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Abstract. We consider the maximum set splitting problem (MSSP). For the
first time an integer linear programming (ILP) formulation is presented and
validity of this formulation is given. We propose a genetic algorithm (GA)
that uses the binary encoding and the standard genetic operators adapted to
the problem. The overall performance of the GA implementation is improved
by a caching technique. Experimental results are performed on two sets of
instances from the literature: minimum hitting set and Steiner triple systems.
The results show that CPLEX optimally solved all hitting set instances up
to 500 elements and 10000 subsets. Also, it can be seen that GA routinely
reached all optimal solutions up to 500 elements and 50000 subsets. The
Steiner triple systems seems to be much more challenging for maximum set
splitting problems since the CPLEX solved to optimality, within two hours,
only two instances up to 15 elements and 35 subsets. For these instances GA
reached all solutions as CPLEX but in much smaller running time.

1. Introduction

Let Ω be a finite set with cardinality 𝑚 = |Ω| and a family of subsets be
given 𝑆1, . . . , 𝑆𝑛 ⊆ Ω. A partition of Ω is a pair of subsets (𝑃1, 𝑃2) of Ω such that
𝑃1 ∩ 𝑃2 = ∅ and 𝑃1 ∪ 𝑃2 = Ω. We say that a subset 𝑆𝑗 of Ω is split by the partition
(𝑃1, 𝑃2) of Ω if 𝑆𝑗 intersects with both 𝑃1 and 𝑃2 (i.e., 𝑆𝑖 ∩ 𝑃1 ̸= ∅, 𝑆𝑖 ∩ 𝑃2 ̸= ∅).
For the partition (𝑃1, 𝑃2) let us denote Obj(𝑃1, 𝑃2) as a number of subsets which
are split. Now, the maximum set splitting problem (MSSP) can be formulated as
finding max Obj(𝑃1, 𝑃2) over all partitions of Ω. Weighted maximum set splitting
problem can be similarly defined by finding max

∑︀𝑛
𝑗=1, 𝑆𝑗 is split 𝑤𝑗 .

Let us demonstrate properties of MSSP on two little illustrative examples.
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Example 1.1. Let our first set consist of ten elements (𝑚 = 10) and four
subsets (𝑛 = 4). The subsets are: 𝑆1 = {1, 2, 4, 7, 9}; 𝑆2 = {3, 4, 5, 7, 9, 10}; 𝑆3 =
{2, 8, 9, 10}, 𝑆4 = {2, 3, 4, 6, 7, 8, 9, 10}. One of the optimal solutions is the partition
(𝑃1, 𝑃2), 𝑃1 = {1, 2, 7, 9}; 𝑃2 = {3, 4, 5, 6, 8, 10}. The optimal objective value is 4
because 𝑆1 ∩𝑃1 = {1, 2, 7, 9}; 𝑆1 ∩𝑃2 = {4}; 𝑆2 ∩𝑃1 = {7, 9}; 𝑆2 ∩𝑃2 = {3, 4, 5, 10};
𝑆3 ∩ 𝑃1 = {2, 9}; 𝑆3 ∩ 𝑃2 = {8, 10}; 𝑆4 ∩ 𝑃1 = {2, 7, 9}; 𝑆4 ∩ 𝑃2 = {3, 4, 6, 8, 10}.

Example 1.2. Let our second set consist of three elements (𝑚 = 3) and three
subsets (𝑛 = 3). The subsets are: 𝑆1 = {1, 2}; 𝑆2 = {1, 3}; 𝑆3 = {2, 3}. One
of the optimal solutions is the partition (𝑃1, 𝑃2), 𝑃1 = {1, 2}; 𝑃2 = {3}. The
optimal objective value is 2 because 𝑆1 ∩ 𝑃1 = {1, 2}; 𝑆1 ∩ 𝑃2 = ∅; 𝑆2 ∩ 𝑃1 = {1};
𝑆2 ∩ 𝑃2 = {3}; 𝑆3 ∩ 𝑃1 = {2}; 𝑆3 ∩ 𝑃2 = {3}.

