PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 87(101) (2010), 143–153

DOI: 10.2298/PIM1001143V

ON SEQUENCE-COVERING mssc-IMAGES OF LOCALLY SEPARABLE METRIC SPACES

Nguyen Van Dung

Communicated by Miloš Kurilić

ABSTRACT. We characterize sequence-covering (resp., 1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces by means of σ -locally finite *cs*-networks (resp., *sn*-networks, *so*-networks) consisting of \aleph_0 -spaces (resp., *sn*-second countable spaces, *so*-second countable spaces). As the applications, we get characterizations of certain sequence-covering, quotient mssc-images of locally separable metric spaces.

1. Introduction

A study of some images of metric spaces under certain mappings is an important task on general topology. In [12], Li characterized sequence-covering (pseudo-sequence-covering) mssc-images of metric spaces by means of \aleph -spaces as follows.

THEOREM 1.1. [12, Theorem 4] The following are equivalent for a space X.

- (1) X is an \aleph -space.
- (2) X is a sequence-covering mssc-image of a metric space.
- (3) X is a pseudo-sequence-covering mssc-image of a metric space.

In [18], Lin and Yan characterized compact-covering, quotient π - and msscimages of metric spaces by means of g-metrizable spaces, and this result has been proved by a quick and systematic proof in [25].

THEOREM 1.2. [18, Corollary 18] The following are equivalent for a space X.

- (1) X is a g-metrizable space.
- (2) X is a compact-covering, quotient compact and mssc-image of a metric space.
- (3) X is a compact-covering, quotient π and mssc-image of a metric space.
- (4) X is a compact-covering, quotient π and σ -image of a metric space.

2010 Mathematics Subject Classification: Primary 54E35, 54E40; Secondary 54D55, 54E99. Key words and phrases: mssc-mapping, sequence-covering, 1-sequence-covering, 2-sequence-covering, σ-locally finite, cs-network, sn-network, so-network.

Related to the characterizations of images of metric spaces, many topologists were engaged in characterizing images of locally separable metric spaces, and some noteworthy results have been shown. In [16], Lin, Liu, and Dai characterized quotient s-images of locally separable metric spaces. After that, Lin and Yan characterized sequence-covering s-images of locally separable metric spaces [17]; Ikeda, Liu and Tanaka characterized quotient compact images of locally separable metric spaces [11]; Ge characterized pseudo-sequence-covering compact images of locally separable metric spaces [8]; An and Dung characterized quotient π -images of locally separable metric spaces [1]. In general, it is difficult to obtain nice characterizations of images of locally separable metric spaces (under covering-mappings) instead of metric domains.

Take the above into account, note that \aleph -spaces and g-metrizable spaces are spaces having certain σ -locally finite networks, the following question arises naturally.

QUESTION. How are sequence-covering (1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces characterized by means of σ -locally finite networks?

In this paper, we characterize sequence-covering (resp., 1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces by means of σ -locally finite *cs*-networks (resp., *sn*-networks, *so*-networks) consisting of \aleph_0 -spaces (resp., *sn*-second countable spaces, *so*-second countable spaces). As the applications, we get characterizations of certain sequence-covering, quotient mssc-images of locally separable metric spaces. These results make the study of images of locally separable metric spaces more completely.

Throughout this paper, all spaces are regular and T_1 , all mappings are continuous and onto, a convergent sequence includes its limit point, and \mathbb{N} denotes the set of all natural numbers. Let $f: X \to Y$ be a mapping, and \mathcal{P} be a family of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \ \bigcap \mathcal{P} = \bigcap \{P : P \in \mathcal{P}\}, \ \text{and} f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$ We say that a convergent sequence $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ converging to x is eventually in A if $\{x_n : n \ge n_0\} \cup \{x\} \subset A$ for some $n_0 \in \mathbb{N}$, and it is frequently in A if $\{x_{n_k} : k \in \mathbb{N}\} \cup \{x\} \subset A$ for some subsequence $\{x_{n_k} : k \in \mathbb{N}\}$ of $\{x_n : n \in \mathbb{N}\}.$

DEFINITION 1.1. Let \mathcal{P} be a family of subsets of a space X.

(1) \mathcal{P} is a *network* for X [19] if, $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$, where $x \in \bigcap \mathcal{P}_x$, and if $x \in U$ with U open in X, then there exists $P \in \mathcal{P}_x$ such that $x \in P \subset U$ for every $x \in X$. Here, \mathcal{P}_x is a *network* at x in X.

(2) \mathcal{P} is a *cs-network* for X [10] if, for each convergent sequence S converging to $x \in U$ with U open in X, S is eventually in $P \subset U$ for some $P \in \mathcal{P}$.

(3) \mathcal{P} is a *cs*^{*}-*network* for X [7] if, for each convergent sequence S converging to $x \in U$ with U open in X, S is frequently in $P \subset U$ for some $P \in \mathcal{P}$.

(4) \mathcal{P} is a *cfp-network* for X [**26**] if, for each compact subset $H \subset U$ with U open in X, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $H \subset \bigcup \{C_F : F \in \mathcal{F}\} \subset U$, where C_F is closed and $C_F \subset F$ for every $F \in \mathcal{F}$. DEFINITION 1.2. [6] Let X be a space and P be a subset of X.

