛼𝑖, 𝛽𝑖) > 𝑟
}︂
.

Now, (4.2) follows from 𝑇 * ⊢ 𝑠+
∑︀𝑚
𝑖=1 𝑠𝑖 · 𝐶𝑃𝑛𝑖(𝛼𝑖, 𝛽𝑖) > 0.

For the other direction, let 𝑀* � f > 0. If f > 0 /∈ 𝑇 *, from the construction
of 𝑇 *, there is a positive integer 𝑛 such that f < −𝑛−1 ∈ 𝑇 *. Reasoning as above,
we have that f𝑀

*
< 0, which is a contradiction. So, f > 0 ∈ 𝑇 *.

Let Φ = ¬𝜑 ∈ For𝑃 . Then 𝑀* � ¬𝜑 iff 𝑀* ̸� 𝜑 iff 𝜑 ̸∈ 𝑇 * iff (by Theorem 4.2)
¬𝜑 ∈ 𝑇 *.

Finally, let Φ = 𝜑∧𝜓 ∈ For𝑃 . 𝑀* � 𝜑∧𝜓 iff 𝑀* � 𝜑 and 𝑀* � 𝜓 iff 𝜑, 𝜓 ∈ 𝑇 *
iff (by Theorem 4.2) 𝜑 ∧ 𝜓 ∈ 𝑇 *. �
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5. Decidability

Theorem 5.1. Satisfiability of probabilistic formulas is decidable.

Proof. Up to equivalence, each probabilistic formula is a finite disjunction of
finite conjunctions of literals, where a literal is either a basic probabilistic formula,
or a negation of a basic probabilistic formula. Thus, it is sufficient to show the
decidability of the satisfiability problem for the formulas of the form

(5.1)
⋀︁
𝑖

f𝑖 > 0 ∧
⋀︁
𝑗

g𝑗 < 0.

Suppose that 𝑝1, . . . , 𝑝𝑛 are all of the propositional letters appearing in (5.1). Let
𝐴1, . . . , 𝐴2𝑛 be all of the formulas of the form ±𝑝1 ∧ · · · ∧ ±𝑝𝑛, where +𝑝 = 𝑝 and
−𝑝 = ¬𝑝. Clearly, 𝐴𝑖 are pairwise disjoint and form a partition of ⊤. Furthermore,
for each 𝛼 appearing in (5.1) there is a unique set 𝐼𝛼 ⊆ {1, . . . , 2𝑛} such that
𝛼↔
⋁︀
𝑖∈𝐼𝛼 𝐴𝑖 is a tautology. Now we can equivalently rewrite (5.1) as

⋀︁
𝑖

∑︁
𝑖′

𝑠𝑖𝑖′𝐶𝑃𝑛𝑖′

(︂ ⋁︁
𝑘∈𝐼𝛼

𝑖𝑖′

𝐴𝑘,
⋁︁
𝑙∈𝐼𝛽

𝑖𝑖′

𝐴𝑙

)︂
> 𝑟𝑖

∧
⋀︁
𝑗

∑︁
𝑗′

𝑠𝑗𝑗′𝐶𝑃𝑛𝑗′

(︂ ⋁︁
𝑘∈𝐼𝛼

𝑗𝑗′

𝐴𝑘,
⋁︁
𝑙∈𝐼𝛽

𝑗𝑗′

𝐴𝑙

)︂
< 𝑟𝑗 .

Let the set {𝑖1, . . . , 𝑖𝑚} ⊆ ℐ be the set of all of the different conditional proba-
bility indices used in (5.1), and let 𝜎𝑖(𝑥(1,𝑖1), . . . , 𝑥(2𝑛,𝑖1), . . . , 𝑥(1,𝑖𝑚), . . . , 𝑥(2𝑛,𝑖𝑚)),
𝛿𝑗(𝑥(1,𝑖1), . . . , 𝑥(2𝑛,𝑖1), . . . , 𝑥(1,𝑖𝑚), . . . , 𝑥(2𝑛,𝑖𝑚)) be the formulas∑︁

𝑖′

𝑠𝑖𝑖′ ·
(︂ ∑︁
𝑘∈𝐼𝛼

𝑖𝑖′
∩𝐼𝛽

𝑖𝑖′

𝑥(𝑘,𝑛𝑖′ )

)︂
·
(︂ ∑︁
𝑙∈𝐼𝛽

𝑖𝑖′

𝑥(𝑙,𝑛𝑖′ )

)︂−1
> 𝑟𝑖,

∑︁
𝑗′

𝑠𝑗𝑗′ ·
(︂ ∑︁
𝑘∈𝐼𝛼

𝑗𝑗′
∩𝐼𝛽

𝑗𝑗′

𝑥(𝑘,𝑛𝑗′ )

)︂
·
(︂ ∑︁
𝑙∈𝐼𝛽

𝑗𝑗′

𝑥(𝑙,𝑛𝑗′ )

)︂−1
< 𝑟𝑗 .

