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Abstract. We characterize sequence-covering (resp., 1-sequence-covering,
2-sequence-covering) mssc-images of locally separable metric spaces by means
of 𝜎-locally finite 𝑐𝑠-networks (resp., 𝑠𝑛-networks, 𝑠𝑜-networks) consisting of
ℵ0-spaces (resp., 𝑠𝑛-second countable spaces, 𝑠𝑜-second countable spaces). As
the applications, we get characterizations of certain sequence-covering, quo-
tient mssc-images of locally separable metric spaces.

1. Introduction

A study of some images of metric spaces under certain mappings is an important
task on general topology. In [12], Li characterized sequence-covering (pseudo-
sequence-covering) mssc-images of metric spaces by means of ℵ-spaces as follows.

Theorem 1.1. [12, Theorem 4] The following are equivalent for a space 𝑋.
(1) 𝑋 is an ℵ-space.
(2) 𝑋 is a sequence-covering mssc-image of a metric space.
(3) 𝑋 is a pseudo-sequence-covering mssc-image of a metric space.

In [18], Lin and Yan characterized compact-covering, quotient 𝜋- and mssc-
images of metric spaces by means of 𝑔-metrizable spaces, and this result has been
proved by a quick and systematic proof in [25].

Theorem 1.2. [18, Corollary 18] The following are equivalent for a space 𝑋.
(1) 𝑋 is a 𝑔-metrizable space.
(2) 𝑋 is a compact-covering, quotient compact and mssc-image of a metric

space.
(3) 𝑋 is a compact-covering, quotient 𝜋- and mssc-image of a metric space.
(4) 𝑋 is a compact-covering, quotient 𝜋- and 𝜎-image of a metric space.
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Related to the characterizations of images of metric spaces, many topologists
were engaged in characterizing images of locally separable metric spaces, and some
noteworthy results have been shown. In [16], Lin, Liu, and Dai characterized
quotient 𝑠-images of locally separable metric spaces. After that, Lin and Yan char-
acterized sequence-covering 𝑠-images of locally separable metric spaces [17]; Ikeda,
Liu and Tanaka characterized quotient compact images of locally separable metric
spaces [11]; Ge characterized pseudo-sequence-covering compact images of locally
separable metric spaces [8]; An and Dung characterized quotient 𝜋-images of locally
separable metric spaces [1]. In general, it is difficult to obtain nice characterizations
of images of locally separable metric spaces (under covering-mappings) instead of
metric domains.

Take the above into account, note that ℵ-spaces and 𝑔-metrizable spaces are
spaces having certain 𝜎-locally finite networks, the following question arises natu-
rally.

Question. How are sequence-covering (1-sequence-covering, 2-sequence-cover-
ing) mssc-images of locally separable metric spaces characterized by means of 𝜎-
locally finite networks?

In this paper, we characterize sequence-covering (resp., 1-sequence-covering,
2-sequence-covering) mssc-images of locally separable metric spaces by means of 𝜎-
locally finite 𝑐𝑠-networks (resp., 𝑠𝑛-networks, 𝑠𝑜-networks) consisting of ℵ0-spaces
(resp., 𝑠𝑛-second countable spaces, 𝑠𝑜-second countable spaces). As the applica-
tions, we get characterizations of certain sequence-covering, quotient mssc-images
of locally separable metric spaces. These results make the study of images of locally
separable metric spaces more completely.

Throughout this paper, all spaces are regular and 𝑇1, all mappings are con-
tinuous and onto, a convergent sequence includes its limit point, and N denotes
the set of all natural numbers. Let 𝑓 : 𝑋 → 𝑌 be a mapping, and 𝒫 be a family
of subsets of 𝑋, we denote

⋃︀
𝒫 =

⋃︀
{𝑃 : 𝑃 ∈ 𝒫},

⋂︀
𝒫 =

⋂︀
{𝑃 : 𝑃 ∈ 𝒫}, and

𝑓(𝒫) = {𝑓(𝑃 ) : 𝑃 ∈ 𝒫}. We say that a convergent sequence {𝑥𝑛 : 𝑛 ∈ N} ∪ {𝑥}
converging to 𝑥 is eventually in 𝐴 if {𝑥𝑛 : 𝑛 > 𝑛0}∪ {𝑥} ⊂ 𝐴 for some 𝑛0 ∈ N, and
it is frequently in 𝐴 if {𝑥𝑛𝑘 : 𝑘 ∈ N}∪ {𝑥} ⊂ 𝐴 for some subsequence {𝑥𝑛𝑘 : 𝑘 ∈ N}
of {𝑥𝑛 : 𝑛 ∈ N}.

Definition 1.1. Let 𝒫 be a family of subsets of a space 𝑋.
(1) 𝒫 is a network for 𝑋 [19] if, 𝒫 =

⋃︀
{𝒫𝑥 : 𝑥 ∈ 𝑋}, where 𝑥 ∈

⋂︀
𝒫𝑥, and if

𝑥 ∈ 𝑈 with 𝑈 open in 𝑋, then there exists 𝑃 ∈ 𝒫𝑥 such that 𝑥 ∈ 𝑃 ⊂ 𝑈 for every
𝑥 ∈ 𝑋. Here, 𝒫𝑥 is a network at 𝑥 in 𝑋.

(2) 𝒫 is a cs-network for 𝑋 [10] if, for each convergent sequence 𝑆 converging
to 𝑥 ∈ 𝑈 with 𝑈 open in 𝑋, 𝑆 is eventually in 𝑃 ⊂ 𝑈 for some 𝑃 ∈ 𝒫.

(3) 𝒫 is a cs*-network for 𝑋 [7] if, for each convergent sequence 𝑆 converging
to 𝑥 ∈ 𝑈 with 𝑈 open in 𝑋, 𝑆 is frequently in 𝑃 ⊂ 𝑈 for some 𝑃 ∈ 𝒫.

(4) 𝒫 is a cfp-network for𝑋 [26] if, for each compact subset𝐻 ⊂ 𝑈 with 𝑈 open
in 𝑋, there exists a finite subfamily ℱ of 𝒫 such that 𝐻 ⊂

⋃︀
{𝐶𝐹 : 𝐹 ∈ ℱ} ⊂ 𝑈 ,

where 𝐶𝐹 is closed and 𝐶𝐹 ⊂ 𝐹 for every 𝐹 ∈ ℱ .
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Definition 1.2. [6] Let 𝑋 be a space and 𝑃 be a subset of 𝑋.
(1) 𝑃 is a sequential neighborhood of 𝑥 in 𝑋, if whenever 𝑆 is a convergent

sequence converging to 𝑥, then 𝑆 is eventually in 𝑃 .
(2) 𝑃 is a sequentially open subset of 𝑋, if 𝑃 is a sequential neighborhood of

𝑥 in 𝑋 for every 𝑥 ∈ 𝑃 .

