
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 87(101) (2010), 109–119 DOI: 10.2298/PIM1001109S

AN EFFICIENT PROCEDURE FOR MINING
STATISTICALLY SIGNIFICANT

FREQUENT ITEMSETS

Predrag Stanišić and Savo Tomović

Communicated by Žarko Mijajlović

Abstract. We suggest the original procedure for frequent itemsets genera-
tion, which is more efficient than the appropriate procedure of the well known
Apriori algorithm. The correctness of the procedure is based on a special
structure called Rymon tree. For its implementation, we suggest a modified
sort-merge-join algorithm. Finally, we explain how the support measure, which
is used in Apriori algorithm, gives statistically significant frequent itemsets.

1. Introduction

Association rules have received lots of attention in data mining due to their
many applications in marketing, advertising, inventory control, and numerous other
areas. The motivation for discovering association rules has come from the require-
ment to analyze large amounts of supermarket basket data. A record in such data
typically consists of the transaction unique identifier and the items bought in that
transaction. Items can be different products which one can buy in supermarkets or
on-line shops, or car equipment, or telecommunication companies’ services etc.

A typical supermarket may well have several thousand items on its shelves.
Clearly, the number of subsets of the set of items is immense. Even though a
purchase by a customer involves a small subset of this set of items, the num-
ber of such subsets is very large. For example, even if we assume that no cus-
tomer has more than five items in her/his shopping cart, there are

∑︀5
𝑖=1
(︀10000
𝑖

)︀
=

832916875004174500 ≈ 1018 possible contents of this cart, which corresponds to
the subsets having no more than five items of a set that has 10,000 items, and this
is indeed a large number.

The supermarket is interested in identifying associations between item sets; for
example, it may be interesting to know how many of the customers who bought

2010 Mathematics Subject Classification: Primary 03B70; Secondary 68T27, 68Q17.
Key words and phrases: data mining, knowledge discovery in databases, association analysis,

Apriori algorithm.
109

110 STANIŠIĆ AND TOMOVIĆ

bread and cheese also bought butter. This knowledge is important because if it
turns out that many of the customers who bought bread and cheese also bought
butter, the supermarket will place butter physically close to bread and cheese in
order to stimulate the sales of butter. Of course, such a piece of knowledge is
especially interesting when there is a substantial number of customers who buy all
three items and a large fraction of those individuals who buy bread and cheese also
buy butter.

For example, the association rule bread ∧ cheese ⇒ butter [support = 20%,
confidence = 85%] represents facts:

∙ 20% of all transactions under analysis contain bread, cheese and butter;
∙ 85% of the customers who purchased bread and cheese also purchased

butter.
The result of association analysis is strong association rules, which are rules sat-

isfying a minimal support and minimal confidence threshold. The minimal support
and the minimal confidence are input parameters for association analysis.

The problem of association rules mining can be decomposed into two sub-
problems [1]:

∙ Discovering frequent or large itemsets. Frequent itemsets have a support
greater than the minimal support;
∙ Generating rules. The aim of this step is to derive rules with high confi-

dence (strong rules) from frequent itemsets. For each frequent itemset 𝑙
one finds all nonempty subsets of 𝑙; for each 𝑎 ⊂ 𝑙 ∧ 𝑎 ̸= ∅ one generates
the rule 𝑎⇒ 𝑙 − 𝑎, if support(𝑙)

support(𝑎) > minimal confidence.
We do not consider the second sub-problem in this paper, because the overall

performances of mining association rules are determined by the first step. Efficient
algorithms for solving the second sub-problem are exposed in [12].

The paper is organized as follows. Section 2 provides formalization of frequent
itemsets mining problem. Section 3 describes Apriori algorithm. Section 4 presents
our candidate generation procedure. Section 5 explains how to use hypothesis test-
ing to validate frequent itemsets.

2. Preliminaries

Suppose that 𝐼 is a finite set; we refer to the elements of 𝐼 as items.
Definition 2.1. A transaction dataset on 𝐼 is a function 𝑇 : {1, . . . , 𝑛} →

𝑃 (𝐼). The set 𝑇 (𝑘) is the 𝑘-th transaction of 𝑇 . The numbers 1, . . . , 𝑛 are the
transaction identifiers (TIDs).

Given a transaction data set 𝑇 on the set 𝐼, we would like to determine those
subsets of 𝐼 that occur often enough as values of T.

Definition 2.2. Let 𝑇 : 1, . . . , 𝑛→ 𝑃 (𝐼) be a transaction data set on a set of
items 𝐼. The support count of a subset 𝐾 of the set of items 𝐼 in 𝑇 is the number
suppcount𝑇 (𝐾) given by: suppcount𝑇 (𝐾) = |{𝑘 | 1 6 𝑘 6 𝑛 ∧𝐾 ⊆ 𝑇 (𝑘)}|.

The support of an item set 𝐾 (in the following text instead of an item set 𝐾
we will use an itemset 𝐾) is the number: supp𝑇 (𝐾) = suppcount𝑇 (𝐾)/𝑛.

