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Abstract. Let 𝜙 stand for the Euler function. Given a positive integer 𝑛,
let 𝜎(𝑛) stand for the sum of the positive divisors of 𝑛 and let 𝜏(𝑛) be the
number of divisors of 𝑛. We obtain an asymptotic estimate for the counting
function of the set {𝑛 : gcd(𝜙(𝑛), 𝜏(𝑛)) = gcd(𝜎(𝑛), 𝜏(𝑛)) = 1}. Moreover,
setting 𝑙(𝑛) := gcd(𝜏(𝑛), 𝜏(𝑛+ 1)), we provide an asymptotic estimate for the
size of #{𝑛 6 𝑥 : 𝑙(𝑛) = 1}.

1. Introduction

Let 𝜙 stand for the Euler function. Given a positive integer 𝑛, let 𝜎(𝑛) stand
for the sum of the positive divisors of 𝑛 and let 𝜏(𝑛) be the number of divisors
of 𝑛. This last function has been extensively studied by A. Ivić in his book on the
Riemann Zeta-Function [6].

Given an arithmetical function 𝑓 and a large number 𝑥, examining the number
of positive integers 𝑛 6 𝑥 for which gcd(𝑛, 𝑓(𝑛)) = 1, has been the focus of several
papers. For instance, Paul Erdős [4] established that

#{𝑛 6 𝑥 : gcd(𝑛, 𝜙(𝑛)) = 1} = (1 + 𝑜(1)) 𝑒−𝛾𝑥

log log log 𝑥,

where 𝛾 is the Euler constant. A similar result can be obtained if one replaces
𝜙(𝑛) by 𝜎(𝑛). Similarly, letting Ω(𝑛) stand for the number of prime factors of
𝑛 counting their multiplicity, Alladi [1] proved that the probability that 𝑛 and
Ω(𝑛) are relatively prime is equal to 6/𝜋2 by examining the size of {𝑛 6 𝑥 :
gcd(𝑛,Ω(𝑛)) = 1}. Let 𝐾(𝑥) stand for the number of positive integers 𝑛 6 𝑥 such
that gcd(𝑛𝜏(𝑛), 𝜎(𝑛)) = 1. Some fifty years ago, Kanold [7] showed that there exist
positive constants 𝑐1 < 𝑐2 and a positive number 𝑥0 such that

𝑐1 < 𝐾(𝑥)/
√︀
𝑥/ log 𝑥 < 𝑐2 (𝑥 > 𝑥0).
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In 2007, the authors [2] proved that there exists a positive constant 𝑐3 such that
𝐾(𝑥) = 𝑐3(1 + 𝑜(1))

√︀
𝑥/log 𝑥 (𝑥 → ∞). The analogue problem for counting the

number of positive integers 𝑛 for which
(1.1) gcd(𝑛𝜏(𝑛), 𝜙(𝑛)) = 1
is trivial. Clearly (1.1) holds for 𝑛 = 1, 2. But these are the only solutions. Indeed,
assume that (1.1) holds for some 𝑛 > 3. Then 𝑛 is squarefree and it must therefore
have an odd prime divisor 𝑝, in which case 2 | 𝜙(𝑛) and 2 | 𝜏(𝑛), implying that
gcd(𝑛𝜏(𝑛), 𝜙(𝑛)) > 1, thereby proving our claim.

In this paper, we obtain asymptotic estimates for the counting functions
𝑅(𝑥) := #

{︀
𝑛 6 𝑥 : gcd(𝜙(𝑛), 𝜏(𝑛)) = gcd(𝜎(𝑛), 𝜏(𝑛)) = 1

}︀
𝑁(𝑥) := #{𝑛 6 𝑥 : 𝑙(𝑛) = 1},

where 𝑙(𝑛) := gcd(𝜏(𝑛), 𝜏(𝑛+ 1)).
From here on, gcd(𝑎, 𝑏) will be written simply as (𝑎, 𝑏). In what follows, we

shall denote the logarithmic integral of 𝑥 by li(𝑥), that is li(𝑥) :=
∫︀ 𝑥

2
𝑑𝑡

log 𝑡 . Moreover,
given an integer 𝑛 > 2, we shall let 𝜔(𝑛) stand for the number of distinct prime
factors of 𝑛, with 𝜔(1) = 0. Finally, the letters 𝑐1, 𝑐2, . . . will stand for positive
constants, while the letters 𝑝 and 𝑞, with or without subscripts, will always stand
for prime numbers.