(1) P is a sequential neighborhood of x in X, if whenever S is a convergent sequence converging to x, then S is eventually in P.

(2) P is a sequentially open subset of X, if P is a sequential neighborhood of x in X for every $x \in P$.

DEFINITION 1.3. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a family of subsets of a space X satisfying that, for each $x \in X$, \mathcal{P}_x is a network at x in X, and if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

(1) \mathcal{P} is a weak base for X [23], if $G \subset X$ such that for each $x \in G$, there exists $P \in \mathcal{P}_x$ satisfying $P \subset G$, then G is open in X. Here, \mathcal{P}_x is a weak base at x in X.

(2) \mathcal{P} is an *sn-network* for X [15], if each member of \mathcal{P}_x is a sequential neighborhood of x in X. Here, \mathcal{P}_x is an *sn-network* at x in X.

(3) \mathcal{P} is an *so-network* for X [15], if each member of \mathcal{P}_x is sequentially open in X. Here, \mathcal{P}_x is an *so-network* at x in X.

DEFINITION 1.4. Let X be a space.

(1) X is a cosmic space [20] (resp., \aleph_0 -space [20], sn-second countable space [9], so-second countable space, second countable space [5], \aleph -space [21], g-metrizable space [23]), if X has a countable network (resp., countable cs-network, countable sn-network, countable so-network, countable base, σ -locally finite cs-network, σ locally finite weak base).

(2) X is a sequential space [6], if each sequentially open subset of X is open.

REMARK 1.1. [17] (1) For a space, weak base \Rightarrow sn-network \Rightarrow cs-network. (2) An sn-network for a sequential space is a weak base.

DEFINITION 1.5. Let $f: X \to Y$ be a mapping.

(1) f is an mssc-mapping [14], if X is a subspace of the product space $\prod_{n \in \mathbb{N}} X_n$ of a family $\{X_n : n \in \mathbb{N}\}$ of metric spaces, and for each $y \in Y$, there exists a sequence $\{V_{y,n} : n \in \mathbb{N}\}$ of open neighborhoods of y in Y such that each $\overline{p_n(f^{-1}(V_{y,n}))}$ is a compact subset of X_n , where $p_n : \prod_{i \in \mathbb{N}} X_i \to X_n$ is the projection.

(2) f is an 1-sequence-covering mapping [15] if, for each $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that whenever $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to y in Y there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

(3) f is a 2-sequence-covering mapping [15] if, for each $y \in Y$, $x_y \in f^{-1}(y)$, and sequence $\{y_n : n \in \mathbb{N}\}$ converging to y in Y, there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

(4) f is a sequence-covering mapping [22] if, for each convergent sequence S of Y, there exists a convergent sequence L of X such that f(L) = S. Note that a sequence-covering mapping is a strong sequence-covering mapping in the sense of [12].

(5) f is a pseudo-sequence-covering mapping [11] if, for each convergent sequence S of Y, there exists a compact subset K of X such that f(K) = S.

(6) f is a sequentially-quotient mapping [3] if, for each convergent sequence S of Y, there exists a convergent sequence L of X so that f(L) is a subsequence of S.

(7) f is a compact-covering mapping [20] if, for each compact subset K of Y, there exists a compact subset L of X such that f(L) = K.

(8) f is a π -mapping [2], if for each $y \in Y$ and for each neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

(9) f is a σ -mapping [18], if there exists a base \mathcal{B} of X such that $f(\mathcal{B})$ is a σ -locally finite family in Y.

DEFINITION 1.6. [4] A space X is sequentially separable, if X has a countable subset D such that for each $x \in X$, there exists a sequence $\{x_n : n \in \mathbb{N}\}$ in D converging to x. Here, the subset D is a sequentially dense subset of X.

For undefined terms, refer to [5] and [24].

2. Results

First, we characterize sequence-covering mssc-images of locally separable metric spaces by means of σ -locally finite cs-networks.

- THEOREM 2.1. The following are equivalent for a space X.
- (1) X is a sequence-covering mssc-image of a locally separable metric space.
- (2) X has a σ -locally finite cs-network consisting of cosmic spaces.
- (3) X has a σ -locally finite cs-network consisting of \aleph_0 -spaces.

PROOF. (1) \Rightarrow (2). Let $f: M \to X$ be a sequence-covering mssc-mapping from a locally separable metric space M onto X, and $\{X_n : n \in \mathbb{N}\}$ be the family of metric spaces satisfying that M is a subspace of $\prod_{n \in \mathbb{N}} X_n$, and for each $x \in X$, there exists a sequence $\{V_{x,n} : n \in \mathbb{N}\}$ of open neighborhoods of x in X such that each $\overline{p_n(f^{-1}(V_{x,n}))}$ is a compact subset of X_n , where $p_n : \prod_{i \in \mathbb{N}} X_i \to X_n$ is the projection. Since M is locally separable metric, $M = \bigoplus_{\lambda \in \Lambda} M_\lambda$, where each M_λ is a separable metric space by [5, 4.4.F]. Since each X_n is a metric space, X_n has a σ -locally finite base $C_n = \bigcup \{C_{n,i} : i \in \mathbb{N}\}$, where each $C_{n,i}$ is locally finite. Assume, if necessary, that $C_{n,i} \subset C_{n,i+1}$ for every $i \in \mathbb{N}$. For each $n \in \mathbb{N}$, set