MINING STATISTICALLY SIGNIFICANT FREQUENT ITEMSETS 111

The following rather straightforward statement is fundamental for the study of
frequent itemsets.

Theorem 2.1. Let 𝑇 : 1, . . . , 𝑛 → 𝑃 (𝐼) be a transaction data set on a set
of items 𝐼. If 𝐾 and 𝐾 ′ are two itemsets, then 𝐾 ′ ⊆ 𝐾 implies supp𝑇 (𝐾 ′) >
supp𝑇 (𝐾).

Proof. The theorem states that supp𝑇 for an itemset has the anti-monotone
property. It means that support for an itemset never exceeds the support for its
subsets. For proof, it is sufficient to note that every transaction that contains 𝐾
also contains 𝐾 ′. The statement from the theorem follows immediately. �

Definition 2.3. An itemset 𝐾 is 𝜇-frequent relative to the transaction data
set 𝑇 if supp𝑇 (𝐾) > 𝑚𝑢. We denote by 𝐹𝜇𝑇 the collection of all 𝜇-frequent itemsets
relative to the transaction data set 𝑇 and by 𝐹𝜇𝑇,𝑟 the collection of 𝜇-frequent
itemsets that contain 𝑟 items for 𝑟 > 1 (in the following text we will use 𝑟-itemset
instead of itemset that contains 𝑟 items).

Note that 𝐹𝜇𝑇 =
⋃︀
𝑟>1 𝐹

𝜇
𝑇,𝑟. If 𝜇 and 𝑇 are clear from the context, then we will

omit either or both adornments from this notation.

3. Apiori algorithm

We will briefly present the Apriori algorithm, which is the most famous al-
gorithm in the association analysis. The Apriori algorithm iteratively generates
frequent itemsets starting from frequent 1-itemsets to frequent itemsets of maximal
size. Each iteration of the algorithm consists of two phases: candidate generation
and support counting. We will briefly explain both phases in the iteration 𝑘.

In the candidate generation phase potentially frequent 𝑘-itemsets or candidate
𝑘-itemsets are generated. The anti-monotone property of the itemset support is
used in this phase and it provides elimination or pruning of some candidate item-
sets without calculating its actual support (candidate containing at least one not
frequent subset is pruned immediately, before support counting phase, see Theo-
rem 2.1).

The support counting phase consists of calculating support for all previously
generated candidates. In the support counting phase, it is essential to efficiently
determine if the candidates are contained in particular transaction, in order to
increase their support. Because of that, the candidates are organized in hash tree
[2]. The candidates, which have enough support, are termed as frequent itemsets.

The Apriori algorithm terminates when none of the frequent itemsets can be
generated.

We will use 𝐶𝑇,𝑘 to denote candidate 𝑘-itemsets which are generated in the
iteration 𝑘 of the Apriori algorithm. Pseudocode for the Apriori algorithm comes
next.

Algorithm: Apriori
Input: A transaction dataset T ; Minimal support threshold 𝜇
Output: 𝐹𝜇𝑇

112 STANIŠIĆ AND TOMOVIĆ

Method:
1. 𝐶T,1 = {{i} | i ∈ I}
2. F𝜇T,1 = {K ∈ CT,1 | suppT(K) > 𝜇}
3. for (k =2; 𝐹𝜇𝑇,𝑘−1 ̸= ∅; k++)

𝐶𝑇,𝑘 = apriori_gen(𝐹𝜇𝑇,𝑘−1)
𝐹𝜇𝑇,𝑘 = {K ∈ 𝐶T,𝑘 | suppT > 𝜇}

end for
4. F𝜇T =

⋃︀
𝑟>1 𝐹

𝜇
𝑇,𝑟

The apriori_gen is a procedure for candidate generation in the Apriori algo-
rithm [2]. In the iteration 𝑘, it takes as argument 𝐹𝜇𝑇,𝑘−1 – the set of all 𝜇-frequent
(𝑘 − 1)-itemsets (which is generated in the previous iteration) and returns the set
𝐶𝑇,𝑘. The set 𝐶𝑇,𝑘 contains candidate 𝑘-itemsets (potentially frequent 𝑘-itemsets)
and accordingly it contains the set 𝐹𝜇𝑇,𝑘 – the set of all 𝜇-frequent 𝑘-itemsets. The
procedure works as follows. First, in the join step, we join 𝐹𝜇𝑇,𝑘 with itself:

INSERT INTO C𝑇,𝑘
SELECT 𝑅1.𝑖𝑡𝑒𝑚1, 𝑅1.𝑖𝑡𝑒𝑚2, . . . , 𝑅1.𝑖𝑡𝑒𝑚𝑘−1, 𝑅2.𝑖𝑡𝑒𝑚𝑘−1
FROM 𝐹𝜇𝑇,𝑘−1 AS 𝑅1, 𝐹

𝜇
𝑇,𝑘−1 AS 𝑅2

WHERE 𝑅1.𝑖𝑡𝑒𝑚1 = 𝑅2.𝑖𝑡𝑒𝑚1 ∧ · · · ∧𝑅1.𝑖𝑡𝑒𝑚𝑘−2 = 𝑅2.𝑖𝑡𝑒𝑚𝑘−2 ∧𝑅1.𝑖𝑡𝑒𝑚𝑘−1 <
𝑅2.𝑖𝑡𝑒𝑚𝑘−1

In the previous query the set 𝐹𝜇𝑇,𝑘 is considered as a relational table with (𝑘−1)
attributes: 𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2, . . . , 𝑖𝑡𝑒𝑚𝑘−1.