The MSSP, as well as weighted variant of the problem, is NP-hard in general
[10]. Even more, the variant of the problem, when all subsets in the family are of
size exactly 𝑘, is also NP-hard for 𝑘 > 2. Also, the approximation of the MSSP
with 𝑘 = 3, within a factor greater than 11

12 , is NP-hard [11].
As can be seen in [2,3], a probabilistic approach is used for developing of deter-

ministic kernelization algorithm for the maximum set splitting problem. Running
time of a subset partition technique is bounded by 𝑂*(2𝑘). That algorithm can be
de-randomized, which leads to a deterministic parameterized algorithm of running
time 𝑂*(4𝑘) for the weighted maximum set splitting problem, and gives the first
proof that the problem is fixed-parameter tractable. The kernelization technique
is also used in [5,6].

In [1] is given the first quadratic integer formulation of the MSSP. Semidefi-
nite programming (SDP) relaxation of that formulation was used for constructing
0.724-approximation algorithm of the MSSP. Slightly better, 0.7499-approximation
algorithm, given in [23], is based on strengthened SDP relaxation, improved round-
ing method, and tighter analysis. The quadratic integer formulation, used in SDP
relaxation, is given as follows.

max
𝑛∑︁

𝑗=1
𝑧𝑗 subject to

1
|𝑆𝑗 | − 1

∑︁
𝑖1,𝑖2∈𝑆𝑗

𝑖1 ̸=𝑖2

1 − 𝑦𝑖1𝑦𝑖2

2 > 𝑧𝑗 , for every 𝑗 = 1, . . . , 𝑛

𝑧𝑗 ∈ {0, 1}, for every 𝑗 = 1, . . . , 𝑛

𝑦𝑖 ∈ {−1, 1}, for every 𝑖 = 1, . . . , 𝑚

2. An integer linear programming formulation

It is useful to formulate, when it is possible, discrete optimization problems as
integer or mixed integer programming models, in order to use different well-known
optimization techniques for their solving [16,17,21]. Following that idea we have
used the CPLEX solver on the new integer linear programming formulation for the
MSSP described below.
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Let us define parameters and variables:

𝑠𝑖𝑗 =
{︃

1, 𝑖 ∈ 𝑆𝑗 ,

0, 𝑖 /∈ 𝑆𝑗 ,
𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛(2.1)

𝑥𝑖 =
{︃

1, 𝑖 ∈ 𝑃1,

0, 𝑖 ∈ 𝑃2,
𝑖 = 1, . . . , 𝑚(2.2)

𝑦𝑗 =
{︃

1, 𝑆𝑗 is split,
0, 𝑆𝑗 is not split,

𝑗 = 1, . . . , 𝑛(2.3)

Now, an integer linear programming model can be formulated as follows:

max
𝑛∑︁

𝑗=1
𝑦𝑗(2.4)

𝑦𝑗 6
𝑚∑︁

𝑖=1
𝑠𝑖𝑗𝑥𝑖, for every 𝑗 = 1, . . . , 𝑛(2.5)

𝑦𝑗 +
𝑚∑︁

𝑖=1
𝑠𝑖𝑗𝑥𝑖 6 |𝑆𝑗 |, for every 𝑗 = 1, . . . , 𝑛(2.6)

𝑦𝑗 ∈ {0, 1}, for every 𝑗 = 1, . . . , 𝑛(2.7)
𝑥𝑖 ∈ {0, 1}, for every 𝑖 = 1, . . . , 𝑛(2.8)

As it can be seen, there are 𝑚 + 𝑛 binary variables and 2𝑛 constraints.
The following lemmas show that the solution of this ILP formulation is the

solution of the MSSP. First of all, we can define ObjILP(𝑥, 𝑦) =
∑︀𝑛

𝑗=1 𝑦𝑗 subject to
(2.5)–(2.8).