2. Main results

Theorem 1. As 𝑥 → ∞, we have 𝑅(𝑥) = 𝑐4(1 + 𝑜(1)) 𝑥√
log 𝑥

, where 𝑐4 is a
suitable positive constant.

Theorem 2. As 𝑥 → ∞, we have 𝑁(𝑥) = 𝑐5(1 + 𝑜(1))
√
𝑥 for some positive

constant 𝑐5.

3. Preliminary results

To prove our results we shall need the following lemmas.

Lemma 1. Let 𝑓(𝑛) := 𝐴𝑛2 + 𝐵𝑛 + 𝐶 be a primitive polynomial with integer
coefficients. Let 𝜌(𝑚) be the number of solutions of 𝑓(𝑛) ≡ 0 (mod 𝑚). Let 𝐷 be
the discriminant of 𝑓 and assume that 𝐷 ̸= 0. Then 𝜌 is a multiplicative function
whose values on the prime powers satisfy

𝜌(𝑝𝛼)
{︃

= 𝜌(𝑝) if 𝑝 - 𝐷,
6 2𝐷2 if 𝑝 | 𝐷.

Finally, setting
𝑀𝑓 (𝑥, 𝑦) := #

{︀
𝑛 6 𝑥 : ∃𝑝 > 𝑦 such that 𝑝2|𝑓(𝑛)

}︀
,

then
lim
𝑦→∞

lim sup
𝑥→∞

𝑀𝑓 (𝑥, 𝑦)
𝑥

= 0.

Proof. For a proof of this result, see Chapter 4 in the book of Hooley [5]. �
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Lemma 2. As 𝑥→∞, we have∑︁
𝑚6𝑥

|𝜇(𝑚)| · |𝜇(𝑚2 − 1)| = 𝜉1(1 + 𝑜(1))𝑥,

∑︁
𝑚6𝑥

|𝜇(𝑚)| · |𝜇(𝑚2 + 1)| = 𝜉2(1 + 𝑜(1))𝑥,

where 𝜉1 and 𝜉2 are positive constants.

Proof. The proof is a simple application of the Sieve of Eratosthenes and we
shall therefore skip it. �

4. The proof of Theorem 1

Let 𝑅 be the set of those integers 𝑛 for which

(4.1) (𝜙(𝑛), 𝜏(𝑛)) = (𝜎(𝑛), 𝜏(𝑛)) = 1.

Clearly, we can ignore all solutions of (4.1) which are powers of 2 (namely the even
powers of 2). Hence, we only need to consider those solutions 𝑛 of (4.1) such that
𝑝|𝑛 for some odd prime 𝑝. In this case 𝜙(𝑛) must be even, meaning that 𝜏(𝑛) must
be odd, implying that 𝑛 = 𝑢2 for some positive integer 𝑢. Now, the size of the
set of those integers 𝑛 = 𝑢2 6 𝑥 for which 𝑢 is a squarefull number and with 𝑛
satisfying (4.1) is small since it is clearly no larger than 𝑐𝑥1/4 for some constant
𝑐 > 0. Ignoring these integers 𝑛, we may assume that 3|𝜏(𝑛) and consequently that
3 does not divide 𝜙(𝑢2) = 𝑢𝜙(𝑢).

Let us now write 𝑢 = 𝐾𝑣, where 𝐾 is squarefull and 𝑣 is squarefree, with
(𝐾, 𝑣) = 1. Assume that 𝑣 > 1. Then we have

(𝜙(𝑛), 𝜏(𝑛)) = (𝜙(𝐾2)𝜙(𝑣2), 3𝜏(𝐾2)),
(𝜎(𝑛), 𝜏(𝑛)) = (𝜎(𝐾2)𝜙(𝑣2), 3𝜏(𝐾2)).

