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ESTIMATES OF MULTILINEAR
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ABSTRACT. We prove the boundedness properties for some multilinear op-
erators related to certain integral operators from Lebesgue spaces to Orlicz
spaces. The operators include Calderén—Zygmund singular integral operator,
Littlewood—Paley operator and Marcinkiewicz operator.

1. Introduction

We are going to consider some integral operators as follows. Let m be a positive
integer and A be a function on R". We denote

R (Aiz,y) = Aw) = 3 L DO AQy)(a — )"

lal<m

DEFINITION 1.1. Let T': S — S’ be a linear operator and there exists a locally
integrable function K (x,y) on R™ x R"™ \ {x = y} such that

Tf(x) = - K(z,y)f(y)dy

for every bounded and compactly supported function f and x ¢ supp f, where K
satisfies: | K (z,y)| < Clz — y|™™ and for fixed 0 < & < 1,

|K(y,z) — K(z,2)| < Cly = 27|z — 2|7"7*
if 2|y — z| < |x — 2z|. The multilinear operator related to the integral operator T is
defined by
Rm 1 A; T,y
(@) = [ 8D ) 1)y,

|z —y|™
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DEFINITION 1.2. Let Fy(z,y) be defined on R™ x R"™ x [0,+00); we denote

F(f)() = / Fy(z,9)f () dy

n

for every bounded and compactly supported function f and

R i1 (A; 2,y
FAN@ = [ e ) )
Let H = {h : ||h|| < oo} be a Banach space. For each fixed z € R", we consider
Fi(f)(x) and FA(f)(z) as mappings from [0,+00) to H. Then, the multilinear
operators related to F; are defined by S4(f)(x) = ||FA(f)(2)|, where || Fy(z,y)|| <
Clz — y|~™ and for fixed € > 0

|Fi(y, ) — Fi(z,z)|| < Cly — 2|7z — 2| 7"F
if 2|y — z| < |z — z|. We also define S(f)(z) = || F:(f)(2)].

Note that when m = 0, T4 and S4 are just the commutators of 7" and S
with A (see [4[7THI12]). While when m > 0, they are nontrivial generalizations
of the commutators. Let T be the Calderén—Zygmund singular integral operator.
A classical result of Coifman, Rochberg and Weiss [4] states that the commutator
b, T =T(bf)—bTf (where b € BMO(R™)) is bounded on LP(R™) for 1 < p < oo.
Chanillo [I] proves a similar result when T is replaced by a fractional integral
operator. In [8], the boundedness properties for the commutators related to the
Calder6n—Zygmund singular integral operators from Lebesgue spaces to Orlicz ones
are obtained. It is well known that multilinear operators are of great interest in
harmonic analysis and have been widely studied by many authors (see [2|3l/5]). Our
main purpose is to prove the boundedness properties for the multilinear operators
T4 and S4 from Lebesgue spaces to Orlicz ones.

Let us introduce some notations. Throughout the paper, (Q will denote a cube
of R™ with sides parallel to the axes. For any locally integrable function f, the
sharp function of f is defined by

# (o
f7( = s |Q|/ |f(y) = foldy,

where, and in what follows, fo = |Q|™* fQ x)dz. Tt is well known [6] that

# u ln — C .
#(z) ~ sup f|Q|/Q|f(y) |dy

Q>x ¢€C

Let M be the Hardy-Littlewood maximal operator defined by
M@ = sl [ 17wy

We write M, f = (M(f?))}/?. For 1 <r < oo and 0 < 3 < n, let

My (1)) = 500 (e [ 156 |dy)1”.
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We say that f belongs to BMO(R™) if f# belongs to L>(R") and | f|smo =
lf#|lz~. More generally, let © be a nondecreasing positive function and define
BMO,,(R™) as the space of all the functions f satisfying

1 /
TP [f(y) — foldy < Co(r).
|Q(Ia T)| Q(x,r) ?
For 8 > 0, the Lipschitz space Lipz(R") is the space of functions f satisfying
[fllLip, = sup [f(@) = f)|/|z = yl” < 0.
T#Y