Lemma 2.1. Let Obj(𝑃1, 𝑃2) be a partition of Ω. Then there is a solution (𝑥, 𝑦)
of system (2.5)–(2.8) such that ObjILP(𝑥, 𝑦) > Obj(𝑃1, 𝑃2).

Proof. Let variables (𝑥, 𝑦) be defined as (2.1)–(2.3). We will prove that these
variables satisfy system (2.5)–(2.8) and ObjILP(𝑥, 𝑦) > Obj(𝑃1, 𝑃2).

According to the definition of variables 𝑦𝑗 , we have: 𝑆𝑗 is split ⇔ 𝑦𝑗 = 1. There-
fore, the number of splitting sets 𝑆𝑗 is equal to

∑︀𝑛
𝑗=1 𝑦𝑗 which implies ObjILP(𝑥, 𝑦) >

Obj(𝑃1, 𝑃2). Constraints (2.7) and (2.8) are obviously satisfied from definitions
(2.2) and (2.3).

If 𝑆𝑗 is not split, then 𝑦𝑗 = 0. In that case 0 = 𝑦𝑗 6
∑︀𝑚

𝑖=1 𝑠𝑖𝑗𝑥𝑖, because 𝑠𝑖𝑗 and
𝑥𝑖 are nonnegative, so constraints (2.5) are satisfied. Also we have 𝑦𝑗 +

∑︀𝑚
𝑖=1 𝑠𝑖𝑗𝑥𝑖 =∑︀𝑚

𝑖=1 𝑠𝑖𝑗𝑥𝑖 6
∑︀𝑚

𝑖=1 𝑠𝑖𝑗 = |𝑆𝑗 | and with that, constraints (10) are satisfied.
In the other case, if 𝑆𝑗 is split, then 𝑦𝑗 = 1, 𝑆𝑗 ∩ 𝑃1 ̸= ∅ and 𝑆𝑗 ∩ 𝑃2 ̸= ∅.

Therefore, (∃𝑢)(𝑢 ∈ 𝑆𝑗 ∧ 𝑢 ∈ 𝑃1) and (∃𝑣)(𝑣 ∈ 𝑆𝑗 ∧ 𝑣 ∈ 𝑃2) imply 𝑠𝑢𝑗 = 1, 𝑥𝑢 = 1,
𝑠𝑣𝑗 = 1, 𝑥𝑣 = 0. The next step shows that we have 𝑦𝑗 = 1 = 𝑠𝑢𝑗𝑥𝑢 6

∑︀𝑚
𝑖=1 𝑠𝑖𝑗𝑥𝑖,

which satisfies constraints (2.5). As previously implied, there is
𝑚∑︁

𝑖=1
𝑠𝑖𝑗𝑥𝑖 = 𝑥𝑣𝑠𝑣𝑗 +

𝑚∑︁
𝑖=1, 𝑖 ̸=𝑣

𝑠𝑖𝑗𝑥𝑖 =
𝑚∑︁

𝑖=1, 𝑖 ̸=𝑣

𝑠𝑖𝑗𝑥𝑖 6
𝑚∑︁

𝑖=1, 𝑖 ̸=𝑣

𝑠𝑖𝑗 = |𝑆𝑗 | − 1
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which implies 𝑦𝑗 +
∑︀𝑚

𝑖=1 𝑠𝑖𝑗𝑥𝑖 = 1 +
∑︀𝑚

𝑖=1 𝑠𝑖𝑗𝑥𝑖 6 |𝑆𝑗 | , so constraints (2.6) are
satisfied. �

Lemma 2.2. If (𝑥, 𝑦) is the solution of system (2.5)–(2.8), then there exists a
partition Obj(𝑃1, 𝑃2) of Ω such that Obj(𝑃1, 𝑃2) > ObjILP(𝑥, 𝑦).