For each squarefull integer 𝐾, let 𝑅𝐾 be the set of those 𝑛 = 𝑢2 ∈ 𝑅 for which
𝑢 = 𝐾𝑣 and let 𝑅𝐾(𝑥) = {𝑛 6 𝑥 : 𝑛 ∈ 𝑅𝐾}. It is clear that 𝑅𝐾(𝑥) 6

√
𝑥
𝐾 , implying

that

(4.2)
∑︁

𝐾>log2 𝑥

𝑅𝐾(𝑥) 6
√
𝑥
∑︁

𝐾>log2 𝑥

1
𝐾
≪
√
𝑥

log 𝑥.

It follows from this that we only need to consider those squarefull numbers 𝐾 6
log2 𝑥.

Let 𝑛 ∈ 𝑅𝐾 . Then, 𝑛 = 𝑣2𝐾2 6 𝑥, where 𝑣 is a squarefree number whose
prime factors are ≡ −1 (mod 3). Hence,

𝑣 6

√
𝑥

𝐾
with

⎛⎜⎜⎝𝑣, ∏︁
𝑝6
√
𝑥

𝑝≡1 (mod 3)

𝑝

⎞⎟⎟⎠ = 1.



124 DE KONINCK AND KÁTAI

Therefore, by standard sieve techniques, one can easily establish that, for some
positive constant 𝑐6,

(4.3) 𝑅𝐾(𝑥) 6 𝑐6
√
𝑥

𝐾
√

log 𝑥
.

Since
∑︀

𝐾 squarefull

1
𝐾
< +∞, it follows from (4.3) that

(4.4)
∑︁
𝐾>𝑦

𝑅𝐾(𝑥) 6 𝑜(1) · 𝑐6
√
𝑥√

log 𝑥
(𝑦 →∞)

Let us now estimate 𝑅𝐾(𝑥) for a fixed squarefull number 𝐾. We separate the
different squarefull 𝐾’s into two classes:

Class I = {𝐾 : 𝜏(𝐾2) = power of 3},
Class II = {𝐾 : 𝜏(𝐾2) ̸= power of 3}.

But first consider the case 𝐾 = 1. In this case 𝑢 = 𝑣 6
√
𝑥, and the prime

factors 𝑝 of 𝑢 satisfy 𝑝 ≡ 1 (mod 3). On the other hand (𝑢, 3) = 1. Hence, letting
𝑢 = 𝑞1𝑞2 · · · 𝑞𝑟, with 5 6 𝑞1 < 𝑞2 < · · · < 𝑞𝑟, it follows that

𝜏(𝑢2) = 3𝑟, 𝜙(𝑢2) = 𝑢
𝑟∏︁
𝑗=1

(𝑞𝑗 − 1), 𝜎(𝑢2) =
𝑟∏︁
𝑗=1

(1 + 𝑞𝑗 + 𝑞2𝑗 ).

Since (𝜙(𝑢2), 3) = 1 and (𝜎(𝑢2), 3) = 1, it follows that 𝑢2 ∈ 𝑅1.
Hence, 𝑅1(𝑥) = #

{︀
𝑢 6

√
𝑥 : 𝑢 squarefree, (𝑝, 𝑢) = 1 if 𝑝 ≡ −1 (mod 3)

}︀
.

Since ∑︁
𝑢2∈𝑅1

1
𝑢𝑠

=
∏︁

𝑝≡−1 (mod 3)

(︁
1 + 1
𝑝𝑠

)︁
,

one can use the classical method of Landau (see his book [9, pp. 641–649]) and
deduce that

(4.5) 𝑅1(𝑥) = 𝑐7
√︂
𝑥

log 𝑥

(︂
1 +𝑂

(︁ 1
log log 𝑥

)︁)︂
,

for some positive constant 𝑐7.
Now, assume that𝐾 ∈ class I, in which case (𝜎(𝐾2), 3) = 1 and (𝜙(𝐾2), 3) = 1.