Furthermore, let 𝜒(𝑥(1,𝑖1), . . . , 𝑥(2𝑛,𝑖1), . . . , 𝑥(1,𝑖𝑚), . . . , 𝑥(2𝑛,𝑖𝑚)) be the formula⋀︁
ℎ∈{1,...,𝑚}

𝑥(1,𝑖ℎ) + · · ·𝑥(2𝑛,𝑖ℎ) = 1 ∧
⋀︁
𝑘,ℎ

𝑥(𝑘,𝑖ℎ) > 0.

Then, it is easy to see that (5.1) is satisfiable iff the sentence

(5.2) ∃𝑥(1,𝑖1) . . . ∃𝑥(2𝑛,𝑖1) . . . ∃𝑥(1,𝑖𝑚) . . . ∃𝑥(2𝑛,𝑖𝑚)

(︂⋀︁
𝑖

𝜎𝑖(�̄�) ∧
⋀︁
𝑗

𝛿𝑗(�̄�) ∧ 𝜒(�̄�)
)︂

is satisfied in the ordered field of reals. Formally, the first order language of fields
does not contain “−1" and “−". However, both of intended functions are definable.
For instance, “−1" can be defined by the formula 𝜙(𝑥, 𝑦):

(𝑥 = 0→ 𝑦 = 1) ∧ (𝑥 ̸= 0→ 𝑥𝑦 = 1),
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since the first order sentence ∀𝑥∃1𝑦 𝜙(𝑥, 𝑦) is satisfied in every field. In particular,
the formula 𝜓(. . . , 𝑥−1, . . .) holds if and only if the formula 𝜓(. . . , 𝑦, . . .) ∧ 𝜙(𝑥, 𝑦)
holds. So, (5.2) may be seen as a first order formula of the language of ordered
fields 𝐿𝑂𝐹 – definitions by extensions, see [8].

By a well known result [9], satisfiability of sentences of 𝐿𝑂𝐹 in the ordered field
of reals is decidable. �

Let us suppose that there is only one conditional probability operator, i.e., there
is only one agent. It should be noted that this logic can be embedded into the logic
described in [3], which has a PSPACE containment for the decision procedure.
Also, the rewriting of formulas from our logic into that logic can be accomplished
in linear time:

𝐶𝑃 (𝛼, 𝛽) is equivalent to 𝜔(𝛼 ∧ 𝛽)
𝜔(𝛽) ,

which is representable in [3]. Moreover, the generalization of the logic from [3] to
a multi-agent case is straightforward.

Thus, we conclude that our logic is also decidable in PSPACE.

6. Representing evidence

In [4], Halpern and Pucella presented a first-order logic for reasoning about
evidence. It includes propositional formulas on hypotheses ℋ, observations 𝒪,
probabilities 𝑃1 and 𝑃2 of formulas before and after the observation, the evidence
𝐸(𝑜, ℎ) provided by the observation 𝑜 for the hypothesis ℎ, and quantification
by real-valued variables. They posed an open question whether it is possible to
axiomatize their logic without resorting to quantification. Intuitively, the evidence
function 𝑒 represents the “weight" that an observation leads to the fulfillment of a
hypothesis. In [4], it was shown that the evidence can be seen as a function which
maps prior probability 𝑃1 to posterior probability 𝑃2, using Dempster’s Rule of
Combination. For more details, we refer reader to [4].

In this section we will show how evidence can be represented in the developed
logic. We will introduce the following modifications:

(1) there is a finite number of propositional letters divided into two categories:
Var = ℋ ∪ 𝒪, where ℋ = {ℎ1, . . . , ℎ𝑚} are used to denote hypotheses,
𝒪 = {𝑜1, . . . , 𝑜𝑛} are used to denote observations, and ℋ ∩𝒪 = ∅;

(2) there are only two conditional probability operators – 𝐶𝑃1 and 𝐶𝑃2, which
will be interpreted as prior and posterior conditional probabilities, respec-
tively;

(3) there is an additional syntactic object – 𝐸(𝑜, ℎ), where 𝑜 ∈ 𝒪, ℎ ∈ ℋ;
(4) the definition of Term(0) is adjusted accordingly to: Term(0) = {𝑠 | 𝑠 ∈

Q} ∪ {𝐶𝑃𝑖(𝛼, 𝛽) | 𝛼, 𝛽 ∈ For𝐶 , 𝑖 ∈ ℐ} ∪ {𝐸(𝑜, ℎ) | 𝑜 ∈ 𝒪, ℎ ∈ ℋ};
(5) The definition of a model is extended to: ⟨𝑊,𝐻, {𝜇𝑖|𝑖 ∈ ℐ}, 𝑣, 𝑒⟩, where