Proof. Define 𝑃1 = {𝑖 | 𝑥𝑖 = 1 ∧ 𝑖 ∈ Ω} and 𝑃2 as its complement. Now, we
should prove 𝑦𝑗 = 1 ⇒ 𝑆𝑗 is split. From constraints (2.5), we have

𝑦𝑗 = 1 ⇒
𝑚∑︁

𝑖=1
𝑠𝑖𝑗𝑥𝑖 > 1 ⇒ (∃𝑢)(𝑠𝑢𝑗 = 1 ∧ 𝑥𝑢 = 1)

⇒ (∃𝑢)(𝑢 ∈ 𝑆𝑗 ∧ 𝑢 ∈ 𝑃1) ⇒ 𝑆𝑗 ∩ 𝑃1 ̸= ∅.

Constraints (2.6) imply

𝑦𝑗 = 1 ⇒ 𝑦𝑗 +
𝑚∑︁

𝑖=1
𝑠𝑖𝑗𝑥𝑖 6 |𝑆𝑗 | ⇒

𝑚∑︁
𝑖=1

𝑠𝑖𝑗𝑥𝑖 6 |𝑆𝑗 | − 1

⇒ (∃𝑣)(𝑠𝑣𝑗 = 1 ∧ 𝑥𝑣 = 0) ⇒ (∃𝑣)(𝑣 ∈ 𝑆𝑗 ∧ 𝑣 ∈ 𝑃2) ⇒ 𝑆𝑗 ∩ 𝑃2 ̸= ∅.

From above it follows 𝑦𝑗 = 1 ⇒ (𝑆𝑗 ∩𝑃1 ̸= ∅∧𝑆𝑗 ∩𝑃2 ̸= ∅) ⇒ 𝑆𝑗 is split. Therefore,∑︀𝑛
𝑗=1 𝑦𝑗 is greater than or equal to the number of splitting sets 𝑆𝑗 , which directly

implies Obj(𝑃1, 𝑃2) > ObjILP(𝑥, 𝑦). �

Now we are ready to state our main theoretical result.

Theorem 2.1. Let be given a family of subsets 𝑆1, . . . , 𝑆𝑛 ⊆ Ω and a partition
(𝑃1, 𝑃2). Let variables 𝑠, 𝑥 and 𝑦 be defined by (2.1)–(2.3). Then partition (𝑃1, 𝑃2)
splits the maximum number of subsets 𝑆𝑗, 𝑗 = 1, . . . , 𝑛 if and only if there is an
optimal solution (𝑥, 𝑦) of (2.4)–(2.8).

Proof. The direction ⇒ can be easily deduced from Lemma 1. The reverse
direction follows from Lemma 2. �

Let us demonstrate CPLEX behavior on MSSP instances from Examples 1
and 2.

Example 2.1. One possible optimal solution of MSSP instance from Example 1
is 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 0, 𝑥5 = 0, 𝑥6 = 0, 𝑥7 = 1, 𝑥8 = 0, 𝑥9 = 1, 𝑥10 = 0,
𝑦1 = 1, 𝑦2 = 1, 𝑦3 = 1, 𝑦4 = 1. Objective value is 4.

Example 2.2. One possible optimal solution of MSSP instance from Example 2
is 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 0, 𝑦1 = 0, 𝑦2 = 1, 𝑦3 = 1. Objective value is 2.

Note that, integer linear programming formulation of the weighted maximum
set splitting problem is given by max

∑︀𝑛
𝑗=1 𝑤𝑗𝑦𝑗 with constrains (2.5)–(2.8).
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3. Genetic algorithm

Genetic algorithms are stochastic search techniques which imitate some spon-
taneous optimization processes in the natural selection and reproduction. At each
iteration (generation) GA manipulates a set (population) of encoded solutions (indi-
viduals), starting from either randomly or heuristically generated one. Individuals
from the current population are evaluated using a fitness function to determine
their qualities. Good individuals are selected to produce the new ones (offspring),
applying operators inspired from those of genetics (crossover and mutation), and
they replace some of the individuals from the current population. A detailed de-
scription of GA is out of this paper’s scope and it can be found in [18]. Extensive
computational experience on various optimization problems shows that GA often
produces high quality solutions in a reasonable time, as can be seen from the fol-
lowing recent applications [7,13–15,19,20,22].