The previous query requires 𝑘 − 2 equality comparisons and is implemented
with nested-loop join algorithm in the original Apriori algorithm from [2]. The
nested-loop join algorithm is expensive, since it examines every pair of tuples in
two relations:

for each 𝑙1 ∈ 𝐹𝜇𝑇,𝑘−1
for each 𝑙2 ∈ 𝐹𝜇𝑇,𝑘−1

if 𝑙1[1] = 𝑙2[1] ∧ · · · ∧ 𝑙1[𝑘 − 2] = 𝑙2[𝑘 − 2] ∧ 𝑙1[𝑘 − 1] < 𝑙2[𝑘 − 1]
new_cand ={𝑙1[1], 𝑙1[2], . . . , 𝑙1[𝑘 − 1], 𝑙2[𝑘 − 1]}

Consider the cost of nested-loop join algorithm. The number of pairs of itemsets
(tuples) to be considered is |𝐹𝜇𝑇,𝑘−1| * |𝐹

𝜇
𝑇,𝑘−1|, where |𝐹𝜇𝑇,𝑘−1| denotes the number

of itemsets in 𝐹𝜇𝑇,𝑘−1. For each itemset from 𝐹𝜇𝑇,𝑘−1, we have to perform a complete
scan on 𝐹𝜇𝑇,𝑘−1. In the worst case the buffer can hold only one block of 𝐹𝜇𝑇,𝑘−1,
and a total of |𝐹𝜇𝑇,𝑘−1| * 𝑛𝑏 + 𝑛𝑏 block transfers would be required, where denotes
the number of blocks containing itemsets of 𝐹𝜇𝑇,𝑘−1.

Next in the prune step, we delete all candidate itemsets 𝑐 ∈ 𝐶𝑇,𝑘 such that
some (𝑘 − 1)-subset of 𝑐 is not in 𝐹𝜇𝑇,𝑘−1 (see Theorem 2.1):

for each c ∈ C𝑇,𝑘
for each (k -1)-subset s in c

if s /∈ 𝐹𝜇𝑇,𝑘−1 delete c from C𝑇,𝑘
In the next section we suggest a more efficient procedure for candidate gener-

ation phase and an efficient algorithm for its implementation.

MINING STATISTICALLY SIGNIFICANT FREQUENT ITEMSETS 113

4. New candidate generation procedure

We assume that any itemset 𝐾 is kept sorted according to some relation <,
where for all 𝑥, 𝑦 ∈ 𝐾, 𝑥 < 𝑦 means that the object 𝑥 is in front of the object 𝑦.
Also, we assume that all transactions in the database 𝑇 and all subsets of 𝐾 are
kept sorted in lexicographic order according to the relation <.

For candidate generation we suggest the original method by which the set
𝐶𝑇,𝑘 is calculated by joining 𝐹𝜇𝑇,𝑘−1 with 𝐹𝜇𝑇,𝑘−2, in the iteration 𝑘, for 𝑘 > 3.
A candidate 𝑘-itemset is created from one large (𝑘 − 1)-itemset and one large
(𝑘 − 2)-itemset in the following way. Let 𝑋 = {𝑥1, . . . , 𝑥𝑘−1} ∈ 𝐹𝜇𝑇,𝑘−1 and 𝑌 =
{𝑦1, . . . , 𝑦𝑘−2} ∈ 𝐹𝜇𝑇,𝑘−2. Itemsets 𝑋 and 𝑌 are joined if and only if the following
condition is satisfied:
(4.1) 𝑥𝑖 = 𝑦𝑖, (1 6 𝑖 6 𝑘 − 3) ∧ 𝑥𝑘−1 < 𝑦𝑘−2

producing the candidate 𝑘-itemset {𝑥1, . . . , 𝑥𝑘−2, 𝑥𝑘−1, 𝑦𝑘−2}.
We will prove the correctness of the suggested method. In the following text

we will denote this method by 𝐶𝑇,𝑘 = 𝐹𝜇𝑇,𝑘−1 × 𝐹
𝜇
𝑇,𝑘−2. Let 𝐼 = 𝑖1, . . . , 𝑖𝑛 be a

set of items that contains 𝑛 elements. Denote by 𝐺𝐼 = (𝑃 (𝐼), 𝐸) the Rymon tree
(see Appendix) of 𝑃 (𝐼). The root of the tree is ∅. A vertex 𝐾 = {𝑖𝑝1 , . . . , 𝑖𝑝𝑘}
with 𝑖𝑝1<𝑖𝑝2<···<𝑖𝑝𝑘

has 𝑛 − 𝑖𝑝𝑘 children 𝐾 ∪ 𝑗, where 𝑖𝑝𝑘 < 𝑗 6 𝑛. Let 𝑆𝑟 be the
collection of itemsets that have 𝑟 elements. The next theorem suggest a technique
for generating 𝑆𝑟 starting from 𝑆𝑟−1 and 𝑆𝑟−2.