Definition 1.3. Let 𝒫 =
⋃︀
{𝒫𝑥 : 𝑥 ∈ 𝑋} be a family of subsets of a space 𝑋

satisfying that, for each 𝑥 ∈ 𝑋, 𝒫𝑥 is a network at 𝑥 in 𝑋, and if 𝑈, 𝑉 ∈ 𝒫𝑥, then
𝑊 ⊂ 𝑈 ∩ 𝑉 for some 𝑊 ∈ 𝒫𝑥.

(1) 𝒫 is a weak base for 𝑋 [23], if 𝐺 ⊂ 𝑋 such that for each 𝑥 ∈ 𝐺, there exists
𝑃 ∈ 𝒫𝑥 satisfying 𝑃 ⊂ 𝐺, then 𝐺 is open in 𝑋. Here, 𝒫𝑥 is a weak base at 𝑥 in 𝑋.

(2) 𝒫 is an 𝑠𝑛-network for 𝑋 [15], if each member of 𝒫𝑥 is a sequential neigh-
borhood of 𝑥 in 𝑋. Here, 𝒫𝑥 is an 𝑠𝑛-network at 𝑥 in 𝑋.

(3) 𝒫 is an 𝑠𝑜-network for 𝑋 [15], if each member of 𝒫𝑥 is sequentially open
in 𝑋. Here, 𝒫𝑥 is an 𝑠𝑜-network at 𝑥 in 𝑋.

Definition 1.4. Let 𝑋 be a space.
(1) 𝑋 is a cosmic space [20] (resp., ℵ0-space [20], sn-second countable space

[9], so-second countable space, second countable space [5], ℵ-space [21], g-metrizable
space [23]), if 𝑋 has a countable network (resp., countable 𝑐𝑠-network, countable
𝑠𝑛-network, countable 𝑠𝑜-network, countable base, 𝜎-locally finite 𝑐𝑠-network, 𝜎-
locally finite weak base).

(2) 𝑋 is a sequential space [6], if each sequentially open subset of 𝑋 is open.

Remark 1.1. [17] (1) For a space, weak base ⇒ 𝑠𝑛-network ⇒ 𝑐𝑠-network.
(2) An 𝑠𝑛-network for a sequential space is a weak base.

Definition 1.5. Let 𝑓 : 𝑋 → 𝑌 be a mapping.
(1) 𝑓 is an mssc-mapping [14], if 𝑋 is a subspace of the product space

∏︀
𝑛∈N𝑋𝑛

of a family {𝑋𝑛 : 𝑛 ∈ N} of metric spaces, and for each 𝑦 ∈ 𝑌 , there exists a se-
quence {𝑉𝑦,𝑛 : 𝑛 ∈ N} of open neighborhoods of 𝑦 in 𝑌 such that each 𝑝𝑛(𝑓−1(𝑉𝑦,𝑛))
is a compact subset of 𝑋𝑛, where 𝑝𝑛 :

∏︀
𝑖∈N𝑋𝑖 → 𝑋𝑛 is the projection.

(2) 𝑓 is an 1-sequence-covering mapping [15] if, for each 𝑦 ∈ 𝑌 , there exists
𝑥𝑦 ∈ 𝑓−1(𝑦) such that whenever {𝑦𝑛 : 𝑛 ∈ N} is a sequence converging to 𝑦 in 𝑌
there exists a sequence {𝑥𝑛 : 𝑛 ∈ N} converging to 𝑥𝑦 in 𝑋 with each 𝑥𝑛 ∈ 𝑓−1(𝑦𝑛).

(3) 𝑓 is a 2-sequence-covering mapping [15] if, for each 𝑦 ∈ 𝑌 , 𝑥𝑦 ∈ 𝑓−1(𝑦), and
sequence {𝑦𝑛 : 𝑛 ∈ N} converging to 𝑦 in 𝑌 , there exists a sequence {𝑥𝑛 : 𝑛 ∈ N}
converging to 𝑥𝑦 in 𝑋 with each 𝑥𝑛 ∈ 𝑓−1(𝑦𝑛).

(4) 𝑓 is a sequence-covering mapping [22] if, for each convergent sequence 𝑆
of 𝑌 , there exists a convergent sequence 𝐿 of 𝑋 such that 𝑓(𝐿) = 𝑆. Note that a
sequence-covering mapping is a strong sequence-covering mapping in the sense of
[12].

(5) 𝑓 is a pseudo-sequence-covering mapping [11] if, for each convergent se-
quence 𝑆 of 𝑌 , there exists a compact subset 𝐾 of 𝑋 such that 𝑓(𝐾) = 𝑆.
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(6) 𝑓 is a sequentially-quotient mapping [3] if, for each convergent sequence 𝑆
of 𝑌 , there exists a convergent sequence 𝐿 of 𝑋 so that 𝑓(𝐿) is a subsequence of 𝑆.

(7) 𝑓 is a compact-covering mapping [20] if, for each compact subset 𝐾 of 𝑌 ,
there exists a compact subset 𝐿 of 𝑋 such that 𝑓(𝐿) = 𝐾.

(8) 𝑓 is a 𝜋-mapping [2], if for each 𝑦 ∈ 𝑌 and for each neighborhood 𝑈 of 𝑦
in 𝑌 , 𝑑(𝑓−1(𝑦), 𝑋−𝑓−1(𝑈)) > 0, where 𝑋 is a metric space with a metric 𝑑.

(9) 𝑓 is a 𝜎-mapping [18], if there exists a base ℬ of 𝑋 such that 𝑓(ℬ) is a
𝜎-locally finite family in 𝑌 .

Definition 1.6. [4] A space 𝑋 is sequentially separable, if 𝑋 has a countable
subset 𝐷 such that for each 𝑥 ∈ 𝑋, there exists a sequence {𝑥𝑛 : 𝑛 ∈ N} in 𝐷
converging to 𝑥. Here, the subset 𝐷 is a sequentially dense subset of 𝑋.

For undefined terms, refer to [5] and [24].

2. Results

First, we characterize sequence-covering mssc-images of locally separable metric
spaces by means of 𝜎-locally finite 𝑐𝑠-networks.

Theorem 2.1. The following are equivalent for a space 𝑋.
(1) 𝑋 is a sequence-covering mssc-image of a locally separable metric space.
(2) 𝑋 has a 𝜎-locally finite 𝑐𝑠-network consisting of cosmic spaces.
(3) 𝑋 has a 𝜎-locally finite 𝑐𝑠-network consisting of ℵ0-spaces.