Then 𝑛 = 𝐾2𝑣2 6 𝑥, with (𝐾, 𝑣) = 1, belongs to 𝑅𝐾 if and only if 𝑣 is squarefree
and all its prime factors 𝑝 satisfy 𝑝 ≡ −1 (mod 3), in which case∑︁

𝑣

1
𝑣𝑠

=
∏︁

𝑝≡−1 (mod 3)
(𝑝,𝐾)=1

(︁
1 + 1
𝑝𝑠

)︁
=
∏︁
𝑝 |𝐾

(︁
1 + 1
𝑝𝑠

)︁−1 ∏︁
𝑝≡−1 (mod 3)

(︁
1 + 1
𝑝𝑠

)︁
.

It follows that, for 𝐾 ∈ class I,

𝑅𝐾(𝑥) = 𝑐7
∏︁
𝑝 |𝐾

(︁
1 + 1
𝑝

)︁−1 1
𝐾

√︂
𝑥

log 𝑥

(︂
1 +𝑂

(︁ 1
log log 𝑥

)︁)︂
,
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implying that, for some constant 𝑐8 > 0,

(4.6)
∑︁

𝐾∈class I
𝑅𝐾(𝑥) = 𝑐8

√︂
𝑥

log 𝑥

(︂
1 +𝑂

(︁ 1
log log 𝑥

)︁)︂
.

Consider now 𝐾 ∈ class II, 𝐾 6 𝑦. Let 𝑞|𝜏(𝐾2), 𝑞 ̸= 3. In this case, 𝑞 6 𝑦. If
𝑛 ∈ 𝑅𝐾 , then 𝑛 = 𝐾2𝑣2 and (3, 𝜙(𝑣)) = 1. Consequently, 𝑝|𝑣 implies that 𝑝 ̸≡ 1
(mod 3) and 𝑝 ̸≡ 1 (mod 𝑞). By using the Selberg sieve, we obtain that, for some
positive constant 𝑐9,

𝑅𝐾(𝑥) 6 𝑐9
√
𝑥

𝐾

∏︁
𝑝≡1 (mod 3)

or 𝑝≡1 (mod 𝑞)

(︁
1− 1
𝑝

)︁
6
𝑐9
𝐾

√
𝑥√

log 𝑥
∏︁

𝑝≡−1 (mod 3)
and 𝑝≡1 (mod 𝑞)

(︁
1− 1
𝑝

)︁

6
𝑐9
𝐾

√
𝑥√

log 𝑥
exp
{︁
− 1

2(𝑞 − 1) log log 𝑥
}︁

= 𝑐9
𝐾

√
𝑥√

log 𝑥
· 1

(log 𝑥)1/(2(𝑞−1)) .

From this last estimate, it is clear that we can ignore those 𝐾 ∈ class II. Hence the
main contributions to 𝑅(𝑥) comes from (4.5) and (4.6), thus completing the proof
of Theorem 1.

5. The proof of Theorem 2

Let 𝒩 := {𝑛 ∈ N : 𝑙(𝑛) = 1}. If 𝑛 ∈ 𝒩 , then one of the numbers 𝜏(𝑛) and
𝜏(𝑛+ 1) must be odd, implying that either 𝑛 or 𝑛+ 1 is a square. So let us set

𝑁0(𝑥) := #{𝑛 6 𝑥 : 𝑛 ∈ 𝒩 , 𝑛 = square},
𝑁1(𝑥) := #{𝑛 6 𝑥 : 𝑛 ∈ 𝒩 , 𝑛+ 1 = square},

so that 𝑁(𝑥) = 𝑁0(𝑥) +𝑁1(𝑥). We shall therefore consider two cases, namely the
case when 𝜏(𝑛) is odd, and thereafter the one when 𝜏(𝑛+ 1) is odd.