$$\mathcal{B}_n = \left\{ M \cap \bigcap_{i \leqslant n} p_i^{-1}(C_i) : \\ C_i \in \bigcup_{j \leqslant n} \mathcal{C}_{i,j}, \ i \leqslant n, \ M \cap \bigcap_{i \leqslant n} p_i^{-1}(C_i) \subset M_\lambda \text{ for some } \lambda \in \Lambda \right\},$$

set $\mathcal{P}_n = f(\mathcal{B}_n)$, and set $\mathcal{B} = \bigcup \{\mathcal{B}_n : n \in \mathbb{N}\}, \mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$. Then \mathcal{B} is a base for M consisting of separable subsets. Assume, if necessary, that \mathcal{B} is closed under finite intersections. We shall show that \mathcal{P} is a σ -locally finite *cs*-network for X consisting of cosmic spaces by the following facts (a), (b), and (c).

(a) \mathcal{P} is a *cs*-network for X.

1

Let S be a convergent sequence being eventually in U with U open in X. Since f is sequence-covering, there exists a convergent sequence L in M such that

f(L) = S. Since L is eventually in $B \subset f^{-1}(U)$ for some $B \in \mathcal{B}$, S is eventually in $f(B) \subset U$. It implies that S is eventually in $P \subset U$ with $P = f(B) \in \mathcal{P}$. Therefore, \mathcal{P} is a cs-network for X.

(b) \mathcal{P} is σ -locally finite.

For each $x \in X$ and $n \in \mathbb{N}$, set $V_x = \bigcap_{i \leq n} V_{x,i}$, then V_x is an open neighborhood of x in X. For each $i \in \mathbb{N}$, since $\overline{p_i(f^{-1}(V_{x,i}))}$ is a compact subset of X_i and $\mathcal{C}_{i,j}$ is locally finite, $p_i(f^{-1}(V_{x,i}))$ meets only finitely many members of $\mathcal{C}_{i,j}$ for every $j \in \mathbb{N}$. Then $f^{-1}(V_{x,i})$ meets only finitely many members of $\{p_i^{-1}(C_i) : C_i \in \bigcup_{j \leq n} \mathcal{C}_{i,j}\}$. Therefore, $f^{-1}(V_x)$ meets only finitely many members of $\{\bigcap_{i \leq n} p_i^{-1}(C_i) : C_i \in \bigcup_{j \leq n} \mathcal{C}_{i,j}\}$. Therefore, $f^{-1}(V_x)$ meets only finitely many members of $\{\bigcap_{i \leq n} p_i^{-1}(C_i) : C_i \in \bigcup_{j \leq n} \mathcal{C}_{i,j}, i \leq n\}$. It implies that $f^{-1}(V_x)$ meets only finitely many members of \mathcal{B}_n . Hence V_x meets only finitely many members of $f(\mathcal{B}_n)$, i.e., \mathcal{P}_n is locally finite. It follows that \mathcal{P} is σ -locally finite.

(c) Each $P \in \mathcal{P}$ is a cosmic space.

Set P = f(B) for some $B \in \mathcal{B}$. Since B is separable, P is cosmic.

(2) \Rightarrow (3). Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally finite *cs*-network for X consisting of cosmic spaces. Every locally finite family in a Lindelöf space is countable. Hence for each $P \in \mathcal{P}, \{P \cap P' : P' \in \mathcal{P}\}$ is countable, and obviously it is a *cs*-network for P.

(3) \Rightarrow (1). Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally finite *cs*-network for X consisting of \aleph_0 -spaces, where each $\mathcal{P}_n = \{P_{\alpha_n} : \alpha_n \in A_n\}$ is a locally finite family. For each $n \in \mathbb{N}$, since each P_{α_n} is an \aleph_0 -space, P_{α_n} has a countable *cs*-network $\mathcal{P}_{\alpha_n} = \{P_{\alpha_{n,i}} : i \geq n\}$. For each $i \geq n$, set

$$\mathcal{Q}_{\alpha_{n,i}} = \{P_{\alpha_n}\} \cup \{P_{\alpha_{n,j}} : n \leqslant j \leqslant i\} = \{Q_\beta : \beta \in B_{\alpha_{n,i}}\},\$$

where $B_{\alpha_{n,i}}$ is finite, and set

$$\mathcal{Q}_i = \{X\} \cup \left(\bigcup \{\mathcal{Q}_{\alpha_{j,i}} : \alpha_j \in A_j, j \leqslant i\}\right) = \{Q_\beta : \beta \in B_i\},\$$

where $B_i = \{\beta_0\} \cup (\bigcup \{B_{\alpha_{j,i}} : \alpha_j \in A_j, j \leq i\})$ with $Q_{\beta_0} = X$. Since each \mathcal{P}_i is locally finite and each $\mathcal{Q}_{\alpha_{j,i}}$ is finite, \mathcal{Q}_i is locally finite. Endow B_i with the discrete topology, then B_i is a metric space. Set

$$M = \left\{ b = (\beta_i) \in \prod_{i \in \mathbb{N}} B_i : \text{there exists } n \in \mathbb{N} \text{ and } \alpha_n \in A_n \text{ such that} \\ Q_{\beta_i} = X \text{ if } i < n, \ Q_{\beta_i} \in \mathcal{Q}_{\alpha_{n,i}} \text{ if } i \ge n, \text{ and} \\ \{Q_{\beta_i} : i \ge n\} \text{ forms a network at a point } x_b \text{ in } P_{\alpha_n} \right\}.$$

Then M, which is a subspace of the product space $\prod_{i \in \mathbb{N}} B_i$, is a metric space. Since X is T_1 and regular, x_b is unique for every $b \in M$. We define $f : M \to X$ by $f(b) = x_b$ for every $b \in M$.