Theorem 4.1. Let 𝐺 be the Ryman tree of 𝑃 (𝐼), where 𝐼 = 𝑖1, . . . , 𝑖𝑛. If
𝑊 ∈ 𝑆𝑟, where 𝑟 > 3, then there exists a unique pair of distinct sets 𝑈 ∈ 𝑆𝑟−1
and 𝑉 ∈ 𝑆𝑟−2 that has a common immediate ancestor 𝑇 ∈ 𝑆𝑟−3 in 𝐺 such that
𝑈 ∩ 𝑉 ∈ 𝑆𝑟−3 and 𝑊 = 𝑈 ∪ 𝑉 .

Proof. Let 𝑢 and 𝑣 and 𝑝 be the three elements of 𝑊 that have the largest,
the second-largest and the third-largest subscripts, respectively. Consider the sets
𝑈 =𝑊 − {𝑢} and 𝑉 =𝑊 − {𝑣, 𝑝}. Note that 𝑈 ∈ 𝑆𝑟−1 and 𝑉 ∈ 𝑆𝑟−2. Moreover,
𝑍 = 𝑈 ∪ 𝑉 belongs to 𝑆𝑟−3 because it consists of the first 𝑟 − 3 elements of 𝑊 .
Note that both 𝑈 and 𝑉 are descendants of 𝑍 and that 𝑈 ∪ 𝑉 = 𝑊 (for 𝑟 = 3 we
have 𝑍 = ∅).

The pair (𝑈, 𝑉) is unique. Indeed, suppose that𝑊 can be obtained in the same
manner from another pair of distinct sets 𝑈1𝑖𝑛𝑆𝑟−1 and 𝑉1 ∈ 𝑆𝑟−2 such that 𝑈1
and 𝑉1 are immediate descendants of a set 𝑍1 ∈ 𝑆𝑟−3. The definition of the Rymon
tree 𝐺𝐼 implies that 𝑈1 = 𝑍1 ∪{𝑖𝑚, 𝑖𝑞} and 𝑉1 = 𝑍1 ∪{𝑖𝑦}, where the letters in 𝑍1
are indexed by a number smaller than min{𝑚, 𝑞, 𝑦}. Then, 𝑍1 consists of the first
𝑟− 3 symbols of 𝑊 , so 𝑍1 = 𝑍. If 𝑚 < 𝑞 < 𝑦, then m is the third-highest index of
a symbol in W, q is the second-highest index of a symbol in W and y is the highest
index of a symbol in W, so 𝑈1 = 𝑈 and 𝑉1 = 𝑉 . �

The following theorem directly proves correctness of our method 𝐶𝑇,𝑘 = 𝐹𝜇𝑇,𝑘−1
× 𝐹𝜇𝑇,𝑘−2.

Theorem 4.2. Let 𝑇 be a transaction data set on a set of items 𝐼 and let
𝑘 ∈ 𝑁 such that 𝑘 > 2. If 𝑊 is a 𝜇-frequent itemset and |𝑊 | = 𝑘, then there exists

114 STANIŠIĆ AND TOMOVIĆ

a 𝜇-frequent itemset 𝑍 and two itemsets {𝑖𝑚, 𝑖𝑞} and {𝑖𝑦} such that |𝑍| = 𝑘 − 3,
𝑍 ⊆ 𝑊 , 𝑊 = 𝑍 ∪ {𝑖𝑚, 𝑖𝑞, 𝑖𝑦} and both 𝑍 ∪ {𝑖𝑚, 𝑖𝑞} and 𝑍

⋃︀
{𝑖𝑦} are 𝜇-frequent

itemsets.

Proof. If 𝑊 is an itemset such that |𝑊 | = 𝑘, than we already know that 𝑊
is the union of two subsets 𝑈 and 𝑉 of 𝐼 such that |𝑈 | = 𝑘 − 1, |𝑉 | = 𝑘 − 2 and
that 𝑍 = 𝑈 ∩ 𝑉 has 𝑘 − 3 elements (it follows from Theorem 2). Since 𝑊 is a
𝜇-frequent itemset and 𝑍, 𝑈 , 𝑉 are subsets of 𝑊 , it follows that each of these sets
is also a 𝜇-frequent itemset (it follows from Theorem 1). �

We have seen in the previous section that in the original Apriori algorithm from
[2], the join procedure is suggested. It generates candidate 𝑘-itemset by joining two
large (𝑘−1)-itemsets, if and only if they have first (𝑘−2) items in common. Because
of that, each join operation requires (𝑘 − 2) equality comparisons. If a candidate
𝑘-itemset is generated by the method 𝐶𝑇,𝑘 = 𝐹𝜇𝑇,𝑘−1×𝐹