𝑒 : ({[𝑜]|𝑜 ∈ 𝒪} × [{[ℎ]|ℎ ∈ ℋ}])→ [0, 1] by the formula

𝑒([𝑜], [ℎ]) = 𝜇1([𝑜 ∧ ℎ]) · 𝜇1([ℎ])−1∑︀𝑚
𝑘=1 𝜇1([𝑜 ∧ ℎ𝑘]) · 𝜇1([ℎ𝑘])−1 , for 𝑜 ∈ 𝒪, ℎ ∈ ℋ;
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(6) The definition of satisfiability is extended to include:
𝐸(𝑜, ℎ)𝑀 = (𝐶𝑃1(𝑜, ℎ)𝑀 ) · (

∑︀𝑚
𝑘=1 𝐶𝑃1(𝑜, ℎ𝑘)𝑀 )−1, for 𝑜 ∈ 𝒪, ℎ ∈ ℋ;

(7) there are nine additional axioms:
A31. (

⋁︀𝑚
𝑖=1 ℎ𝑖) ∧ (

⋀︀
�̸�=𝑗(ℎ𝑖 → ¬ℎ𝑗)),

A32. (
⋁︀𝑛
𝑖=1 𝑜𝑖) ∧ (

⋀︀
𝑖 ̸=𝑗(𝑜𝑖 → ¬𝑜𝑗)),

A33.
⋀︀𝑛
𝑖=1(𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) > 0),

A34. (𝐶𝑃1(𝑜𝑖, ℎ𝑗) > 𝑟 ∧ 𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) 6 𝑠)→ 𝐸(𝑜𝑖, ℎ𝑗) > 𝑟
𝑠
,

A35. (𝐶𝑃1(𝑜𝑖, ℎ𝑗) > 𝑟 ∧ 𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) < 𝑠)→ 𝐸(𝑜𝑖, ℎ𝑗) > 𝑟𝑠 ,
A36. (𝐶𝑃1(𝑜𝑖, ℎ𝑗) > 𝑟 ∧ 𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) 6 𝑠)→ 𝐸(𝑜𝑖, ℎ𝑗) > 𝑟𝑠 ,
A37. (𝐶𝑃1(𝑜𝑖, ℎ𝑗) 6 𝑟 ∧ 𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) > 𝑠)→ 𝐸(𝑜𝑖, ℎ𝑗) 6 𝑟

𝑠
,

A38. (𝐶𝑃1(𝑜𝑖, ℎ𝑗) 6 𝑟 ∧ 𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) > 𝑠)→ 𝐸(𝑜𝑖, ℎ𝑗) < 𝑟𝑠 ,
A39. (𝐶𝑃1(𝑜𝑖, ℎ𝑗) < 𝑟 ∧ 𝐶𝑃1(𝑜𝑖, ℎ1) + · · ·+ 𝐶𝑃1(𝑜𝑖, ℎ𝑚) > 𝑠)→ 𝐸(𝑜𝑖, ℎ𝑗) < 𝑟𝑠 ,

(8) there is one additional inference rule:

R4: 𝑜𝑖
𝑃2(ℎ𝑗) = 𝐶𝑃1(ℎ𝑗 |𝑜𝑖)

, 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}.

It can be shown, very similarly to the already laid-out proofs, that the logic with
these modifications in place is also strongly complete and decidable in PSPACE.

In this way, we have solved the problem of propositional axiomatization of
reasoning about evidence, which was presented in [4].

7. Conclusion

In this paper, we introduced a sound and strongly-complete axiomatic system
for the probabilistic logic with conditional probability operators 𝐶𝑃𝑖, 𝑖 ∈ ℐ, which
allows for linear combinations and comparative statements. As it was noticed in
[10], it is not possible to give a finitary strongly complete axiomatization for such
a system. In our case the strong completeness was made possible by adding an
infinitary rule of inference.

The obtained formalism is quite expressive and allows for the representation
of uncertain knowledge, where uncertainty is modelled by probability formulas, as
well as for the representation of evidence. For instance, a conditional statement of
the form “the sum of probabilities of 𝛼 given 𝛽 and 𝛾 given 𝛿 is at least 0.95, viewed
by agent 𝑖" can be written as 𝐶𝑃𝑖(𝛼, 𝛽)+𝐶𝑃𝑖(𝛾, 𝛿) > 0.95. A similar approach can
be applied to de Finetti style conditional probabilities. Future research will also
consider a possibility of dealing with probabilistic first-order formulas.
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