(a) f is onto.

For each $x \in X$, there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that $x \in P_{\alpha_n}$. Since \mathcal{P}_{α_n} is a countable *cs*-network for P_{α_n} , $(\mathcal{P}_{\alpha_n})_x = \{Q_\beta \in \mathcal{P}_{\alpha_n} : x \in Q_\beta\}$ is a countable network at x in P_{α_n} . We may assume that $(\mathcal{P}_{\alpha_n})_x = \{P_{x,j} : j \in \mathbb{N}\}$, where $P_{x,j} \in \mathcal{Q}_{\alpha_{n,i(j)}}$ with some $i(j) \in \mathbb{N}$ satisfying i(j) < i(j+1). For each $i \in \mathbb{N}$, take Q_{β_i} as follows.

(i) i < n: $Q_{\beta_i} = X$,

(ii) $i \ge n$: $Q_{\beta_i} = P_{x,j}$ if i = i(j) for some $j \in \mathbb{N}$, and otherwise, $Q_{\beta_i} = P_{\alpha_n}$.

Then $\{Q_{\beta_i} : i \ge n\} - \{P_{\alpha_n}\} = (\mathcal{P}_{\alpha_n})_x - \{P_{\alpha_n}\}$. Therefore, $\{Q_{\beta_i} : i \ge n\}$ forms a network at x in P_{α_n} . It implies that $b = (\beta_i) \in M$ satisfying x = f(b), i.e., f is onto.

(b) f is continuous.

For each $b = (\beta_i) \in M$ and $x = f(b) \in U$ with U open in X. Then $x = f(b) \in Q_{\beta_k} \subset U$ for some $k \in \mathbb{N}$. Set $U_b = \{c = (\gamma_i) \in M : \gamma_k = \beta_k\}$. Then U_b is open in M, and $b \in U_b$. For each $c \in U_b$, we find $f(c) \in Q_{\gamma_k} = Q_{\beta_k} \subset U$. It implies that $f(U_b) \subset U$, i.e., f is continuous.

(c) M is locally separable.

Let $b = (\beta_i) \in M$. Then there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that $Q_{\beta_i} = X$ if i < n, $Q_{\beta_i} \in Q_{\alpha_{n,i}}$ if $i \ge n$, and $\{Q_{\beta_i} : i \ge n\}$ forms a network at a point x_b in P_{α_n} . Set $M_b = \{c = (\gamma_i) \in M : \gamma_n = \beta_n\}$. Then M_b is open in M, and $b \in M_b$. For each $c = (\gamma_i) \in M_b$, there exists $m \in \mathbb{N}$ and $\alpha_m \in A_m$ such that $Q_{\gamma_i} = X$ if i < m, $Q_{\gamma_i} \in Q_{\alpha_{m,i}}$ if $i \ge m$, and $\{Q_{\gamma_i} : i \ge m\}$ forms a network at a point x_c in P_{α_m} . It follows from $Q_{\gamma_n} = Q_{\beta_n}$ that $P_{\alpha_m} \cap P_{\alpha_n} \ne \emptyset$. Since P_{α_n} is an \aleph_0 -space and \mathcal{P}_m is locally finite, $C_m = \{\alpha_m \in A_m : P_{\alpha_m} \cap P_{\alpha_n} \ne \emptyset\}$ is countable for every $m \in \mathbb{N}$. Then $E_i = \{\beta_0\} \cup (\bigcup \{B_{\alpha_{j,i}} : \alpha_j \in C_j, j \le i\})$ is countable. It implies that $\{\beta_1\} \times \cdots \times \{\beta_{n-1}\} \times \prod_{i \ge n} E_i$ is hereditarily separable. Since $M_b \subset \{\beta_1\} \times \cdots \times \{\beta_{n-1}\} \times \prod_{i \ge n} E_i, M_b$ is separable. Therefore, M is locally separable.

(d) f is an mssc-mapping.

For each $x \in X$ and each $i \in \mathbb{N}$, since \mathcal{P}_i is locally finite, there exists an open neighborhood $V_{x,i}$ of x in X such that $D_i = \{\alpha_i \in A_i : P_{\alpha_i} \cap V_{x,i} \neq \emptyset\}$ is finite. Then $F_i = \{\beta_0\} \cup (\bigcup \{B_{\alpha_{j,i}} : \alpha_j \in D_j, j \leq i\})$ is finite. Since $p_i(f^{-1}(V_{x,i})) \subset F_i$, $\overline{p_i(f^{-1}(V_{x,i}))}$ is compact. It implies that f is an mssc-mapping.

(e) f is sequence-covering.