In this section we shall describe a GA implementation for determining the
maximal splitting set.

The binary encoding of the individuals used in this implementation is the fol-
lowing. Each partition (𝑃1, 𝑃2) is naturally represented in the population by a
binary string of length 𝑚. Digit 1 at the 𝑖-th place of the string denotes that an
element 𝑖 belongs to 𝑃1, while 0 shows it is in 𝑃2. For partition determined in this
way, it is easy to check for every subset if it is split. Objective value is the number
of split subsets.

The fitness 𝑓ind of individual ind is computed by scaling objective values objind
of all individuals (there are 𝑁pop individuals in population) into the interval [0,1].
Therefore, the best individual indmax has fitness 1 and the worst one indmin has
fitness 0. More precisely, 𝑓ind = objind − objindmin

objindmax − objindmin
. Next, individuals are arranged

in nonincreasing order of their fitness: 𝑓1 > 𝑓2 > · · · > 𝑓𝑁pop .
Usually GAs have relatively small number of elite individuals, because they

twice have a chance to pass into the next generation: once through selection oper-
ator and once as elite individuals. Such common practice is not adequate for our
purpose. In order to obtain satisfactory results of our GA implementation, we need
sufficient number of elite individuals to preserve good solutions for exploitation as
well as a sufficient number of nonelite individuals for exploration. To prevent an
undeserved domination of 𝑁elite elite individuals over the population, their fitness
are decreased by the following formula:

(3.1) 𝑓ind =
{︃

𝑓ind − 𝑓, 𝑓ind > 𝑓,

0, 𝑓ind 6 𝑓 ;
1 6 ind 6 𝑁elite; 𝑓 = 1

𝑁pop

𝑁pop∑︁
ind=1

𝑓ind

In this way, even nonelite individuals preserve their chance to survive to the next
generation. This approach gives a possibility to allow high elitism without too
high selection pressure and thus too much exploitation in the algorithm. Such
elitist strategy is applied to 𝑁elite elite individuals, which are directly passing to
the next generation. The genetic operators are applied to the rest of the population
(𝑁nnel = 𝑁pop −𝑁elite nonelite individuals). The objective value of elite individuals
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are the same as in the previous generation, so they are calculated only once and
this provides significant time savings.

Duplicated individuals, i.e., individuals with the same genetic code are redun-
dant. In order to prevent them to enter the next generation their fitness values
are set to zero, except for the first occurrence. Individuals with the same objective
value, but different genetic codes, in some cases may dominate in the population
by number, which implies that the other individuals with potentially good genes
are rare. For this reason, it is useful to limit the number of their appearance to
some constant 𝑁𝑟𝑣. This is a very effective technique for saving the diversity of the
genetic material and keeping the algorithm away from a premature convergence. It
consists of two steps for every individual in the population:

Step 1: Check whether the genetic code of the current individual ind is
identical with the genetic code of any of the individuals from 1 to ind −1.
If the answer is positive, set the fitness of ind to 0. Otherwise go to Step 2;

Step 2: Count the number of the individuals from 1 to ind −1 which
did not get fitness 0 in Step 1 and which have the same objective value as
ind. If it is greater than or equal to 𝑁𝑟𝑣, set the fitness of ind to 0.
The selection operator chooses the individuals that will produce offspring in the

next generation, according to their fitness. Low fitness-valued individuals have less
chance to be selected than high fitness-valued ones. In the standard tournament
scheme, one tournament is performed for every nonelitist individual. The tourna-
ment size is a given parameter and tournament candidates are randomly chosen
from the current population. Only the winner of the tournament, i.e., a tourna-
ment candidate with the best fitness participates in the crossover. So, the selection
operator (tournament) is applied 𝑁nnel times on the set of all 𝑁𝑝𝑜𝑝 individuals in
the population to choose the 𝑁nnel parents for crossover. The same individual from
the current generation can participate in several tournaments. The standard tour-
nament selection uses an integral tournament size, which in some cases can be a
limiting factor.