We start with the first case. In this case, 𝑙(𝑛) = 1 implies that 𝑛 = 𝑢2,
so that 𝜏(𝑛 + 1) = 𝜏(𝑢2 + 1). Write 𝑢 = 𝐾𝑚, where 𝐾 is squarefull and 𝑚 is
squarefree, with (𝐾,𝑚) = 1. The contribution of the case 𝑚 = 1 to 𝑁0(𝑥) is
clearly 𝑂(𝑥1/4), since in this case 𝑛 = 𝐾2𝑚2 = 𝐾2 6 𝑥, that is 𝐾 6

√
𝑥. Similarly,

write 𝑛 + 1 = 𝑅𝜈, where 𝑅 is squarefull and 𝜈 is squarefree, with (𝑅, 𝜈) = 1, in
which case, 𝜏(𝑛+ 1) = 𝜏(𝑅)2𝜔(𝜈). As above, the contribution of the case 𝜈 = 1 to
𝑁1(𝑥) is no more than 𝑂(𝑥1/4). Hence, from here on, we will assume that 𝑚 > 1
and 𝜈 > 1.

Given squarefull numbers 𝐾 and 𝑅, we set

𝑈(𝑥|𝐾,𝑅) := #
{︀
𝑛 6 𝑥 : 𝑛 ∈ 𝒩 , 𝑛 = 𝐾2𝑚2, 𝑚 > 1, 𝑛+ 1 = 𝑅𝜈

}︀
,

𝑉 (𝑥|𝐾,𝑅) := #
{︀

1 < 𝑚 6
√
𝑥/𝐾 : 𝐾2𝑚2 + 1 ≡ 0 (mod 𝑅)

}︀
.

Note that we clearly have 𝑈(𝑥|𝐾,𝑅) 6 𝑉 (𝑥|𝐾,𝑅). Hence, our first goal will be to
prove

(5.1)
∑︁

max(𝐾,𝑅)>𝑇

𝑉 (𝑥|𝐾,𝑅) = 𝑜
(︀√
𝑥
)︀

(𝑇 →∞).
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Assume first that𝐾 is arbitrary and fixed. We shall sum over those positive integers
𝑚, 𝜈 for which 𝑅 > 𝐾. We will find an upper bound for the number of solutions of

(5.2) 𝑛2 + 1 = 𝑅𝜈, 𝑅 > 𝑇, 𝑛 6
√
𝑥.

First we consider the contribution of those 𝑅 in the above which have a squarefull
divisor 𝑆 such that 𝑇 6 𝑆 6

√
𝑥. In this case, 𝑛2 + 1 ≡ 0 (mod 𝑅) implies that

𝑛2 + 1 ≡ 0 (mod 𝑆). Adding up the contributions of all such 𝑆’s, (5.2) yields at
most

2
∑︁
𝑆>𝑇

√
𝑥

𝑆
𝜌(𝑆)≪

√
𝑥√
𝑇

solutions,

where we used the trivial bound 𝜌(𝑆)≪ 𝑆𝜀.
It remains to estimate the number of solutions 𝑛 6

√
𝑥 in (5.2) for which the

corresponding squarefull number 𝑅 6 𝑥 has no squarefull divisor 𝑆 6
√
𝑥. If 𝑅

has at least two prime divisors, say 𝑝 and 𝑞, then 𝑝2𝑞2|𝑅 and min(𝑝2, 𝑞2) <
√
𝑥,

which is impossible. This means that 𝑅 = 𝑝𝛼 for some integer 𝛼 > 2. If 𝛼 > 4,
then 𝑆 = 𝑝2 <

√
𝑥, again a contradiction. This means that we only have two

possibilities, namely 𝑅 = 𝑝2, 𝑝3. In the case 𝑅 = 𝑝2, we have 𝑝2|𝑛2 + 1, 𝑝 >
√
𝑥;

thus, applying Lemma 1 with 𝑓(𝑛) = 𝑛2 + 1, the assertion is proved. If 𝑅 = 𝑝3,
the result follows even more directly.