Proof. (1)⇒(2). Let 𝑓 :𝑀 → 𝑋 be a sequence-covering mssc-mapping from
a locally separable metric space 𝑀 onto 𝑋, and {𝑋𝑛 : 𝑛 ∈ N} be the family of
metric spaces satisfying that 𝑀 is a subspace of

∏︀
𝑛∈N𝑋𝑛, and for each 𝑥 ∈ 𝑋,

there exists a sequence {𝑉𝑥,𝑛 : 𝑛 ∈ N} of open neighborhoods of 𝑥 in 𝑋 such that
each 𝑝𝑛(𝑓−1(𝑉𝑥,𝑛)) is a compact subset of 𝑋𝑛, where 𝑝𝑛 :

∏︀
𝑖∈N𝑋𝑖 → 𝑋𝑛 is the

projection. Since 𝑀 is locally separable metric, 𝑀 =
⨁︀
𝜆∈Λ𝑀𝜆, where each 𝑀𝜆 is

a separable metric space by [5, 4.4.F]. Since each 𝑋𝑛 is a metric space, 𝑋𝑛 has a
𝜎-locally finite base 𝒞𝑛 =

⋃︀
{𝒞𝑛,𝑖 : 𝑖 ∈ N}, where each 𝒞𝑛,𝑖 is locally finite. Assume,

if necessary, that 𝒞𝑛,𝑖 ⊂ 𝒞𝑛,𝑖+1 for every 𝑖 ∈ N. For each 𝑛 ∈ N, set

ℬ𝑛 =
{︂
𝑀 ∩

⋂︁
𝑖6𝑛

𝑝−1
𝑖 (𝐶𝑖) :

𝐶𝑖 ∈
⋃︁
𝑗6𝑛

𝒞𝑖,𝑗 , 𝑖 6 𝑛, 𝑀 ∩
⋂︁
𝑖6𝑛

𝑝−1
𝑖 (𝐶𝑖) ⊂𝑀𝜆 for some 𝜆 ∈ Λ

}︂
,

set 𝒫𝑛 = 𝑓(ℬ𝑛), and set ℬ =
⋃︀
{ℬ𝑛 : 𝑛 ∈ N}, 𝒫 =

⋃︀
{𝒫𝑛 : 𝑛 ∈ N}. Then ℬ is a

base for 𝑀 consisting of separable subsets. Assume, if necessary, that ℬ is closed
under finite intersections. We shall show that 𝒫 is a 𝜎-locally finite 𝑐𝑠-network for
𝑋 consisting of cosmic spaces by the following facts (a), (b), and (c).

(a) 𝒫 is a 𝑐𝑠-network for 𝑋.
Let 𝑆 be a convergent sequence being eventually in 𝑈 with 𝑈 open in 𝑋.

Since 𝑓 is sequence-covering, there exists a convergent sequence 𝐿 in 𝑀 such that
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𝑓(𝐿) = 𝑆. Since 𝐿 is eventually in 𝐵 ⊂ 𝑓−1(𝑈) for some 𝐵 ∈ ℬ, 𝑆 is eventually in
𝑓(𝐵) ⊂ 𝑈 . It implies that 𝑆 is eventually in 𝑃 ⊂ 𝑈 with 𝑃 = 𝑓(𝐵) ∈ 𝒫. Therefore,
𝒫 is a 𝑐𝑠-network for 𝑋.

(b) 𝒫 is 𝜎-locally finite.
For each 𝑥 ∈ 𝑋 and 𝑛 ∈ N, set 𝑉𝑥 =

⋂︀
𝑖6𝑛 𝑉𝑥,𝑖, then 𝑉𝑥 is an open neighborhood

of 𝑥 in 𝑋. For each 𝑖 ∈ N, since 𝑝𝑖(𝑓−1(𝑉𝑥,𝑖)) is a compact subset of 𝑋𝑖 and 𝒞𝑖,𝑗 is
locally finite, 𝑝𝑖(𝑓−1(𝑉𝑥,𝑖)) meets only finitely many members of 𝒞𝑖,𝑗 for every 𝑗 ∈ N.
Then 𝑓−1(𝑉𝑥,𝑖) meets only finitely many members of {𝑝−1

𝑖 (𝐶𝑖) : 𝐶𝑖 ∈
⋃︀
𝑗6𝑛 𝒞𝑖,𝑗

}︀
.

Therefore, 𝑓−1(𝑉𝑥) meets only finitely many members of
{︀⋂︀
𝑖6𝑛 𝑝

−1
𝑖 (𝐶𝑖) : 𝐶𝑖 ∈⋃︀

𝑗6𝑛 𝒞𝑖,𝑗 , 𝑖 6 𝑛
}︀

. It implies that 𝑓−1(𝑉𝑥) meets only finitely many members of
ℬ𝑛. Hence 𝑉𝑥 meets only finitely many members of 𝑓(ℬ𝑛), i.e., 𝒫𝑛 is locally finite.
It follows that 𝒫 is 𝜎-locally finite.

(c) Each 𝑃 ∈ 𝒫 is a cosmic space.
Set 𝑃 = 𝑓(𝐵) for some 𝐵 ∈ ℬ. Since 𝐵 is separable, 𝑃 is cosmic.
(2) ⇒(3). Let 𝒫 =

⋃︀
{𝒫𝑛 : 𝑛 ∈ N} be a 𝜎-locally finite 𝑐𝑠-network for 𝑋

consisting of cosmic spaces. Every locally finite family in a Lindelöf space is count-
able. Hence for each 𝑃 ∈ 𝒫, {𝑃 ∩ 𝑃 ′ : 𝑃 ′ ∈ 𝒫} is countable, and obviously it is a
𝑐𝑠-network for 𝑃 .