𝜇
𝑇,𝑘−2 for 𝑘 > 3, it is enough

(𝑘 − 3) equality comparisons to process.
The method 𝐶𝑇,𝑘 = 𝐹𝜇𝑇,𝑘−1 × 𝐹

𝜇
𝑇,𝑘−2 can be represented by the following SQL

query:
INSERT INTO C𝑇,𝑘
SELECT 𝑅1.𝑖𝑡𝑒𝑚1, . . . , 𝑅1.𝑖𝑡𝑒𝑚𝑘−1, 𝑅2.𝑖𝑡𝑒𝑚𝑘−2
FROM 𝐹𝜇𝑇,𝑘−1 AS 𝑅1, F

𝜇
T,k−2 AS 𝑅2

WHERE 𝑅1.𝑖𝑡𝑒𝑚1 = 𝑅2.𝑖𝑡𝑒𝑚1 ∧ · · · ∧𝑅1.𝑖𝑡𝑒𝑚𝑘−3 = 𝑅2.𝑖𝑡𝑒𝑚𝑘−3 ∧𝑅1.𝑖𝑡𝑒𝑚𝑘−1 <
𝑅2.𝑖𝑡𝑒𝑚𝑘−2

For the implementation of the join 𝐶𝑇,𝑘 = 𝐹𝜇𝑇,𝑘−1×𝐹
𝜇
𝑇,𝑘−2 we suggest a modifi-

cation of sort-merge-join algorithm (note that 𝐹𝜇𝑇,𝑘−1 and 𝐹𝜇𝑇,𝑘−2 are sorted because
of the way they are constructed and lexicographic order of itemsets).

By the original sort-merge-join algorithm [9], it is possible to compute natural
joins and equi-joins. Let 𝑟(𝑅) and 𝑠(𝑆) be the relations and 𝑅 ∩ 𝑆 denote their
common attributes. The algorithm keeps one pointer on the current position in
relation 𝑟(𝑅) and another one pointer on the current position in relation 𝑠(𝑆). As
the algorithm proceeds, the pointers move through the relations. It is supposed
that the relations are sorted according to joining attributes, so tuples with the
same values on the joining attributes are in a consecutive order. Thereby, each
tuple needs to be read only once, and, as a result, each relation is also read only
once.

The number of block transfers is equal to the sum of the number of blocks in
both sets 𝐹𝜇𝑇,𝑘−1 and 𝐹𝜇𝑇,𝑘−2, 𝑛𝑏1 +𝑛𝑏2. We have seen that nested-loop join requires
|𝐹𝜇𝑇,𝑘−1| * 𝑛𝑏1 + 𝑛𝑏1 block transfers and we can conclude that merge-join is more
efficient (|𝐹𝜇𝑇,𝑘−1| * 𝑛𝑏1 ≫ 𝑛𝑏2).

The modification of sort-merge-join algorithm we suggest refers to the elimina-
tion of restrictions that a join must be natural or equi-join. First, we separate the
condition (4.1):

𝑥𝑖 = 𝑦𝑖, 1 6 𝑖 6 𝑘 − 3(4.2)
𝑥𝑘−1 < 𝑦𝑘−2.(4.3)

MINING STATISTICALLY SIGNIFICANT FREQUENT ITEMSETS 115

Joining 𝐶𝑇,𝑘 = 𝐹𝜇𝑇,𝑘−1 × 𝐹
𝜇
𝑇,𝑘−2 is calculated according to the condition (4.2), in

other words we compute the natural join. For this, the described sort-merge-join
algorithm is used, and our modification is: before 𝑋 = {𝑥1, . . . , 𝑥𝑘−1} and 𝑌 =
{𝑦1, . . . , 𝑦𝑘−2}, for which 𝑋 ∈ 𝐹𝜇𝑇,𝑘−1 and 𝑌 ∈ 𝐹𝜇𝑇,𝑘−2 and 𝑥𝑖 = 𝑦𝑖, 1 6 𝑖 6 𝑘− 3 is
true, are joined, we check if condition (4.3) is satisfied, and after that we generate
a candidate 𝑘-itemset {𝑥1, . . . , 𝑥𝑘−2, 𝑥𝑘−1, 𝑦𝑘−2}.

The pseudocode of apriori_gen function comes next.
FUNCTION apriori_gen(𝐹𝜇𝑇,𝑘−1, 𝐹

𝜇
𝑇,𝑘−2)

1. i = 0
2. j = 0
3. while 𝑖 6 |𝐹𝜇𝑇,𝑘−1| ∧ 𝑗 6 |𝐹

𝜇
𝑇,𝑘−2|

𝑖𝑠𝑒𝑡1 = 𝐹𝜇𝑇,𝑘−1[𝑖+ +]
𝑆 = {𝑖𝑠𝑒𝑡1}
done = false
while 𝑑𝑜𝑛𝑒 = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑖 6 𝐹𝜇𝑇,𝑘−1
𝑖𝑠𝑒𝑡1𝑎 = 𝐹𝜇𝑇,𝑘−1[𝑖+ +]
if 𝑖𝑠𝑒𝑡1𝑎[𝑤] = 𝑖𝑠𝑒𝑡1[𝑤], 1 6 𝑤 6 𝑘 − 2 then
𝑆 = 𝑆