For each convergent sequence S in X, since \mathcal{P} is a σ -locally finite *cs*-network for X, there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that S is eventually in $P_{\alpha_n} \in \mathcal{P}_n$. Then $L_{\alpha_n} = S \cap P_{\alpha_n}$ is a convergent sequence in P_{α_n} . For each $i \ge n$, we find that $\bigcup \{\mathcal{Q}_{\alpha_{n,i}} : i \ge n\}$ is a σ -locally finite *cs*-network for P_{α_n} satisfying $P_{\alpha_n} \in \mathcal{Q}_{\alpha_{n,i}} \subset \mathcal{Q}_{\alpha_{n,i+1}}$. It follows from the proof (3) \Rightarrow (2) of [13, Theorem 5.1] that there exists a convergent sequence H_{α_n} in M_{α_n} such that $f_{\alpha_n}(H_{\alpha_n}) = L_{\alpha_n}$, where

$$M_{\alpha_n} = \Big\{ c = (\gamma_i)_{i \ge n} \in \prod_{i \ge n} B_{\alpha_{n,i}} : \{ Q_{\gamma_i} : i \ge n \} \text{ forms a network} \\ \text{at a point } x_c \text{ in } P_{\alpha_n} \Big\},$$

and $f_{\alpha_n} : M_{\alpha_n} \to P_{\alpha_n}$ defined by $f_{\alpha_n}(c) = x_c$ for every $c \in M_{\alpha_n}$. For each $c = (\gamma_i)_{i \ge n} \in H_{\alpha_n}$, set $b_c = (\beta_i)_{i \in \mathbb{N}}$, where $Q_{\beta_i} = X$ if i < n and $\beta_i = \gamma_i$ if $i \ge n$, and set $H = \{b_c : c \in H_{\alpha_n}\}$. Then H is a convergent sequence in M and $f(H) = L_{\alpha_n}$. Since S is eventually in $P_{\alpha_n}, S - P_{\alpha_n}$ is finite. Then $S - P_{\alpha_n} = f(F)$ with some finite subset F of M. Set $L = H \cup F$, then L is a convergent sequence in M satisfying f(L) = S. It implies that f is sequence-covering.

REMARK 2.1. The argument for *cs*-networks in the proof(2) \Rightarrow (3) of Theorem 2.1 can not apply to *cs*^{*}-networks or *cfp*-networks.

COROLLARY 2.1. The following are equivalent for a space X.

- (1) X is a sequence-covering, quotient mssc-image of a locally separable metric space.
- (2) X is a sequential space having a σ -locally finite cs-network consisting of cosmic spaces.
- (3) X is a sequential space having a σ-locally finite cs-network consisting of ^N₀-spaces.

PROOF. (1) \Rightarrow (2). Since X is a quotient image of a locally separable metric space, X is a sequential space by [6, Proposition 1.2]. Then X is a sequential space having a σ -locally finite *cs*-network consisting of cosmic spaces by Theorem 2.1.

 $(2) \Rightarrow (3)$. As in the proof $(2) \Rightarrow (3)$ of Theorem 2.1.

 $(3) \Rightarrow (1)$. It follows from Theorem 2.1 that X is a sequence-covering msscimage of a locally separable metric space under some mapping f. Since f is a sequence-covering mapping onto a sequential space, f is a quotient mapping by [17, Lemma 3.5]. It implies that X is a sequence-covering, quotient mssc-image of a locally separable metric space.

Next, we characterize 1-sequence-covering mssc-images of locally separable metric spaces by means of σ -locally finite *sn*-networks.

THEOREM 2.2. The following are equivalent for a space X.

- (1) X is an 1-sequence-covering mssc-image of a locally separable metric space.
- (2) X has a σ -locally finite sn-network consisting of cosmic spaces.
- (3) X has a σ -locally finite sn-network consisting of sn-second countable spaces.

PROOF. (1) \Rightarrow (2). Let $f: M \to X$ be an 1-sequence-covering mssc-mapping from a locally separable metric space M onto X. For each $x \in X$, let $a_x \in f^{-1}(x)$ satisfying that whenever $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X there exists a sequence $\{a_n : n \in \mathbb{N}\}$ converging to a_x in M with each $a_n \in f^{-1}(x_n)$. By using notations in the proof (1) \Rightarrow (2) of Theorem 2.1 again, let $\mathcal{Q}_x = \{P \in \mathcal{P} :$ P = f(B) with $a_x \in B \in \mathcal{B}\}$, and let $\mathcal{Q} = \bigcup \{\mathcal{Q}_x : x \in X\}$. We shall prove that \mathcal{Q} is a σ -locally finite *sn*-network for X consisting of cosmic spaces by the following facts (a), (b), (c) for every $x \in X$, and (d), (e).

(a) \mathcal{Q}_x is a network at x in X.

It is clear that $x \in \bigcap \mathcal{Q}_x$. Let $x \in U$ with U open in X, then $a_x \in f^{-1}(U)$. Since \mathcal{B} is a base for M, $a_x \in B \subset f^{-1}(U)$ for some $B \in \mathcal{B}$. Set Q = f(B), then $Q \in \mathcal{Q}_x$ and $x \in Q \subset U$. It implies that \mathcal{Q}_x is a network at x in X.