For fixed 𝐾, there are no more than
√
𝑥/𝐾 integers for which (𝐾𝑚)2 6 𝑥.

Summing on 𝐾, we get no more than
√
𝑥
∑︀
𝐾>𝑇

1
𝐾 ≪ 𝑜

(︀√
𝑥
)︀

(𝑇 → ∞), thus
completing the proof of (5.1).

Now further define 𝒦1 :=
{︀

(𝐾,𝑅) : (𝐾,𝑅) = 1 and (3𝜏(𝐾2), 2𝜏(𝑅)) = 1
}︀
.

Note that the condition (3𝜏(𝐾2), 2𝜏(𝑅)) = 1 is a necessary condition for 𝐾2𝑚2 + 1
= 𝑅𝜈, with 𝑚 > 1, to satisfy 𝑙(𝐾2𝑚2) = 1.

Now let 𝑇 be a large number. Since 𝑈(𝑥|𝐾,𝑅) 6 𝑉 (𝑥|𝐾,𝑅), it follows from
(5.1) that ∑︁

max(𝐾,𝑅)>𝑇

𝑈(𝑥|𝐾,𝑅) = 𝑜
(︀√
𝑥
)︀

(𝑇 →∞).

In particular, we have

𝑈(𝑥|1, 1) =
∑︁
𝑚6
√
𝑥

|𝜇(𝑚2 + 1)| · |𝜇(𝑚)|,

so that by Lemma 2, 𝑈(𝑥|1, 1) = 𝜉2(1 + 𝑜(1))
√
𝑥.

Now we have

(5.3) 𝑁0(𝑥) =
∑︁

𝐾,𝑅∈𝒦1

𝑈(𝑥|𝐾,𝑅),

where

(5.4) 𝑈(𝑥|𝐾,𝑅) =
∑︁

(𝛿1,𝐾)=1
(𝛿2,𝑅)=1

𝜇(𝛿1)𝜇(𝛿2)𝑄(𝐾,𝑅; 𝛿1, 𝛿2),
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with
𝑄(𝐾,𝑅; 𝛿1, 𝛿2) = #

{︀
𝐾2𝛿41𝑚

2
1 + 1 = 𝑅𝛿22𝜈1 6 𝑥, (𝜈1, 𝑅) = 1, (𝑚1,𝐾) = 1

}︀
=
∑︁
𝑑1|𝑅

𝜇(𝑑1)
∑︁
𝑑2|𝐾

𝜇(𝑑2) ·#
{︀
𝐾2𝛿41𝑑

2
2𝑚

2
2 + 1 = 𝑅𝛿22𝑑1𝜈2 6 𝑥

}︀
,(5.5)

where this last expression was obtained by setting 𝜈1 = 𝑑1𝜈2 and 𝑚1 = 𝑑2𝑚2. Now
let 𝐸0 = 𝐾𝛿21𝑑2 and 𝐹0 = 𝑅𝛿22𝑑1, so that

#
{︀
𝐾2𝛿41𝑑

2
2𝑚

2
2 + 1 = 𝑅𝛿22𝑑1𝜈2 6 𝑥

}︀
= 𝑉 (𝑥|𝐸0, 𝐹0).

Since 𝑅,𝐾 6 𝑇 , it follows that 𝑑1, 𝑑2 6 𝑇 . But as we have seen earlier, the
contribution of those 𝑉 (𝑥|𝐸0, 𝐹0) for which max(𝛿1, 𝛿2) > 𝑇 , is small.

In light of this observation and using (5.5), relation (5.4) can be replaced by

(5.6) 𝑈(𝑥|𝐾,𝑅) =
∑︁

(𝛿1,𝐾)=1
(𝛿2,𝑅)=1
𝛿16𝑇, 𝛿26𝑇

𝜇(𝛿1)𝜇(𝛿2)𝑄(𝐾,𝑅; 𝛿1, 𝛿2) + 𝑜
(︀√
𝑥
)︀

(𝑇 →∞).