⋃︀
{𝑖𝑠𝑒𝑡1𝑎}

𝑖+ +
else

done = true
end if

end while
𝑖𝑠𝑒𝑡2 = 𝐹𝜇𝑇,𝑘−2[𝑗]
while 𝑗 6 |𝐹𝜇𝑇,𝑘−2| ∧ 𝑖𝑠𝑒𝑡2[1, . . . , 𝑘 − 2] ≺ 𝑖𝑠𝑒𝑡1[1, . . . , 𝑘 − 2]
𝑖𝑠𝑒𝑡2 = 𝐹𝜇𝑇,𝑘−2[𝑗 + +]

end while
while 𝑗 6 |𝐹𝜇𝑇,𝑘−2| ∧ 𝑖𝑠𝑒𝑡1[𝑤] = 𝑖𝑠𝑒𝑡2[𝑤], 1 6 𝑤 6 𝑘 − 2

for each 𝑠 ∈ 𝑆
if 𝑖𝑠𝑒𝑡1[𝑘 − 1] ≺ 𝑖𝑠𝑒𝑡2[𝑘 − 2] then
𝑐 = {𝑖𝑠𝑒𝑡1[1], . . . , 𝑖𝑠𝑒𝑡1[𝑘 − 1], 𝑖𝑠𝑒𝑡2[𝑘 − 2]}
if c contains-not-frequnet-subset then

DELETE c
else
𝐶𝑇,𝑘 = 𝐶𝑇,𝑘

⋃︀
{𝑐}

end if
end for
j++
𝑖𝑠𝑒𝑡2 = 𝐹𝜇𝑇,𝑘−2[𝑗]

end while
end while

We implemented the original Apriori [2] and the algorithm proposed here. Al-
gorithms are implemented in C in order to evaluate its performances. Experiments
are performed on PC with a CPU Intel(R) Core(TM)2 clock rate of 2.66GHz and

116 STANIŠIĆ AND TOMOVIĆ

with 2GB of RAM. Also, run time used here means the total execution time, i.e.,
the period between input and output instead of CPU time measured in the ex-
periments in some literature. In the experiments dataset which can be found on
www.cs.uregina.ca is used. It contains 10000 binary transactions. The average
length of transactions is 8.

Table 1 shows that the original Apriori algorithm from [2] is outperformed by
the algorithm presented here.

Table 1. Execution time in seconds

min sup(%) Apriori Rymon tree based implementation
10.0 15.00 3.10
5.0 15.60 6.20
2.5 16.60 6.20
1.0 16.60 7.80
0.5 18.10 7.80

5. Validating frequent itemsets

In this section we use hypothesis testing to validate frequent itemsets which
have been generated in the Apriori algorithm.

Hypothesis testing is a statistical inference procedure to determine whether
a hypothesis should be accepted or rejected based on the evidence gathered from
the data. Examples of hypothesis tests include verifying the quality of patterns
extracted by many data mining algorithms and validating the significance of the
performance difference between two classification models.

In hypothesis testing, we are usually presented with two contrasting hypothesis,
which are known, respectively, as the null hypothesis and the alternative hypothesis.
The general procedure for hypothesis testing consists of the following four steps:

∙ Formulate the null and alternative hypotheses to be tested.
∙ Define a test statistic 𝜃 that determines whether the null hypothesis should

be accepted or rejected. The probability distribution associated with the
test statistic should be known.
∙ Compute the value of 𝜃 from the observed data. Use the knowledge of the

probability distribution to determine a quantity known as 𝑝-value.
∙ Define a significance level a which controls the range of 𝜃 values in which

the null hypothesis should be rejected. The range of values for 𝜃 is known
as the rejection region.

Now, we will back to mining frequent itemsets and we will evaluate the quality
of the discovered frequent itemsets from a statistical perspective. The criterion
for judging whether an itemset is frequent depends on the support of the itemset.
Recall that support measures the number of transactions in which the itemset
is actually observed. An itemset 𝑋 is considered frequent in the data set 𝑇 , if
supp𝑇 (𝑋) > min sup, where minsup is a user-specified threshold.

MINING STATISTICALLY SIGNIFICANT FREQUENT ITEMSETS 117

The problem can be formulated into the hypothesis testing framework in the
following way. To validate if the itemset 𝑋 is frequent in the data set 𝑇 , we need
to decide whether to accept the null hypothesis, 𝐻0 : supp𝑇 (𝑋) = min sup, or the
alternative hypothesis 𝐻1 : supp𝑇 (𝑋) > min sup. If the null hypothesis is rejected,
then 𝑋 is considered as frequent itemset. To perform the test, the probability
distribution for supp𝑇 (𝑋) must also be known.