(3) ⇒(1). Let 𝒫 =
⋃︀
{𝒫𝑛 : 𝑛 ∈ N} be a 𝜎-locally finite 𝑐𝑠-network for 𝑋

consisting of ℵ0-spaces, where each 𝒫𝑛 = {𝑃𝛼𝑛 : 𝛼𝑛 ∈ 𝐴𝑛} is a locally finite family.
For each 𝑛 ∈ N, since each 𝑃𝛼𝑛 is an ℵ0-space, 𝑃𝛼𝑛 has a countable 𝑐𝑠-network
𝒫𝛼𝑛 = {𝑃𝛼𝑛,𝑖 : 𝑖 > 𝑛}. For each 𝑖 > 𝑛, set

𝒬𝛼𝑛,𝑖 = {𝑃𝛼𝑛} ∪ {𝑃𝛼𝑛,𝑗 : 𝑛 6 𝑗 6 𝑖} = {𝑄𝛽 : 𝛽 ∈ 𝐵𝛼𝑛,𝑖},

where 𝐵𝛼𝑛,𝑖 is finite, and set

𝒬𝑖 = {𝑋} ∪
(︀⋃︁
{𝒬𝛼𝑗,𝑖 : 𝛼𝑗 ∈ 𝐴𝑗 , 𝑗 6 𝑖}

)︀
= {𝑄𝛽 : 𝛽 ∈ 𝐵𝑖},

where 𝐵𝑖 = {𝛽0} ∪
(︀⋃︀
{𝐵𝛼𝑗,𝑖 : 𝛼𝑗 ∈ 𝐴𝑗 , 𝑗 6 𝑖}

)︀
with 𝑄𝛽0 = 𝑋. Since each 𝒫𝑖

is locally finite and each 𝒬𝛼𝑗,𝑖 is finite, 𝒬𝑖 is locally finite. Endow 𝐵𝑖 with the
discrete topology, then 𝐵𝑖 is a metric space. Set

𝑀 =
{︁
𝑏 = (𝛽𝑖) ∈

∏︁
𝑖∈N
𝐵𝑖 : there exists 𝑛 ∈ N and 𝛼𝑛 ∈ 𝐴𝑛 such that
𝑄𝛽𝑖 = 𝑋 if 𝑖 < 𝑛, 𝑄𝛽𝑖 ∈ 𝒬𝛼𝑛,𝑖 if 𝑖 > 𝑛, and
{𝑄𝛽𝑖 : 𝑖 > 𝑛} forms a network at a point 𝑥𝑏 in 𝑃𝛼𝑛

}︁
.

Then 𝑀 , which is a subspace of the product space
∏︀
𝑖∈N𝐵𝑖, is a metric space.

Since 𝑋 is 𝑇1 and regular, 𝑥𝑏 is unique for every 𝑏 ∈𝑀 . We define 𝑓 :𝑀 → 𝑋 by
𝑓(𝑏) = 𝑥𝑏 for every 𝑏 ∈𝑀 .

(a) 𝑓 is onto.
For each 𝑥 ∈ 𝑋, there exists 𝑛 ∈ N and 𝛼𝑛 ∈ 𝐴𝑛 such that 𝑥 ∈ 𝑃𝛼𝑛 . Since

𝒫𝛼𝑛 is a countable 𝑐𝑠-network for 𝑃𝛼𝑛 , (𝒫𝛼𝑛)𝑥 = {𝑄𝛽 ∈ 𝒫𝛼𝑛 : 𝑥 ∈ 𝑄𝛽} is a
countable network at 𝑥 in 𝑃𝛼𝑛 . We may assume that (𝒫𝛼𝑛)𝑥 = {𝑃𝑥,𝑗 : 𝑗 ∈ N},
where 𝑃𝑥,𝑗 ∈ 𝒬𝛼𝑛,𝑖(𝑗) with some 𝑖(𝑗) ∈ N satisfying 𝑖(𝑗) < 𝑖(𝑗 + 1). For each 𝑖 ∈ N,
take 𝑄𝛽𝑖 as follows.
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(i) 𝑖 < 𝑛: 𝑄𝛽𝑖 = 𝑋,
(ii) 𝑖 > 𝑛: 𝑄𝛽𝑖 = 𝑃𝑥,𝑗 if 𝑖 = 𝑖(𝑗) for some 𝑗 ∈ N, and otherwise, 𝑄𝛽𝑖 = 𝑃𝛼𝑛 .
Then {𝑄𝛽𝑖 : 𝑖 > 𝑛}−{𝑃𝛼𝑛} = (𝒫𝛼𝑛)𝑥−{𝑃𝛼𝑛}. Therefore, {𝑄𝛽𝑖 : 𝑖 > 𝑛} forms

a network at 𝑥 in 𝑃𝛼𝑛 . It implies that 𝑏 = (𝛽𝑖) ∈ 𝑀 satisfying 𝑥 = 𝑓(𝑏), i.e., 𝑓 is
onto.

(b) 𝑓 is continuous.
For each 𝑏 = (𝛽𝑖) ∈𝑀 and 𝑥 = 𝑓(𝑏) ∈ 𝑈 with 𝑈 open in 𝑋. Then 𝑥 = 𝑓(𝑏) ∈

𝑄𝛽𝑘 ⊂ 𝑈 for some 𝑘 ∈ N. Set 𝑈𝑏 = {𝑐 = (𝛾𝑖) ∈ 𝑀 : 𝛾𝑘 = 𝛽𝑘}. Then 𝑈𝑏 is open in
𝑀 , and 𝑏 ∈ 𝑈𝑏. For each 𝑐 ∈ 𝑈𝑏, we find 𝑓(𝑐) ∈ 𝑄𝛾𝑘 = 𝑄𝛽𝑘 ⊂ 𝑈 . It implies that
𝑓(𝑈𝑏) ⊂ 𝑈 , i.e., 𝑓 is continuous.

(c) 𝑀 is locally separable.
Let 𝑏 = (𝛽𝑖) ∈ 𝑀 . Then there exists 𝑛 ∈ N and 𝛼𝑛 ∈ 𝐴𝑛 such that 𝑄𝛽𝑖 = 𝑋

if 𝑖 < 𝑛, 𝑄𝛽𝑖 ∈ 𝒬𝛼𝑛,𝑖 if 𝑖 > 𝑛, and {𝑄𝛽𝑖 : 𝑖 > 𝑛} forms a network at a point
𝑥𝑏 in 𝑃𝛼𝑛 . Set 𝑀𝑏 = {𝑐 = (𝛾𝑖) ∈ 𝑀 : 𝛾𝑛 = 𝛽𝑛}. Then 𝑀𝑏 is open in 𝑀 , and
𝑏 ∈ 𝑀𝑏. For each 𝑐 = (𝛾𝑖) ∈ 𝑀𝑏, there exists 𝑚 ∈ N and 𝛼𝑚 ∈ 𝐴𝑚 such that
𝑄𝛾𝑖 = 𝑋 if 𝑖 < 𝑚, 𝑄𝛾𝑖 ∈ 𝒬𝛼𝑚,𝑖 if 𝑖 > 𝑚, and {𝑄𝛾𝑖 : 𝑖 > 𝑚} forms a network
at a point 𝑥𝑐 in 𝑃𝛼𝑚 . It follows from 𝑄𝛾𝑛 = 𝑄𝛽𝑛 that 𝑃𝛼𝑚 ∩ 𝑃𝛼𝑛 ̸= ∅. Since
𝑃𝛼𝑛 is an ℵ0-space and 𝒫𝑚 is locally finite, 𝐶𝑚 = {𝛼𝑚 ∈ 𝐴𝑚 : 𝑃𝛼𝑚 ∩ 𝑃𝛼𝑛 ̸= ∅}
is countable for every 𝑚 ∈ N. Then 𝐸𝑖 = {𝛽0} ∪

(︀⋃︀
{𝐵𝛼𝑗,𝑖 : 𝛼𝑗 ∈ 𝐶𝑗 , 𝑗 6 𝑖}

)︀
is

countable. It implies that {𝛽1} × · · · × {𝛽𝑛−1} ×
∏︀
𝑖>𝑛𝐸𝑖 is hereditarily separable.