For an f,let ms(¢t) = |[{x € R™: |f(x)| > t}| denote the distribution function of f.
Let 1) be a nondecreasing convex function on R™ with (0) = 0 and let ¢ ~*
be its inverse function. The Orlicz space L (R") is defined by the set of functions
f such that [ (X f(x)]) dz < oo for some A > 0. The norm is given by ||f|z, =
infaso A1+ [ (N f(2)]) dz).
We shall prove the following theorems in Section 2.

THEOREM 1.1. Let1 < p < 0o and @, 1 be two nondecreasing positive functions
on RY with ¢(t) = t"/Pp=1(t=™) (or equivalently =1 (t) = t'/Po(t=1/™). Suppose
that v is convezx, ¥(0) = 0, ¥(2t) < C(t). Let T be the same as in Definition 1.1
and bounded on LP(R™) for all 1 < p < co. Then T : LP(R™) — Ly(R"™) is
bounded if D*A € BMOy(R™) for all a with |a| = m.

THEOREM 1.2. Let 1 < p < 0o and ¢, 1 be two non-decreasing positive func-
tions on RT with o(t) = t"Pyp=1(t™") (or equivalently ¢~ (t) = tY/Pp(t=1/").
Suppose that 1 is convez, ¥(0) = 0, ¥(2t) < CY(t). Let S be the same as in Defi-
nition 1.2 and bounded on LP(R™) for all1 < p < co. Then S4 : LP(R") — Ly (R™)
is bounded if D*A € BMOy(R") for all o with |o| = m.

2. Proofs of Theorems

We begin with the following preliminary lemmas.

LEMMA 2.1. [7] Let ¢ be a nondecreasing positive function on Rt and n be an
infinitely differentiable function on R™ with compact support such that [ n(z) dz = 1.

Denote by(x) = [p. b(z —ty)n(y) dy. Then ||b—b|lBmo < Co(t)||bllBMmO,, -

LEMMA 2.2. [7] Let 0 < 8 < 1 and ¢ be a nondecreasing positive function on
Rt or B=1. Then ”thLiPB < Ct_ﬂgo(t)HbHBMov.

LEMMA 2.3. [7] Suppose 1 < ps < p < p1 < 00, p is a nonincreasing function
on RY, B is a linear operator such that mB(f)(tl/plp(t)) <CtYif | fllee <1

and mpp)(t/P2p(t)) < Ct=1 if ||fllre < 1. Then [J° mpp)(t/Ppt)dt < C if
I£llze < (p/p0)"?.

LEMMA 2.4. [ Suppose that 1 < r <p < n/B and 1/q=1/p— B/n. Then
Mg ()lle < ClIfllze-
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LeEMMA 2.5. [9] Suppose that 1 <r < oo and b € Lipg. Then
16— b@) fxaqllr < CIQIM|bl|Lip, M, () ()

where x2¢g s the characteristic function of 2Q).

LEMMA 2.6. [3] Let A be a function on R™ and D*A € LY(R™) for all a with
|a| = m and some ¢ > n. Then

K x,y

|a]=m
where Q is the cube centered on x and having side length 5\/n|lx — y|.
To prove the theorems of the paper, we need the following

KEY LEMMA 1. Let 0 < 8 <n, T and S be the same as in Definitions 1.1 and
1.2. Suppose that Q = Q(xo,d) is a cube with supp f C (2Q)¢ and z,% € Q.
(a) If D*A € BMO(R™) for all a with |a| = m, then