Theorem 5.1. The measure supp𝑇 (𝑋) for the itemset 𝑋 in transaction data
set 𝑇 has the binomial distribution with mean supp𝑇 (𝑋) and variance 1

𝑛 (supp𝑇 (𝑋)*
(1− supp𝑇 (𝑋))), where 𝑛 is the number of transactions in 𝑇 .

Proof. We will use measure suppcount𝑇 (𝑋) and calculate the mean and the
variance for it and later derive mean and variance for the measure supp𝑇 (𝑋).
The measure suppcount𝑇 (𝑋) = 𝑋𝑛 presents the number of transactions in 𝑇 that
contain itemset 𝑋, and supp𝑇 (𝑋) = suppcount𝑇 (𝑋)/𝑛 (Definition 2.2).

The measure 𝑋𝑛 is analogous to determining the number of heads that shows
up when tossing 𝑛 coins. Let us calculate 𝐸(𝑋𝑛) and 𝐷(𝑋𝑛).

Mean is 𝐸(𝑋𝑛) = 𝑛 * 𝑝, where 𝑝 is the probability of success, which means (in
our case) the itemset 𝑋 appears in one transaction. According to the Bernoulli
law it is: ∀𝜖 > 0, lim𝑁→∞ 𝑃{|𝑋𝑛/𝑛 − 𝑝| 6 𝜖} = 1. Freely speaking, for large 𝑛
(we work with large databases so 𝑛 can be considered large), we can use relative
frequency instead of probability. So, we now have:

𝐸(𝑋𝑛) = 𝑛𝑝 ≈ 𝑛𝑋𝑛
𝑛

= 𝑋𝑛

For variance we compute:

𝐷(𝑋𝑛) = 𝑛𝑝(1− 𝑝) ≈ 𝑛𝑋𝑛
𝑛

(︁
1− 𝑋𝑛
𝑛

)︁
= 𝑋𝑛(𝑛−𝑋𝑛)

𝑛

Now we compute 𝐸(supp𝑇 (𝑋)) and 𝐷(supp𝑇 (𝑋)). Recall that supp𝑇 (𝑋) = 𝑋𝑛/𝑛.
We have:

𝐸(supp𝑇 (𝑋)) = 𝐸
(︁𝑋𝑛
𝑛

)︁
= 1
𝑛
𝐸(𝑋𝑛) = 𝑋𝑛

𝑛
= supp𝑇 (𝑋).

𝐷(supp𝑇 (𝑋)) = 𝐷
(︁𝑋𝑛
𝑛

)︁
= 1
𝑛2𝐷(𝑋𝑛) = 1

𝑛2
𝑋𝑛(𝑛−𝑋𝑛)

𝑛

= 1
𝑛

supp𝑇 (𝑋)(1− supp𝑇 (𝑋)) �

The binomial distribution can be further approximated using a normal distri-
bution if 𝑛 is sufficiently large, which is typically the case in association analysis.

Regarding the previous paragraph and Theorem 5.1, under the null hypothesis
supp𝑇 (𝑋) is assumed to be normally distributed with mean min sup and variance
1
𝑛 (min sup(1 −min sup)). To test whether the null hypothesis should be accepted
or rejected, the following statistic can be used:

(5.1) 𝑊𝑁 = supp𝑇 (𝑋)−min sup√︀
(min sup(1−min sup))/𝑛

.

118 STANIŠIĆ AND TOMOVIĆ

The previous statistic, according to the Central Limit Theorem, has the distribution
𝑁(0, 1). The statistic essentially measures the difference between the observed
support supp𝑇 (𝑋) and the min sup threshold in units of standard deviation.

Let 𝑁 = 10000, supp𝑇 (𝑋) = 0.11, min sup = 0.1 and 𝛼 = 0.001. The last
parameter is the desired significance level. It controls Type 1 error which is rejecting
the null hypothesis even though the hypothesis is true.

In the Apriori algorithm we compare supp𝑇 (𝑋) = 0.11 > 0.1 = min sup and
we declare 𝑋 as frequent itemset. Is this validation procedure statistically correct?

Under the hypothesis 𝐻1 statistics 𝑊10000 is positive and for the rejection
region we choose 𝑅 = {(𝑥1, . . . , 𝑥10000)|𝑤10000 > 𝑘}, 𝑘 > 0. Let us find 𝑘.

0.001 = 𝑃𝐻0{𝑊10000 > 𝑘}
𝑃𝐻0{𝑊10000 > 𝑘} = 0.499
𝑘 = 3.09

Now we compute 𝑤10000 = (0.11− 0.1)
(︀ 0.1*(1−0.1)

10000
)︀−1/2 = 3.33

We can see that 𝑤10000 > 𝑘, so we are within the rejection region and 𝐻1 is
accepted, which means the itemset 𝑋 is considered statistically significant.

6. Appendix

Rymon tree was introduced in [8] in order to provide a unified search-based
framework for several problems in artificial intelligence; the Rymon tree is also
useful for data mining algorithms.

In Definitions 6.1 and 6.2 we define necessary concepts and in Definition 6.3
we define the Rymon tree.