Since𝑀𝑏 ⊂ {𝛽1}×· · ·×{𝛽𝑛−1}×
∏︀
𝑖>𝑛𝐸𝑖,𝑀𝑏 is separable. Therefore,𝑀 is locally

separable.
(d) 𝑓 is an mssc-mapping.
For each 𝑥 ∈ 𝑋 and each 𝑖 ∈ N, since 𝒫𝑖 is locally finite, there exists an open

neighborhood 𝑉𝑥,𝑖 of 𝑥 in 𝑋 such that 𝐷𝑖 = {𝛼𝑖 ∈ 𝐴𝑖 : 𝑃𝛼𝑖 ∩ 𝑉𝑥,𝑖 ̸= ∅} is finite.
Then 𝐹𝑖 = {𝛽0} ∪

(︀⋃︀
{𝐵𝛼𝑗,𝑖 : 𝛼𝑗 ∈ 𝐷𝑗 , 𝑗 6 𝑖}

)︀
is finite. Since 𝑝𝑖(𝑓−1(𝑉𝑥,𝑖)) ⊂ 𝐹𝑖,

𝑝𝑖(𝑓−1(𝑉𝑥,𝑖)) is compact. It implies that 𝑓 is an mssc-mapping.
(e) 𝑓 is sequence-covering.
For each convergent sequence 𝑆 in 𝑋, since 𝒫 is a 𝜎-locally finite 𝑐𝑠-network

for 𝑋, there exists 𝑛 ∈ N and 𝛼𝑛 ∈ 𝐴𝑛 such that 𝑆 is eventually in 𝑃𝛼𝑛 ∈ 𝒫𝑛.
Then 𝐿𝛼𝑛 = 𝑆 ∩𝑃𝛼𝑛 is a convergent sequence in 𝑃𝛼𝑛 . For each 𝑖 > 𝑛, we find that⋃︀
{𝒬𝛼𝑛,𝑖 : 𝑖 > 𝑛} is a 𝜎-locally finite 𝑐𝑠-network for 𝑃𝛼𝑛 satisfying 𝑃𝛼𝑛 ∈ 𝒬𝛼𝑛,𝑖 ⊂
𝒬𝛼𝑛,𝑖+1 . It follows from the proof (3)⇒(2) of [13, Theorem 5.1] that there exists a
convergent sequence 𝐻𝛼𝑛 in 𝑀𝛼𝑛 such that 𝑓𝛼𝑛(𝐻𝛼𝑛) = 𝐿𝛼𝑛 , where

𝑀𝛼𝑛 =
{︁
𝑐 = (𝛾𝑖)𝑖>𝑛 ∈

∏︁
𝑖>𝑛

𝐵𝛼𝑛,𝑖 : {𝑄𝛾𝑖 : 𝑖 > 𝑛} forms a network
at a point 𝑥𝑐 in 𝑃𝛼𝑛

}︁
,

and 𝑓𝛼𝑛 : 𝑀𝛼𝑛 → 𝑃𝛼𝑛 defined by 𝑓𝛼𝑛(𝑐) = 𝑥𝑐 for every 𝑐 ∈ 𝑀𝛼𝑛 . For each
𝑐 = (𝛾𝑖)𝑖>𝑛 ∈ 𝐻𝛼𝑛 , set 𝑏𝑐 = (𝛽𝑖)𝑖∈N, where 𝑄𝛽𝑖 = 𝑋 if 𝑖 < 𝑛 and 𝛽𝑖 = 𝛾𝑖 if
𝑖 > 𝑛, and set 𝐻 = {𝑏𝑐 : 𝑐 ∈ 𝐻𝛼𝑛}. Then 𝐻 is a convergent sequence in 𝑀 and
𝑓(𝐻) = 𝐿𝛼𝑛 . Since 𝑆 is eventually in 𝑃𝛼𝑛 , 𝑆−𝑃𝛼𝑛 is finite. Then 𝑆−𝑃𝛼𝑛 = 𝑓(𝐹 )
with some finite subset 𝐹 of 𝑀 . Set 𝐿 = 𝐻 ∪ 𝐹 , then 𝐿 is a convergent sequence
in 𝑀 satisfying 𝑓(𝐿) = 𝑆. It implies that 𝑓 is sequence-covering. �
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Remark 2.1. The argument for 𝑐𝑠-networks in the proof(2) ⇒(3) of Theo-
rem 2.1 can not apply to 𝑐𝑠*-networks or 𝑐𝑓𝑝-networks.

Corollary 2.1. The following are equivalent for a space 𝑋.
(1) 𝑋 is a sequence-covering, quotient mssc-image of a locally separable met-

ric space.
(2) 𝑋 is a sequential space having a 𝜎-locally finite 𝑐𝑠-network consisting of

cosmic spaces.
(3) 𝑋 is a sequential space having a 𝜎-locally finite 𝑐𝑠-network consisting of
ℵ0-spaces.

Proof. (1) ⇒ (2). Since 𝑋 is a quotient image of a locally separable metric
space, 𝑋 is a sequential space by [6, Proposition 1.2]. Then 𝑋 is a sequential space
having a 𝜎-locally finite 𝑐𝑠-network consisting of cosmic spaces by Theorem 2.1.

(2) ⇒ (3). As in the proof(2) ⇒(3) of Theorem 2.1.
(3) ⇒(1). It follows from Theorem 2.1 that 𝑋 is a sequence-covering mssc-

image of a locally separable metric space under some mapping 𝑓 . Since 𝑓 is a
sequence-covering mapping onto a sequential space, 𝑓 is a quotient mapping by
[17, Lemma 3.5]. It implies that 𝑋 is a sequence-covering, quotient mssc-image of
a locally separable metric space. �

Next, we characterize 1-sequence-covering mssc-images of locally separable met-
ric spaces by means of 𝜎-locally finite 𝑠𝑛-networks.