We use an improved tournament selection operator, known as the fine-grained
tournament selection-FGTS, proposed in [8]. This operator uses a real (rational)
parameter 𝐹tour which denotes the desired average tournament size. The first type
of tournaments is held 𝑘1 times and its size is ⌊𝐹tour⌋, while the second type is per-
formed 𝑘2 times with ⌈𝐹tour⌉ individuals participated, so 𝐹tour ≈ 𝑘1⌊𝐹tour⌋+𝑘2⌈𝐹tour⌉

𝑁nnel
.

In [8,20] extensive numerical experiments for different optimization problems
have indicated that FGTS with 𝐹tour = 5.4 gives the best results. So, in this
implementation we adopted that value as a reasonable choice. The running time
for FGTS operator is O(𝑁nnel ·𝐹tour). In practice 𝐹tour and 𝑁nnel are considered to
be constant (not depending on 𝑛) that gives a constant running time complexity.
For detailed information about FGTS see [8].

In the crossover operator all nonelitist individuals chosen to produce offspring
for the next generation are randomly paired for crossover in ⌊𝑁nnel/2⌋ pairs. After
a pair of parents is selected, a crossover operator is applied to them producing
two offspring. The operator we use in this GA implementation is the one-point
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crossover. This operator is performed by exchanging segments of two parents’ ge-
netic codes starting with a randomly chosen crossover point. The crossover operator
is realized with probability 𝑝cross = 0.85. It means that approximately 85% pairs
of individuals exchange their genetic material.

The standard simple mutation operator is performed by changing a randomly
selected gene in the genetic code of the individual, with a certain mutation rate.
During the GA execution it may happen that all individuals in the population have
the same gene on a certain position. This gene is called frozen. If the number of
frozen genes is 𝑙, the search space becomes 2𝑙 times smaller and the possibility of
a premature convergence rapidly increases. The crossover operator can not change
the bit value of any frozen gene and the basic mutation rate is often too small to
restore lost subregions of the search space. On the other hand, if the basic mutation
rate is increased significantly, a genetic algorithm becomes a random search.

For this reason, the simple mutation operator is modified such that the muta-
tion rate is increased only on frozen genes. In this implementation the mutation rate
for frozen genes is 2.5 times higher (1.0/𝑛), comparing to nonfrozen ones (0.4/𝑛).
In each generation, we determine positions where all individuals have a given gene
fixed and define them as frozen genes. Obviously the set of frozen genes is not
fixed, i.e., it may change during the generations.

The initial population is randomly generated, providing the maximal diversity
of the genetic material. That function also computes values of all the individuals
of the population.

In order to obtain satisfactory results of our GA implementation, we need a
sufficient number of elite individuals to preserve good solutions for the exploitation
as well as a sufficient number of nonelite individuals for the exploration. The
population size of 𝑁pop = 150 individuals with 𝑁elite = 100 elite and 𝑁nnel = 50
nonelite individuals is a good compromise between exploitation and exploration
part of GA search. The corresponding values in 𝑘1 and 𝑘2 in FGTS are then 20
and 30, respectively. The maximal allowed number of individuals with the same
objective value is 𝑁𝑟𝑣 = 40.

The run-time performance of GA is optimized by a caching technique. The
main idea is to avoid computing the same objective value every time when genetic
operators produce individuals with the same genetic code. The evaluated objective
values are stored in a hash-queue data structure using the least recently used (LRU)
caching technique. When the same code is obtained again, its objective value is
taken from the cache memory, that provides time-savings. In this implementation
the number of individuals stored in the cache memory is limited to 5000. For
detailed information about caching GA see [12].

4. Experimental results

All computations were executed on 2.5 GHz single processor PC computer with
1 Gb RAM under Windows operating system. For experimental testings, we used
hitting set instances from [4]. Those instances include different numbers of elements
(𝑚 = 50, 100, 250, 500) and different numbers of subsets (𝑛 = 100, 10000, 50000).
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In order to show effectiveness of the proposed ILP formulation, we tested it on
those instances by using CPLEX 10.1 solver. These results are compared with GA
solutions.