(b) If $Q_1, Q_2 \in \mathcal{Q}_x$, then $Q \subset Q_1 \cap Q_2$ for some $Q \in \mathcal{Q}_x$.

Set $Q_1 = f(B_1), Q_2 = f(B_2)$, where $B_1, B_2 \in \mathcal{B}$ with $a_x \in B_1$ and $a_x \in B_2$. Since \mathcal{B} is a base for M, $a_x \in B \subset B_1 \cap B_2$ for some $B \in \mathcal{B}$. Set Q = f(B), then $Q \in \mathcal{Q}_x$ and $Q \subset Q_1 \cap Q_2$. (c) Each $Q \in \mathcal{Q}_x$ is a sequential neighborhood of x.

Set Q = f(B) with $a_x \in B \in \mathcal{B}$. For each convergent sequence S converging to x, there exists a convergent sequence L converging to a_x in M such that f(L) = S. Since L is eventually in B, S is eventually in Q. It implies that Q is a sequential neighborhood of x.

(d) \mathcal{Q} is σ -locally finite.

Since $\mathcal{Q} \subset \mathcal{P}$ and \mathcal{P} is σ -locally finite, \mathcal{Q} is σ -locally finite.

(e) Each $Q \in \mathcal{Q}$ is a cosmic space.

Set Q = f(B) for some $B \in \mathcal{B}$. Since B is separable, Q is cosmic.

 $(2) \Rightarrow (3)$. As in the proof $(2) \Rightarrow (3)$ of Theorem 2.1.

 $(3) \Rightarrow (1)$. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally finite *sn*-network for X consisting of \aleph_0 -spaces. By using notations and arguments in the proof $(3) \Rightarrow (1)$ of Theorem 2.1 again, since each *sn*-network is also a *cs*-network, it suffices to prove that the mapping f is 1-sequence-covering.

For each $x \in X$, since \mathcal{P} is a σ -locally finite *sn*-network for X, there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that P_{α_n} is a sequential neighborhood of x. Then $\bigcup \{ \mathcal{Q}_{\alpha_{n,i}} :$ $i \ge n$ is a σ -locally finite sn-network for P_{α_n} . It implies that f_{α_n} is 1-sequencecovering by [13, Theorem 2.1]. Hence, there exists $c_x = (\gamma_{x,i})_{i \ge n} \in f_{\alpha_n}^{-1}(x)$ such that whenever $\{x_m : m \in \mathbb{N}\}\$ is a sequence converging to x in P_{α_n} there exists a sequence $\{c_m : m \in \mathbb{N}\}$ converging to c_x in M_{α_n} with each $c_m \in f_{\alpha_n}^{-1}(x_m)$. Set $b_x = (\beta_{x,i})$, where $Q_{\beta_{x,i}} = X$ if i < n and $\beta_{x,i} = \gamma_{x,i}$ if $i \ge n$, then $b_x \in f^{-1}(x)$. Let $\{y_m : m \in \mathbb{N}\}$ be a sequence in X converging to x. Since P_{α_n} is a sequential neighborhood of x, there exists $m_0 \in \mathbb{N}$ such that $\{y_m : m \ge m_0\} \subset P_{\alpha_n}$ is a sequence converging to x in P_{α_n} . Then there exists a sequence $\{c_m : m \ge m_0\}$ in M_{α_n} converging to c_x and $c_m \in f_{\alpha_n}^{-1}(y_m)$ for each $m \ge m_0$. For each $c_m =$ $(\gamma_{m,i})_{i \ge n}$, set $b_m = (\beta_{m,i})$, where $Q_{\beta_{m,i}} = X$ if i < n and $\beta_{m,i} = \gamma_{m,i}$ if $i \ge n$. Then $b_m \in M$ and $f(b_m) = y_m$ for each $m \ge m_0$. For each $m < m_0$, take some $b_m \in f^{-1}(y_m)$. Then $\{b_m : m \in \mathbb{N}\}$ is a sequence in M converging to b_x and $b_m \in f^{-1}(y_m)$ for each $m \in \mathbb{N}$. It implies that f is 1-sequence-covering.

COROLLARY 2.2. The following are equivalent for a space X.

- (1) X is an 1-sequence-covering, quotient mssc-image of a locally separable metric space.
- (2) X has a σ -locally finite weak base consisting of cosmic spaces.
- (3) X has a σ -locally finite weak base consisting of sn-second countable spaces.

PROOF. (1) \Rightarrow (2). Since X is a quotient image of a locally separable metric space, X is a sequential space by [6, Proposition 1.2]. Then X is a sequential space having a σ -locally finite *sn*-network \mathcal{P} consisting of cosmic spaces by Theorem 2.2. It follows from Remark 1.1 that \mathcal{P} is a weak base for X. Therefore, X has a σ -locally finite weak base consisting of cosmic spaces.

 $(2) \Rightarrow (3)$. Since X has a σ -locally weak base, X is a sequential space. It follows from Theorem 2.2 that X is a sequential space having a σ -locally finite sn-network \mathcal{P} consisting of sn-second countable spaces. By Remark 1.1, \mathcal{P} is a weak base for X. It implies that X has a σ -locally finite weak base consisting of sn-second countable spaces.