ITA(f) (@) = T*(f)(z0)| < C Y |ID*Allsno M, (f)(@) for any 7> 1;

la|=m

(b) If D*A € Lipg(R") for all a with |a| =m, then
IT4(f) (@) = TA(f)(20)l S C Y D" Alluip, My (f)(@);

la]=m

(c) If D*A € BMO(R") for all o with || = m, then
IE () (@) = FA(f)(@o)| < © Z 1D Allsvo M (f)(Z) for any r > 1;

o=

(d) If DA € Lipg(R"™) for all v with |a| = m, then
IFF(F)(2) = A (F)(zo)| < C Z 1D Allrip, Mp,1 (f) ().

lee|=
) — E|a\ 2 (DYA)gz®, then
Rimi1(A;2,9) = Rypg1(A; 2, y) and DA = D¥A — (D®A)q for [a| =m

Suppose that supp f C (2@) and z,% € Q = Q(xo, d). Note that |xo —y| =~ |x —y|
for y € (2Q)°. We write

PROOF. Let [l(x) Az

TA()a) - T4 o) = | [K(w’” - K(xo’y)}Rm(A;w,y)f(y) dy
R’n

|z —y[™ w0 —yl™

B0 W) g (Ai,y) — Ron(As 0,)] dy
Rn |zo — y|™

B Z L /n < y) (@ —y)*  K(zo,y)(wo —y)“) Do A() F(y) dy

Iw—yl’" lzo — y|™

+

lee|=

=I+1I+1I1.
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(a) By Lemma 2.6 and the following inequality (see [10]), for b € BMO(R™),

bQ, — bq,| < Clog(|Q2|/|Q1])[bllBmo for Q1 C Q2,
we know that, for z € Q and y € 2Ft1Q \ 2FQ with k > 1

|Rin(A;2,9)| < Clz =™ 3 (ID*Allsao + [(D*A)g — (D A)gap))

la|=m

< Ckle —y[™ Y ID*Allsmo,

la|=m

thus

|$—1170| |$—I0|5 ) -
Ii< O/ ( + R (A; d
<O | o —gpeems g —gpre ) Bz )l )l dy

— _ €
<C DA / ( ool Iz = ol ) d
IaZ H HBMOZ agkt1iguzrg  \|Zo —y[" T |z —y[rte @)l dy
1
<C DA kP 27h) ————— d
> HBMo; ) ey [ Wl
<C Y IDAlpmoM(f)(@).
|a]=m
For I1, by the formula (see [3]):
Rm(AVIvy) A 3205 Y Z R \7]\ DnA;xv'xO)(I _y)n
n|<m "
and Lemma 2.6, we get
B I e (O

<c 3 b AHBMoz/ T IL

= 2k+1Q2kQ |CL'Q -
<C Z [ D Allgmo M (f)(%).
la]=m
For 111, similar to the estimates of I, we obtain, for any r» > 1 with 1/r+1/r' =1,

) D A(y) — (D" Ao £ (4) dy

|z — o] | — xol®
111 <C
] < Rn\2Q<|xo—y|"+l [0 — g7+

1 1/r
<C (27F 4 27F) < Td)
Z Z |2k+1Q| 2k+1Q | (y>| y

|a]=m k=1

1 « « T/ 1/T
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<C Y | D*Allpyno M (f)().

|a]=m
Thus
ITA(F)(x) = TA(f)(o) < C Y [ID*Allpyvo M, (f)(&).

lee|=m

(b) By Lemma 2.6 and the following inequality, for b € Lipg,

1
[b(z) — bl < 2] /Q Ibl|Lip, |z — 9P dy < [BllLip, (lx — zo| + d)°,

we get
|Ron(A2,9)| < Y ID*Allvip, (Jx =yl + d)™ 7,

|a|l=m
then
1) < |z — o] |z — zo|*
h Rr2@ \|To —y|mTHL [y — y[mAnte

<c DAl zj el e =@l gy
Lips 2k +1Q2FQ lzo—y|"H1=F |z —y[nte—ph

el =

)mﬂ&@wmwmy

1
<C D%A||L; (2™ ko ks 7/ d
alz || ||LPBZ |2k+1Q|1_’8/n 2k+1Q|f(y)| Yy
<C Z | D*Al|Lip, M5, (f)(Z),
la]=m

|Rm(147x7y) - Rm(Ay Zo, y)

m<c ) B0 1)