Theorem 2.2. The following are equivalent for a space 𝑋.
(1) 𝑋 is an 1-sequence-covering mssc-image of a locally separable metric

space.
(2) 𝑋 has a 𝜎-locally finite 𝑠𝑛-network consisting of cosmic spaces.
(3) 𝑋 has a 𝜎-locally finite 𝑠𝑛-network consisting of 𝑠𝑛-second countable

spaces.

Proof. (1) ⇒ (2). Let 𝑓 : 𝑀 → 𝑋 be an 1-sequence-covering mssc-mapping
from a locally separable metric space 𝑀 onto 𝑋. For each 𝑥 ∈ 𝑋, let 𝑎𝑥 ∈ 𝑓−1(𝑥)
satisfying that whenever {𝑥𝑛 : 𝑛 ∈ N} is a sequence converging to 𝑥 in 𝑋 there
exists a sequence {𝑎𝑛 : 𝑛 ∈ N} converging to 𝑎𝑥 in 𝑀 with each 𝑎𝑛 ∈ 𝑓−1(𝑥𝑛). By
using notations in the proof (1) ⇒ (2) of Theorem 2.1 again, let 𝒬𝑥 = {𝑃 ∈ 𝒫 :
𝑃 = 𝑓(𝐵) with 𝑎𝑥 ∈ 𝐵 ∈ ℬ}, and let 𝒬 =

⋃︀
{𝒬𝑥 : 𝑥 ∈ 𝑋}. We shall prove that 𝒬

is a 𝜎-locally finite 𝑠𝑛-network for 𝑋 consisting of cosmic spaces by the following
facts (a), (b), (c) for every 𝑥 ∈ 𝑋, and (d), (e).

(a) 𝒬𝑥 is a network at 𝑥 in 𝑋.
It is clear that 𝑥 ∈

⋂︀
𝒬𝑥. Let 𝑥 ∈ 𝑈 with 𝑈 open in 𝑋, then 𝑎𝑥 ∈ 𝑓−1(𝑈).

Since ℬ is a base for 𝑀 , 𝑎𝑥 ∈ 𝐵 ⊂ 𝑓−1(𝑈) for some 𝐵 ∈ ℬ. Set 𝑄 = 𝑓(𝐵), then
𝑄 ∈ 𝒬𝑥 and 𝑥 ∈ 𝑄 ⊂ 𝑈 . It implies that 𝒬𝑥 is a network at 𝑥 in 𝑋.

(b) If 𝑄1, 𝑄2 ∈ 𝒬𝑥, then 𝑄 ⊂ 𝑄1 ∩𝑄2 for some 𝑄 ∈ 𝒬𝑥.
Set 𝑄1 = 𝑓(𝐵1), 𝑄2 = 𝑓(𝐵2), where 𝐵1, 𝐵2 ∈ ℬ with 𝑎𝑥 ∈ 𝐵1 and 𝑎𝑥 ∈ 𝐵2.

Since ℬ is a base for 𝑀 , 𝑎𝑥 ∈ 𝐵 ⊂ 𝐵1 ∩ 𝐵2 for some 𝐵 ∈ ℬ. Set 𝑄 = 𝑓(𝐵), then
𝑄 ∈ 𝒬𝑥 and 𝑄 ⊂ 𝑄1 ∩𝑄2.
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(c) Each 𝑄 ∈ 𝒬𝑥 is a sequential neighborhood of 𝑥.
Set 𝑄 = 𝑓(𝐵) with 𝑎𝑥 ∈ 𝐵 ∈ ℬ. For each convergent sequence 𝑆 converging to

𝑥, there exists a convergent sequence 𝐿 converging to 𝑎𝑥 in 𝑀 such that 𝑓(𝐿) = 𝑆.
Since 𝐿 is eventually in 𝐵, 𝑆 is eventually in 𝑄. It implies that 𝑄 is a sequential
neighborhood of 𝑥.

(d) 𝒬 is 𝜎-locally finite.
Since 𝒬 ⊂ 𝒫 and 𝒫 is 𝜎-locally finite, 𝒬 is 𝜎-locally finite.
(e) Each 𝑄 ∈ 𝒬 is a cosmic space.
Set 𝑄 = 𝑓(𝐵) for some 𝐵 ∈ ℬ. Since 𝐵 is separable, 𝑄 is cosmic.
(2) ⇒ (3). As in the proof(2) ⇒ (3) of Theorem 2.1.
(3) ⇒ (1). Let 𝒫 =

⋃︀
{𝒫𝑛 : 𝑛 ∈ N} be a 𝜎-locally finite 𝑠𝑛-network for 𝑋

consisting of ℵ0-spaces. By using notations and arguments in the proof (3) ⇒ (1)
of Theorem 2.1 again, since each 𝑠𝑛-network is also a 𝑐𝑠-network, it suffices to prove
that the mapping 𝑓 is 1-sequence-covering.

For each 𝑥 ∈ 𝑋, since 𝒫 is a 𝜎-locally finite 𝑠𝑛-network for𝑋, there exists 𝑛 ∈ N
and 𝛼𝑛 ∈ 𝐴𝑛 such that 𝑃𝛼𝑛 is a sequential neighborhood of 𝑥. Then

⋃︀
{𝒬𝛼𝑛,𝑖 :

𝑖 > 𝑛} is a 𝜎-locally finite 𝑠𝑛-network for 𝑃𝛼𝑛 . It implies that 𝑓𝛼𝑛 is 1-sequence-
covering by [13, Theorem 2.1]. Hence, there exists 𝑐𝑥 = (𝛾𝑥,𝑖)𝑖>𝑛 ∈ 𝑓−1

𝛼𝑛 (𝑥) such
that whenever {𝑥𝑚 : 𝑚 ∈ N} is a sequence converging to 𝑥 in 𝑃𝛼𝑛 there exists a
sequence {𝑐𝑚 : 𝑚 ∈ N} converging to 𝑐𝑥 in 𝑀𝛼𝑛 with each 𝑐𝑚 ∈ 𝑓−1