If 𝐸0 and 𝐹0 are bounded,

𝑉 (𝑋|𝐸0, 𝐹0) =
√
𝑥

𝐸0𝐹0
𝜌(𝐹0) +𝑂(𝜌(𝐹0)).

Consequently, (5.6) becomes

𝑈(𝑥|𝐾,𝑅) =
∑︁

(𝛿1,𝐾)=1
𝛿16𝑇

∑︁
(𝛿2,𝑅)=1
𝛿26𝑇

∑︁
𝑑1|𝑅

𝜇(𝑑1)
∑︁
𝑑2|𝐾

𝜇(𝑑2)
(︂√
𝑥𝜌(𝑅𝛿22𝑑1)
𝐾𝛿21𝑑2𝑅𝛿

2
2𝑑1

+𝑂(𝜌(𝑅𝛿22𝑑1))
)︂

+𝑜(
√
𝑥) (𝑇 →∞).(5.7)

Setting

(5.8) 𝐶(𝐾,𝑅) := 1
𝐾𝑅

∑︁
(𝛿1,𝐾)=1

∑︁
(𝛿2,𝑅)=1

∑︁
𝑑1|𝑅

∑︁
𝑑2|𝐾

𝜇(𝛿1)𝜇(𝛿2)𝜇(𝑑1)𝜇(𝑑2)𝜌(𝑅𝛿22𝑑1)
𝛿21𝛿

2
2𝑑1𝑑2

and noticing that the right hand side of (5.8) represents a finite quantity, we may
conclude that 𝐶(𝐾,𝑅) is a nonnegative (actually positive) constant. Hence, in light
of this last observation, (5.7) and (5.8) yield
(5.9) 𝑈(𝑥|𝐾,𝑅) = 𝐶(𝐾,𝑅)(1 + 𝑜(1))

√
𝑥.

Since
∑︀

(𝐾,𝑅)∈𝒦1
𝐶(𝐾,𝑅) is convergent, it follows, combining (5.3) and (5.9), that

𝑁0(𝑥) =
∑︁

𝐾,𝑅∈𝒦1

𝑈(𝑥|𝐾,𝑅) = (1 + 𝑜(1))𝑐10
√
𝑥 (𝑥→∞),

where 𝑐10 =
∑︀

(𝐾,𝑅)∈𝒦1
𝐶(𝐾,𝑅) is a constant which is positive because 𝐶(1, 1) is

positive by Lemma 2.
It remains to consider the second case, namely the one where 𝜏(𝑛+1) is odd, in

which case 𝑛+1 is a square. In this case, 𝑙(𝑛) = 1 implies that 𝑛+1 = 𝐾2𝑚2, where
𝐾 is squarefull, 𝑚 > 1 squarefree, (𝐾,𝑚) = 1, 𝑛 = 𝑅𝜈, (𝜈,𝑅) = 1, 𝑅 squarefull
and 𝜈 squarefree. Now, 𝑙(𝑛) = 1 also implies that (2𝜏(𝑅), 3𝜏(𝐾2)) = 1. Hence, let
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𝒦2 stand for the set of all pairs of squarefull integers 𝐾,𝑅, with (𝐾,𝑅) = 1, for
which
(5.10) (2𝜏(𝑅), 3𝜏(𝐾2)) = 1.
Observe that 𝐾 = 𝑅 = 1 satisfies (5.10) and that we have

𝑁1(𝑥) =
∑︁

𝐾,𝑅∈𝒦2

#
{︀
𝑅𝜈 6 𝑥 : 𝐾2𝑚2 − 1 = 𝑅𝜈, 𝑚 > 1,

(𝐾,𝑚) = (𝑅, 𝜈) = 1, 𝜇2(𝑚) = 𝜇2(𝜈) = 1
}︀
.

Proceeding along the same lines as in the first case yields the estimate
𝑁1(𝑥) = (1 + 𝑜(1))𝑐11

√
𝑥 (𝑥→∞),

for some positive constant 𝑐11. Since the rest of the proof is similar, we shall omit
it. This completes the proof of Theorem 2.
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