R"\2Q

<C Z | D A”LlpBZ/ Tﬁt_ﬂf@”dy

k+1 k Xro —
lal= QN2kQ | 0

<C Z | D*AllLip, M1 (f)(2),

la]=m

r—x T — Tol® o o
mn<c [ w<m[mﬁqu£_w$%)wfww4DAmwwMy
> 1
<C D*Al|1; 9k oke 7/ d
alz_m” ||Lp/3];( )|2k+1Q|1,5/n 2k+1Q|f(y)| Y
<C Z 1D AllLip, M1 (f)().
laj=m
Thus

IT4(f)(@) = TH(f) (o)l < C Y D" Alluip, My (f)(&)-

lee|=m
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The same argument as in the proof of (a) and (b) will give the proof of (c¢) and
(d), we omit the details. O
Now we are in the position to prove our theorems.
PrROOF OF THEOREM 1.1. We prove it in several steps. First, we prove

(1) (TA(fN* <C D ID*AllsmoM,(f)
|a]=m
for any 1 < 7 < oo. Fix a cube Q = Q(zo,d) and 7 € Q. Let A(x) = A(z) —
Z|a\:m é(DO‘A)QxO‘. We write, for f1 = fx20 and f2 = fxgr20,
mt1(A; @,
) = [ B gy 1)y

no |z —yl™

:/n %;ﬁiwm%y)h@)dw . WK(%y)ﬁ(y)dy
‘}3 a' %D%wh(y)dy;
then
1 7o) = e ae < g [ (B2 o
+@/Q|Z ol (|x— |)mD“Af)( )| da
IQI/ |T4(f2) (@) = T (f2) (wo) | dw = I + Iz + I,

Now, for I1, if z € @ and y € 2Q), using Lemma 2.6, we get
Ro(A;z,y) < Clz —y|™ D | D*Allmo,
|a]=m

thus, by the L™ boundedness of T for any 1 < r < co and Holder’ inequality, we
obtain

L<C Z|D“A|BMO|Q|/|T f)(@)|de < C Z||DaA||BMoHT(f1>Hu|Q| LT

le|= le|=

<C Y IDAlsvoll AillLr QI < C Y 1D Allsao Mo (f) ()

la|=m |al=m

For I, for any ¢ > 1, I > 1 and denoting r = ¢l, by L?-boundedness of T, we gain

neio | \T( 3 04~ (D" A))11 ) @

<y (& [ irwra- o205 >|qd:c)1/q

lee|=m

dzr
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<CIQITYT N (D*A— (DA)Q) fill Lo

|a]=m

; 1/(ql") . 1/(ql)
[e% [e% q q
N <|Q|/ ID7AW) = (D" A)al dy) (IQI/ )l dy>

lee|=m
<C Z 1D Allsmo M- (f)(2).
ler|=
For I3, by using Key Lemma, we have I3 < C_, _,, [[D*A|Bmo M, (f)(Z). We
now put these estimates together, and taking the supremum over all @ such that
# € Q, we obtain (T4(f))#(%) < C X jaj=m [D*Allemo M, (f)(2); Thus, taking r
such that 1 < r < p, we obtain

(2) T4 e < CUTAINFer <C Y 1D Allpyo | Mo ()] 2
|a]=m
<C Y ID*Allsnol f e
|a]=m
Secondly, we prove that, for D*A € Lipg(R") with |a| =
(3) (TAN* <C Y 1D Allvip, (Mg ((f)) + Mg (f))
laj=m

for any 1 < r <n/B. In fact, by Lemma 2.6, we have, for z € Q and y € 2Q
|R(As2,y)| < Clz —y[™ > sup |[D*A(z) — (D*A)q|

laj=m z€2Q

< Cle—y™QI™ Y 1D AllLip,

la]=m

and by Lemma 2.5, we have
I(DYA — (D*A)20) fxz2qllLr < ClQIY" | DY AllLip, Mg, () (x).
Similarly to the proof of (1), we obtain

|Q|/|TA =T de < IQI/’ (%ﬁn)ﬁ)“)

e (= an)

I T4(f2)(x) = T4(f2)(20)| dr

dx

dxr

|c2| 0.