Definition 6.1. Let 𝑆 be a set and let 𝑑 : 𝑆 → 𝑁 be an injective function.
The number 𝑑(𝑥) is the index of 𝑥 ∈ 𝑆. If 𝑃 ⊆ 𝑆, the view of 𝑃 is the subset
𝑣𝑖𝑒𝑤(𝑑, 𝑃) = {𝑠 ∈ 𝑆 | 𝑑(𝑠) > max𝑝∈𝑃 𝑑(𝑝)}.

Definition 6.2. A collection of sets 𝐶 is hereditary if 𝑈 ∈ 𝐶 and 𝑊 ⊆ 𝑈
implies 𝑊 ∈ 𝐶.

Definition 6.3. Let 𝐶 be a hereditary collection of subsets of a set 𝑆. The
graph 𝐺 = (𝐶,𝐸) is a Rymon tree for 𝐶 and the indexing function 𝑑 if:

∙ the root of the 𝐺 is ∅
∙ the children of a node 𝑃 are the sets of the form 𝑃 ∪ {𝑠}, where 𝑠 ∈

view(𝑑, 𝑃)

If 𝑆 = {𝑠1, . . . , 𝑠𝑛} and 𝑑(𝑠𝑖) = 𝑖 for 1 6 𝑖 6 𝑛, we will omit the indexing
function from the definition of the Rymon tree for 𝑃 (𝑆).

A key property of a Rymon tree is stated next.

Theorem 6.1. Let 𝐺 be a Rymon tree for a hereditary collection 𝐶 of subsets
of a set 𝑆 and an indexing function 𝑑. Every set 𝑃 of 𝐶 occurs exactly once in the
tree.

Proof. The argument is by induction on 𝑝 = |𝑃 |. If 𝑝 = 0, then 𝑃 is the root
of the tree and the theorem obviously holds.

MINING STATISTICALLY SIGNIFICANT FREQUENT ITEMSETS 119

Suppose that the theorem holds for sets having fewer than 𝑝 elements, and let
𝑃 ∈ 𝐶 be such that |𝑃 | = 𝑝. Since 𝐶 is hereditary, every set of the form 𝑃 − {𝑥}
with 𝑥 ∈ 𝑃 belongs to 𝐶 and, by the inductive hypothesis, occurs exactly once in
the tree.

Let 𝑧 be the element of 𝑃 that has the largest value of the index function 𝑑.
Then 𝑣𝑖𝑒𝑤(𝑃 − {𝑧}) contains 𝑧 and 𝑃 is a child of the vertex 𝑃 − {𝑧}. Since the
parent of 𝑃 is unique, it follows that 𝑃 occurs exactly once in the tree. �

Note that in the Rymon tree of a collection of the form 𝑃 (𝑆), the collection
of sets of 𝑆𝑟 that consists of sets located at distance 𝑟 from the root denotes all
subsets of the size 𝑟 of 𝑆.

References
[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, Proc. VLDB-94 (1994),

487–499.
[2] F. P. Coenen, P. Leng, S. Ahmed, T-trees, vertical partitioni-ng and distributed association

rule mining, Proc. Int. Conf. Discr. Math. 2003 (2003), 513–516.
[3] F. P. Coenen, P. Leng, S. Ahmed, Data structures for association rule mining: T-trees and

P-trees, IEEE Trans. Data Knowledge Engin. 16(6), (2004), 774–778.
[4] F. P. Coenen, P. Leng, G. Goulbourne, Tree structures for mining association rules, J. Data

Min. Knowledge Discovery 8(1) (2004), 25–51.
[5] G. Goulbourne, F. P. Coenen, P. Leng, Algorithms for computing association rules using a

partial-support tree, J. Knowledge-based Syst. 13 (1999), 141–149.
[6] G. Grahne, J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, Proc. IEEE

ICDM Workshop Frequent Itemset Mining Implementations (2003).
[7] J. Han, J. Pei, P.S. Yu, Mining frequent patterns without candidate generation, Proc. ACM

SIGMOD Conf. Management of Data, (2000), 1–12.
[8] R. Rymon, Search through systematic set enumeration, Proc. 3rd Int. Conf. Principles of

Knowledge Representation and Reasoning, (1992), 539–550.
[9] A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, McGraw Hill, New

York (2006)
[10] A. D. Simovici, C. Djeraba, Mathematical tools for data mining (Set Theory, Partial Orders,

Combinatorics), Springer-Verlag, London, 2008.
[11] P. Stanišić, S. Tomović, Apriori multiple algorithm for mining association rules, Information

Technology and Control 37(4) (2008), 311–320.
[12] P. N. Tan., M. Steinbach, V. Kumar, Introduction to Data Mining, Addison Wesley, 2006.

Department of Mathematics and Computer Science (Received 06 03 2009)
University of Montenegro (Revised 22 11 2009)
Podgorica
Montenegro
pedjas@ac.me
savotom@gmail.com

	1. Introduction
	2. Preliminaries
	3. Apiori algorithm
	4. New candidate generation procedure
	5. Validating frequent itemsets
	6. Appendix
	References