𝛼𝑛 (𝑥𝑚). Set
𝑏𝑥 = (𝛽𝑥,𝑖), where 𝑄𝛽𝑥,𝑖 = 𝑋 if 𝑖 < 𝑛 and 𝛽𝑥,𝑖 = 𝛾𝑥,𝑖 if 𝑖 > 𝑛, then 𝑏𝑥 ∈ 𝑓−1(𝑥).
Let {𝑦𝑚 : 𝑚 ∈ N} be a sequence in 𝑋 converging to 𝑥. Since 𝑃𝛼𝑛 is a sequential
neighborhood of 𝑥, there exists 𝑚0 ∈ N such that {𝑦𝑚 : 𝑚 > 𝑚0} ⊂ 𝑃𝛼𝑛 is a
sequence converging to 𝑥 in 𝑃𝛼𝑛 . Then there exists a sequence {𝑐𝑚 : 𝑚 > 𝑚0}
in 𝑀𝛼𝑛 converging to 𝑐𝑥 and 𝑐𝑚 ∈ 𝑓−1

𝛼𝑛 (𝑦𝑚) for each 𝑚 > 𝑚0. For each 𝑐𝑚 =
(𝛾𝑚,𝑖)𝑖>𝑛, set 𝑏𝑚 = (𝛽𝑚,𝑖), where 𝑄𝛽𝑚,𝑖 = 𝑋 if 𝑖 < 𝑛 and 𝛽𝑚,𝑖 = 𝛾𝑚,𝑖 if 𝑖 > 𝑛.
Then 𝑏𝑚 ∈ 𝑀 and 𝑓(𝑏𝑚) = 𝑦𝑚 for each 𝑚 > 𝑚0. For each 𝑚 < 𝑚0, take some
𝑏𝑚 ∈ 𝑓−1(𝑦𝑚). Then {𝑏𝑚 : 𝑚 ∈ N} is a sequence in 𝑀 converging to 𝑏𝑥 and
𝑏𝑚 ∈ 𝑓−1(𝑦𝑚) for each 𝑚 ∈ N. It implies that 𝑓 is 1-sequence-covering. �

Corollary 2.2. The following are equivalent for a space 𝑋.
(1) 𝑋 is an 1-sequence-covering, quotient mssc-image of a locally separable

metric space.
(2) 𝑋 has a 𝜎-locally finite weak base consisting of cosmic spaces.
(3) 𝑋 has a 𝜎-locally finite weak base consisting of 𝑠𝑛-second countable spaces.

Proof. (1) ⇒ (2). Since 𝑋 is a quotient image of a locally separable metric
space, 𝑋 is a sequential space by [6, Proposition 1.2]. Then 𝑋 is a sequential space
having a 𝜎-locally finite 𝑠𝑛-network 𝒫 consisting of cosmic spaces by Theorem 2.2.
It follows from Remark 1.1 that 𝒫 is a weak base for 𝑋. Therefore, 𝑋 has a
𝜎-locally finite weak base consisting of cosmic spaces.

(2) ⇒ (3). Since 𝑋 has a 𝜎-locally weak base, 𝑋 is a sequential space. It
follows from Theorem 2.2 that 𝑋 is a sequential space having a 𝜎-locally finite
𝑠𝑛-network 𝒫 consisting of 𝑠𝑛-second countable spaces. By Remark 1.1, 𝒫 is a
weak base for 𝑋. It implies that 𝑋 has a 𝜎-locally finite weak base consisting of
𝑠𝑛-second countable spaces.
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(3)⇒ (1). It follows from Theorem 2.2 that 𝑋 is an 1-sequence-covering mssc-
image of a locally separable metric space under some mapping 𝑓 . Since 𝑋 has
a 𝜎-locally finite weak base, 𝑋 is a sequential space. Then 𝑓 is an 1-sequence-
covering mapping onto a sequential space, and so 𝑓 is a quotient mapping by [17,
Lemma 3.5]. It implies that 𝑋 is an 1-sequence-covering, quotient mssc-image of a
locally separable metric space. �

Remark 2.2. We can replace “cosmic spaces” in Theorem 2.2 and Corollary 2.2
by “ℵ0-spaces”.

In the following, we characterize 2-sequence-covering mssc-images of locally
separable metric spaces by means of 𝜎-locally finite 𝑠𝑜-networks.

Theorem 2.3. The following are equivalent for a space 𝑋.
(1) 𝑋 is a 2-sequence-covering mssc-image of a locally separable metric space.
(2) 𝑋 has a 𝜎-locally finite 𝑠𝑜-network consisting of cosmic spaces.
(3) 𝑋 has a 𝜎-locally finite 𝑠𝑜-network consisting of 𝑠𝑜-second countable spaces.

Proof. (1) ⇒ (2). Let 𝑓 : 𝑀 → 𝑋 be a 2-sequence-covering mssc-mapping
from a locally separable metric space𝑀 onto𝑋. For each 𝑥 ∈ 𝑋, by using notations
in the proof(1) ⇒ (2) of Theorem 2.1 again, let ℬ𝑥 = {𝐵 ∈ ℬ : 𝑓−1(𝑥) ∩ 𝐵 ̸= ∅},
and let ℛ𝑥 be the family of all finite intersections of members of 𝑓(ℬ𝑥). We shall
prove that ℛ =

⋃︀
{ℛ𝑥 : 𝑥 ∈ 𝑋} is a 𝜎-locally finite 𝑠𝑜-network for 𝑋 consisting of

cosmic spaces by the following facts (a), (b), (c) for every 𝑥 ∈ 𝑋 and (d), (e).
(a) ℛ𝑥 is a network at 𝑥 in 𝑋.
This is obvious because ℬ𝑥 is a base for 𝑓−1(𝑥).
(b) If 𝑅1, 𝑅2 ∈ ℛ𝑥, then 𝑅 ⊂ 𝑅1 ∩𝑅2 for some 𝑅 ∈ ℛ𝑥.
This is obvious by choosing 𝑅 = 𝑅1 ∩𝑅2.
(c) Each 𝑅 ∈ ℛ𝑥 is sequentially open.
Let 𝐵 ∈ ℬ𝑥, 𝑦 ∈ 𝑓(𝐵), and 𝑆 be a convergent sequence converging to 𝑦. Since

𝑦 ∈ 𝑓(𝐵), 𝑓−1(𝑦) ∩ 𝐵 ̸= ∅. Take some 𝑎𝑦 ∈ 𝑓−1(𝑦) ∩ 𝐵. Then there exists
a convergent sequence 𝐿 converging to 𝑎𝑦 in 𝑀 such that 𝑓(𝐿) = 𝑆. Since 𝐿
is eventually in 𝐵, 𝑆 is eventually in 𝑓(𝐵). It implies that 𝑓(𝐵) is sequentially
open, i.e., every member of 𝑓(ℬ𝑥) is sequentially open. Because 𝑅 is some finite
intersection of members of 𝑓(ℬ𝑥), we find that 𝑅 is sequentially open.