IQI

1/r
Z HDO‘A”L1pﬁ|Q|1/T 5n (/ |T(f1)(x)|" d:c)

lee|=

+ > (% /Q IT(D“Asz»Q)(I)ITdI)l/T

lee|=m
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|22| |T4(f2)(x) = T*(f2) (20)] da
1
<C ) ”DaA”LipBW”flnL?"
la]=m

+C Z (|Q| / ) DaA@c)—(DQA>Q>f<x>xQQ<x>|sz>W

|Q| |T4(f2)(x) = T*(f2)(x0)| da

<C Y 1D Alluip, (Mp,r(f)(E) + My (f)(@));

la]=m
Thus, taking 1 <r <p<n/B,1/¢g=1/p— §/n and by Lemma 2.4, we obtain
(4) IT4(F)]|e < CUTA()H | e
<C > D Allip, ([Mpr(£)llza + 1Mp1(f)l|ze)

la|=m

<C Y 1D Aluip,lIf | -

lo|=m

Now we verify that T4 satisfies the conditions of Lemma 2.3. In fact, for any
L<pi<n/B,1/q=1/p;—B/n (i =1,2) and || f||zr. < 1, note that T4(f)(z) =
TA=A(f)(x)+ T4 (f)(z) and D*(As) = (D*A)s, by (2) and Lemma 2.1, we obtain

1T (Dl <€ 32 11D (A = A lavo /|

|a]=m
<C Y |D*A— (D*A)sllsmo < C Y [D*Allsumo, o(s),
|a]=m |a]=m

and by (4) and Lemma 2.2, we obtain
T4 ()llzes <C Y 1D Aslleip, [ flle: < Cs™Pp(s) Y |1D*Allsno,-

la|=m |al=m

Thus, for s = t~1/",
mpap (P et ™)) < mpacas ) (POt [2) + mpas ) (EPip(E ™) /2)

Taking 1 < py < p < p1 < n/f3 and by Lemma 2.3, we get, for || f||z» < (p/p1)'/?,

V(| TA(f)(x)]) do _/ mrpacp (W (1) dt < C,

Rn
and thus, || 74(f)||z,, < C. This completes the proof of Theorem 1.1. O
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PROOF OF THEOREM 1.2. Let Q, fl(:v), f1 and fo> be the same as the proof of
Theorem 1.1, we write

A = [ BB g ) ) ay

|z —y|™

:/n B (A5 209) o b) dy+/ Bl 2 0) 1 o, ) 11 ()

|z —y|™ no |z —ym
Fy(z,y)( y)°* i
- ALY Y) pej dy,
IaE a,/n o=y W) f1(y) dy
then
SA SA xo)| de = — / FA - FA T dx
|Q|/| (f2)(x0)| 1] Il )| = [1F (f2) (o) |

( LI
A=

— A x) — FA(f)(z .
+|Q|/Q||m (fo)(@) — FA (fo) (o) d

dzr

By using the same argument as in the proof of Theorem 1.1 will give the proof of
Theorem 1.2, so we omit the details. (|

3. Applications

In this section we shall apply Theorems 1.1 and 1.2 to some particular oper-
ators such as the Calder6n—Zygmund singular integral operator, Littlewood—Paley
operator, and Marcinkiewicz operator.

3.1. Calder6n—Zygmund singular integral operator. Let T be the Cald-
erén—Zygmund operator [4[6][10], i.e., the multilinear operator related to T is
defined by

Rm 1 A; z,y
74(1)(0) = [ FA ) ko))
Then it is easily to verify that Key Lemma holds for T4, thus T satisfies the
conditions in Theorem 1.1. So, the conclusion of Theorem 1.1 holds for T4.