Results obtained by CPLEX and GA are given in Table 1. In the first and
second column there are the number of elements 𝑚 and the number of subsets 𝑛,
respectively. The third column contains optimal solutions which were obtained by
CPLEX in case when the method finished its work. In the fourth and fifth columns,
the value and running time of CPLEX are given, respectively. There was a time
limitation of 7.200 seconds, approximately. The mark “opt" is written if CPLEX
finished its work and produced optimal solution. The sixth and seventh columns
consider results of GA, and they are presented in the same way as for the CPLEX.
For the last instance GA reached the solution with objective value of 50000. Since
the overall number of subsets is 50000, it is easy to see that this solution is optimal.

Table 1. Results on the hitting set instances

𝑚 𝑛 opt CPLEX GA
sol 𝑡 (sec) sol 𝑡 (sec)

50 1000 1000 opt 0.078 opt 2.582
50 10000 10000 opt 3.265 opt 60.039
100 1000 1000 opt 0.188 opt 4.67
100 10000 10000 opt 8.297 opt 168.603
100 50000 50000 opt 155.203 opt 683.147
250 1000 1000 opt 0.219 opt 8.626
250 10000 10000 opt 30.063 opt 336.894
500 1000 1000 opt 0.500 opt 13.325
500 10000 10000 opt 106.094 opt 437.909
500 50000 50000 out of memory opt 2086.517

As can be seen from Table 1, CPLEX on the proposed ILP formulation, rou-
tinely found optimal solution for all hitting set instances, except the largest one,
which is solved by GA. Furthermore, from Table 1, it is clear that all subsets are
split. From these facts we can conclude that the hitting set instances from [4] are
easy for maximal set splitting problem. Therefore, running time for GA is greater
than for CPLEX, because of its robustness.

In order to check the effectiveness of both approaches on harder instances, we
tested them on set covering instances derived from Steiner triple systems [9], and
results are presented in Table 2. The data are presented in a similar way as in
Table 1, adding column named ‘ub’ which contains the upper bound of the solution
in case where CPLEX has not finished its work in time limitation of 7200 seconds.

The results from the Table 2 clearly demonstrate that instances derived from
Steiner triple systems are challenging for maximum set splitting problem. CPLEX
program, based on previous formulation, optimally solved only two smallest in-
stances up to 𝑚 = 15 and 𝑛 = 35. All other instances from that collection are
out of reach for exact solving by CPLEX within 2 hours of the running time. GA
reached all solutions as CPLEX but in much smaller running time.
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Table 2. Results on the Steiner triple systems

𝑚 𝑛 opt CPLEX GA
sol ub 𝑡 (sec) sol 𝑡 (sec)

9 12 10 opt 0.031 opt 0.193
15 35 28 opt 0.343 opt 0.233
27 117 91 93 7200 91 0.382
45 330 253 302 7200 253 0.914
81 1080 820 1058 7200 820 2.893
135 3015 2278 3001 7200 2278 7.858
243 9801 7381 9794 7200 7381 65.409

5. Conclusion

This paper is devoted to the maximum set splitting problem. We introduced
its integer linear programming formulation. Also, we proved the correctness of the
corresponding formulation. Numbers of variables and constraints were relatively
small compared to the dimension of the problem.

Additionally, an evolutionary metaheuristic for solving the maximum set split-
ting problem is presented. The binary representation, mutation with frozen genes,
limited number of different individuals with the same objective value and the
caching technique were used.

We carried out numerical experiments using two data sets proposed from the
literature. Numerical results showed that both CPLEX solver, based on this ILP
formulation, and the genetic algorithm, produced very good solutions. On harder
instances GA well performed and obtained solutions more quickly than CPLEX,
because of its heuristic nature.

Our work can be extended in several ways. It would be desirable to investigate
the application of an exact method using the proposed ILP formulation. Also, it
should be directed to parallelization of the presented genetic algorithm and testing
on more powerful multiprocessor computer systems.
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