(d) ℛ is 𝜎-locally finite.
Since

⋃︀
{𝑓(ℬ𝑥) : 𝑥 ∈ 𝑋} ⊂ 𝒫 and 𝒫 is 𝜎-locally finite,

⋃︀
{𝑓(ℬ𝑥) : 𝑥 ∈ 𝑋} is

𝜎-locally finite. It implies that ℛ is 𝜎-locally finite.
(e) Each 𝑅 ∈ ℛ is a cosmic space.
For each 𝐵 ∈ ℬ𝑥, since 𝐵 is separable, 𝑓(𝐵) is cosmic, i.e., every member of

𝑓(ℬ𝑥) is cosmic. It implies that 𝑅 is cosmic.
(2) ⇒ (3). As in the proof(2) ⇒(3) of Theorem 2.1.
(3) ⇒ (1). Let 𝒫 =

⋃︀
{𝒫𝑛 : 𝑛 ∈ N} be a 𝜎-locally finite 𝑠𝑜-network for 𝑋

consisting of ℵ0-spaces. By using notations and arguments in the proof (3) ⇒ (1)
of Theorem 2.1 again, since each 𝑠𝑜-network is also a 𝑐𝑠-network, it suffices to prove
that the mapping 𝑓 is 2-sequence-covering.
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For each 𝑥 ∈ 𝑋 and each 𝑏𝑥 ∈ 𝑓−1(𝑥), let 𝑏𝑥 = (𝛽𝑥,𝑖). Then there exists
some 𝑛 ∈ N and 𝛼𝑛 ∈ 𝐴𝑛 such that 𝑄𝛽𝑥,𝑖 = 𝑋 if 𝑖 < 𝑛, 𝑄𝛽𝑥,𝑖 ∈ 𝒬𝛼𝑛,𝑖 if 𝑖 > 𝑛,
and {𝑄𝛽𝑥,𝑖 : 𝑖 > 𝑛} forms a network at 𝑥 in 𝑃𝛼𝑛 . Set 𝑐𝑥 = (𝛽𝑥,𝑖)𝑖>𝑛, then
𝑐𝑥 ∈ 𝑓−1

𝛼𝑛 (𝑥). Since {𝒬𝛼𝑛,𝑖 : 𝑖 > 𝑛} is a 𝜎-locally finite 𝑠𝑜-network for 𝑃𝛼𝑛 , 𝑓𝛼𝑛
is a 2-sequence-covering by [13, Theorem 3.1]. Let {𝑥𝑚 : 𝑚 ∈ N} be a sequence
converging to 𝑥 in 𝑋. Since 𝑃𝛼𝑛 is sequentially open, there exists 𝑚0 ∈ N such that
{𝑥𝑚 : 𝑚 > 𝑚0} is a sequence converging to 𝑥 in 𝑃𝛼𝑛 . Then there exists a sequence
{𝑐𝑚 : 𝑚 > 𝑚0} in 𝑀𝛼𝑛 converging to 𝑐𝑥 and 𝑐𝑚 ∈ 𝑓−1

𝛼𝑛 (𝑥𝑚) for each 𝑚 > 𝑚0. For
each 𝑐𝑚 = (𝛾𝑚,𝑖)𝑖>𝑛, set 𝑏𝑚 = (𝛽𝑚,𝑖), where 𝑄𝛽𝑚,𝑖 = 𝑋 if 𝑖 < 𝑛, and 𝛽𝑚,𝑖 = 𝛾𝑚,𝑖
if 𝑖 > 𝑛. Then 𝑏𝑚 ∈𝑀 and 𝑓(𝑏𝑚) = 𝑥𝑚 for each 𝑚 > 𝑚0. For each 𝑚 < 𝑚0, take
some 𝑏𝑚 ∈ 𝑓−1(𝑥𝑚). Then {𝑏𝑚 : 𝑚 ∈ N} is a sequence in 𝑀 converging to 𝑏𝑥 and
𝑏𝑚 ∈ 𝑓−1(𝑥𝑚) for each 𝑚 ∈ N. It implies that 𝑓 is 2-sequence-covering. �

Corollary 2.3. The following are equivalent for a space 𝑋.
(1) 𝑋 is a 2-sequence-covering, quotient mssc-image of a locally separable

metric space.
(2) 𝑋 has a 𝜎-locally finite base consisting of cosmic spaces.
(3) 𝑋 has a 𝜎-locally finite base consisting of second countable spaces.

Proof. (1) ⇒ (2). Since 𝑋 is a quotient image of a locally separable metric
space, 𝑋 is a sequential space by [6, Proposition 1.2]. It follows from Theorem 2.3
that 𝑋 is a sequential space having a 𝜎-locally finite 𝑠𝑜-network 𝒫 consisting of
cosmic spaces. For each 𝑃 ∈ 𝒫, since 𝑋 is sequential and 𝑃 is sequential open, 𝑃
is open in 𝑋. Hence 𝒫 is a 𝜎-locally finite base for 𝑋 consisting of cosmic spaces.

(2)⇒(3). It follows from Theorem 2.3 that 𝑋 has a 𝜎-locally finite 𝑠𝑜-network
𝒫 consisting of 𝑠𝑜-second countable spaces. Since 𝑋 has a 𝜎-locally finite base, 𝑋
is sequential. It implies that every 𝑃 ∈ 𝒫 is open. Then 𝒫 is a 𝜎-locally finite base
consisting of 𝑠𝑜-second countable spaces.

Let 𝑃 ∈ 𝒫 and 𝒬 be a countable 𝑠𝑜-network for 𝑃 . Since 𝑃 is open, 𝑃 is a
sequential space by [6, Proposition 1.9]. Then every 𝑄 ∈ 𝒬 is open in 𝑃 . Hence 𝒬
is a countable base for 𝑃 . It implies that 𝑃 is a second countable space.

By the above, 𝑋 has a 𝜎-locally finite base consisting of second countable
spaces.

(3) ⇒ (1). It follows from Theorem 2.3 that 𝑋 is a 2-sequence-covering mssc-
image of a locally separable metric space under some mapping 𝑓 . Since 𝑋 has a
𝜎-locally finite base, 𝑋 is sequential. Then 𝑓 is a 2-sequence-covering mapping onto
a sequential space, and so 𝑓 is a quotient mapping by [17, Lemma 3.5]. It implies
that 𝑋 is a 2-sequence-covering, quotient mssc-image of a locally separable metric
space. �

Remark 2.3. We can replace “cosmic spaces” in Theorem 2.3 and Corollary 2.3
by “ℵ0-spaces”, or “𝑠𝑛-second countable spaces”.
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