 $(3) \Rightarrow (1)$. It follows from Theorem 2.2 that X is an 1-sequence-covering msscimage of a locally separable metric space under some mapping f. Since X has a σ -locally finite weak base, X is a sequential space. Then f is an 1-sequencecovering mapping onto a sequential space, and so f is a quotient mapping by [17, Lemma 3.5]. It implies that X is an 1-sequence-covering, quotient mssc-image of a locally separable metric space.

REMARK 2.2. We can replace "cosmic spaces" in Theorem 2.2 and Corollary 2.2 by " \aleph_0 -spaces".

In the following, we characterize 2-sequence-covering mssc-images of locally separable metric spaces by means of σ -locally finite *so*-networks.

THEOREM 2.3. The following are equivalent for a space X.

(1) X is a 2-sequence-covering mssc-image of a locally separable metric space.

- (2) X has a σ -locally finite so-network consisting of cosmic spaces.
- (3) X has a σ -locally finite so-network consisting of so-second countable spaces.

PROOF. (1) \Rightarrow (2). Let $f: M \to X$ be a 2-sequence-covering mssc-mapping from a locally separable metric space M onto X. For each $x \in X$, by using notations in the proof(1) \Rightarrow (2) of Theorem 2.1 again, let $\mathcal{B}_x = \{B \in \mathcal{B} : f^{-1}(x) \cap B \neq \emptyset\}$, and let \mathcal{R}_x be the family of all finite intersections of members of $f(\mathcal{B}_x)$. We shall prove that $\mathcal{R} = \bigcup \{\mathcal{R}_x : x \in X\}$ is a σ -locally finite *so*-network for X consisting of cosmic spaces by the following facts (a), (b), (c) for every $x \in X$ and (d), (e).

(a) \mathcal{R}_x is a network at x in X.

This is obvious because \mathcal{B}_x is a base for $f^{-1}(x)$.

(b) If $R_1, R_2 \in \mathcal{R}_x$, then $R \subset R_1 \cap R_2$ for some $R \in \mathcal{R}_x$.

This is obvious by choosing $R = R_1 \cap R_2$.

(c) Each $R \in \mathcal{R}_x$ is sequentially open.

Let $B \in \mathcal{B}_x$, $y \in f(B)$, and S be a convergent sequence converging to y. Since $y \in f(B)$, $f^{-1}(y) \cap B \neq \emptyset$. Take some $a_y \in f^{-1}(y) \cap B$. Then there exists a convergent sequence L converging to a_y in M such that f(L) = S. Since L is eventually in B, S is eventually in f(B). It implies that f(B) is sequentially open, i.e., every member of $f(\mathcal{B}_x)$ is sequentially open. Because R is some finite intersection of members of $f(\mathcal{B}_x)$, we find that R is sequentially open.

(d) \mathcal{R} is σ -locally finite.

Since $\bigcup \{ f(\mathcal{B}_x) : x \in X \} \subset \mathcal{P}$ and \mathcal{P} is σ -locally finite, $\bigcup \{ f(\mathcal{B}_x) : x \in X \}$ is σ -locally finite. It implies that \mathcal{R} is σ -locally finite.

(e) Each $R \in \mathcal{R}$ is a cosmic space.

For each $B \in \mathcal{B}_x$, since B is separable, f(B) is cosmic, i.e., every member of $f(\mathcal{B}_x)$ is cosmic. It implies that R is cosmic.

 $(2) \Rightarrow (3)$. As in the proof $(2) \Rightarrow (3)$ of Theorem 2.1.

(3) \Rightarrow (1). Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally finite so-network for X consisting of \aleph_0 -spaces. By using notations and arguments in the proof (3) \Rightarrow (1) of Theorem 2.1 again, since each so-network is also a *cs*-network, it suffices to prove that the mapping f is 2-sequence-covering.

For each $x \in X$ and each $b_x \in f^{-1}(x)$, let $b_x = (\beta_{x,i})$. Then there exists some $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that $Q_{\beta_{x,i}} = X$ if i < n, $Q_{\beta_{x,i}} \in \mathcal{Q}_{\alpha_{n,i}}$ if $i \ge n$, and $\{Q_{\beta_{x,i}} : i \ge n\}$ forms a network at x in P_{α_n} . Set $c_x = (\beta_{x,i})_{i\ge n}$, then $c_x \in f_{\alpha_n}^{-1}(x)$. Since $\{\mathcal{Q}_{\alpha_{n,i}} : i \ge n\}$ is a σ -locally finite so-network for $P_{\alpha_n}, f_{\alpha_n}$ is a 2-sequence-covering by [13, Theorem 3.1]. Let $\{x_m : m \in \mathbb{N}\}$ be a sequence converging to x in X. Since P_{α_n} is sequentially open, there exists $m_0 \in \mathbb{N}$ such that $\{x_m : m \ge m_0\}$ is a sequence converging to x in P_{α_n} . Then there exists a sequence $\{c_m : m \ge m_0\}$ in M_{α_n} converging to c_x and $c_m \in f_{\alpha_n}^{-1}(x_m)$ for each $m \ge m_0$. For each $c_m = (\gamma_{m,i})_{i\ge n}$, set $b_m = (\beta_{m,i})$, where $Q_{\beta_{m,i}} = X$ if i < n, and $\beta_{m,i} = \gamma_{m,i}$ if $i \ge n$. Then $b_m \in M$ and $f(b_m) = x_m$ for each $m \ge m_0$. For each $m < m_0$, take some $b_m \in f^{-1}(x_m)$. Then $\{b_m : m \in \mathbb{N}\}$ is a sequence in M converging to b_x and $b_m \in f^{-1}(x_m)$ for each $m \in \mathbb{N}$. It implies that f is 2-sequence-covering.

COROLLARY 2.3. The following are equivalent for a space X.

- (1) X is a 2-sequence-covering, quotient mssc-image of a locally separable metric space.
- (2) X has a σ -locally finite base consisting of cosmic spaces.
- (3) X has a σ -locally finite base consisting of second countable spaces.

PROOF. (1) \Rightarrow (2). Since X is a quotient image of a locally separable metric space, X is a sequential space by [6, Proposition 1.2]. It follows from Theorem 2.3 that X is a sequential space having a σ -locally finite so-network \mathcal{P} consisting of cosmic spaces. For each $P \in \mathcal{P}$, since X is sequential and P is sequential open, P is open in X. Hence \mathcal{P} is a σ -locally finite base for X consisting of cosmic spaces.

 $(2) \Rightarrow (3)$. It follows from Theorem 2.3 that X has a σ -locally finite so-network \mathcal{P} consisting of so-second countable spaces. Since X has a σ -locally finite base, X is sequential. It implies that every $P \in \mathcal{P}$ is open. Then \mathcal{P} is a σ -locally finite base consisting of so-second countable spaces.

Let $P \in \mathcal{P}$ and \mathcal{Q} be a countable *so*-network for P. Since P is open, P is a sequential space by [6, Proposition 1.9]. Then every $Q \in \mathcal{Q}$ is open in P. Hence \mathcal{Q} is a countable base for P. It implies that P is a second countable space.

By the above, X has a σ -locally finite base consisting of second countable spaces.

 $(3) \Rightarrow (1)$. It follows from Theorem 2.3 that X is a 2-sequence-covering msscimage of a locally separable metric space under some mapping f. Since X has a σ -locally finite base, X is sequential. Then f is a 2-sequence-covering mapping onto a sequential space, and so f is a quotient mapping by [17, Lemma 3.5]. It implies that X is a 2-sequence-covering, quotient mssc-image of a locally separable metric space.

REMARK 2.3. We can replace "cosmic spaces" in Theorem 2.3 and Corollary 2.3 by " \aleph_0 -spaces", or "sn-second countable spaces".

References

 T. V. An and N. V. Dung, On π-images of locally separable metric spaces, Int. J. Math. Math. Sci. (2008), 1–8.

- [2] A.V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115–162.
- [3] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czechoslovak Math. J. 26 (1976), 174–182.
- [4] S.W. Davis, More on Cauchy conditions, Topology Proc. 9 (1984), 31–36.
- [5] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1988.
- [6] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.
- [0] J. I. Tranknin, *Draces in which sequences suffice*, Fund. Math. **51** (1969), 101 116
- Z. M. Gao, *N-space is invariant under perfect mappings*, Questions Answers Gen. Topology 5 (1987), 281–291.
- [8] Y. Ge, On compact images of locally separable metric spaces, Topology Proc. 27(1) (2003), 351–360.
- [9] Y. Ge, Spaces with countable sn-networks, Comment. Math. Univ. Carolin. 45 (2004), 169– 176.
- [10] J.A. Guthrie, A characterization of \aleph_0 -spaces, General Topology Appl. 1 (1971), 105–110.
- [11] Y. Ikeda, C. Liu, and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), 237–252.
- [12] Z. Li, A note on ℵ-spaces and g-metrizable spaces, Czechoslovak Math. J. 55(3) (2005), 803-808.
- [13] Z. Li, Q. Li, and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15–21.
- [14] S. Lin, Locally countable families, locally finite families and Alexandroff's problem, Acta Math. Sinica (Chin. Ser.) 37 (1994), 491–496.
- [15] S. Lin, On sequence-covering s-mappings, Adv. Math. (China) 25 (1996), 548–551.
- [16] S. Lin, C. Liu, and M. Dai, *Images on locally separable metric spaces*, Acta Math. Sinica (N.S.) 13(1) (1997), 1–8.
- [17] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.
- [18] S. Lin and P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolin. 44(2) (2003), 295– 306.
- [19] E. Michael, A note on closed maps and compact subsets, Israel J. Math. 2 (1964), 173–176.
- [20] E. Michael, ℵ₀-spaces, J. Math. Mech. **15** (1966), 983–1002.
- [21] P. O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183–189.
- [22] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology Appl. 1 (1971), 143–154.
- [23] F. Siwiec, On defining a space by a weak-base, Pacific J. Math. 52 (1974), 233-245.
- [24] Y. Tanaka, Theory of k-networks II, Questions Answers Gen. Topology 19 (2001), 27-46.
- [25] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32(1) (2006), 99–117.
- [26] P. Yan and S. Lin, Compact-covering, s-mappings on metric spaces, Acta Math. Sinica 42 (1999), 241–244.

Mathematics Faculty Dongthap University Caolanh City Dongthap Province Vietnam nguyendungtc@yahoo.com nvdung@staff.dthu.edu.vn (Received 11 10 2008)