3.2. Littlewood—Paley operator. Let ¢ > 0 and ¥ be a fixed functions
satisfying

(1) (@) < O+ |z~

(2) [(z +y) = ()] < Clyl*(1 + [z])~ ") when 2Jy| < |zl;
The multilinear Littlewood-Paley operator is defined by

s = ([TiEnert) ",



ESTIMATES OF MULTILINEAR SINGULAR INTEGRAL OPERATORS 211

where

R - | Boed50,9) o) () dy

no e =y
and ¢, (z) =t (z/t) for t > 0. We write that F,(f) = ¢, * f. We also define
1/2

w0 =([TRO@EY)

which is the Littlewood—Paley g function [11];

Let H = {h : ||n]| = (fooo|h(t)|2d1f/7§)1/2 < oo} be space. Then, for each
fixed 2 € R", FA(f)(z) may be regarded as a mapping from [0, +oc) to H, and
it is clear that gy (f)(x) = || Fi(f)()]| and gA(f)(@) = IFA(H)@)]. It has been
known that g, is bounded on LP(R"™) for all 1 < p < co. Thus it is only to verify
that Key Lemma holds for 91‘2. In fact, we write, for a cube Q = Q(zo,d) with

Suppf C (2@)07 (E,ZE € Q = Q(‘T07d)7

FAE) ~ FA e = [ (T - ) Rt )

M(Rm(ﬁmw — Ri(A;20,9)) f(y) dy
R |0 — Yl

B Z - /n ( r—y)"P(r —y) (w0 —y)"P(xo —y)) D A(y) () dy

|z —y[™ |0 — y[™

lee|=

=J1 + Jo + J3;
By the condition of ¥ and Minkowski’s inequality, we obtain, for any r > 1,

i< [ M (2.9 ()

w0 — y[™
% {/ ( t|lz — o] n tle — xol® )2£} 1/2dy
o \lzo—yl(t+]zo —yhm*t = (E+[wo —y)"HHe ) t
|I_'r0| |$—1170|8 > -
< O/ < + R (A; 1z, d
(2Q)¢ |(E0 — |m+"+1 |(E0 _ y|m+n+a | ( y)||f(y)| )

<C Z D AllBMo M (f) (%),

lo|=m

- ZT
SRS DAL TIN oy e I

k+1 2k Q
la|= N2

OHDO‘AHBMOM(f)(I)

x — x| |z — xo|® o]
imise S0 [ (s ) sl

|a]=m k=1

<C Y | D*Allpyno M (f)().

|a]=m
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From the above estimates, we see that Theorem 1.2 holds for g;Z‘.

3.3. Marcinkiewicz integral operator. Let 2 be homogeneous of degree
zeroon R™ and [g,_, Q(a') do(2') = 0. Assume that Q € Lip, (S"~") for 0 < < 1,
i.e., there exists a constant M > 0 such that for any z,y € S"~1, |Q(z) — Q(y)| <
M|z — y|”. The multilinear Marcinkiewicz integral operator is defined by

WA (@) = (/0°°|Ft () >|2‘”)1/2,

A = [ o —y) Bura(diwy) ) g,

soyl<t [T =yt -y

R (@) —/| U2 =Y) ) dy

z—y|<t |$ - y|n !

where

and we write

We also define
1/2

oo = ([T IR@PE)

which is the Marcinkiewicz integral [12].
Let H = {h:|h| = (J;~ |h(1€)|2dt/t3)1/2 < 0o} be aspace. Then it is clear that

po(f)(@) = | F(f)(@)] and pg5(f)(x) = [ F(f)(2)]]. Now, it is only to verify that
Key Lemma holds for pg. In fact, for a cube Q = Q(wxo,d) with supp f C (2Q)¢,
z,T € Q = Q(zo,d) and r > 1, we have

IF () () — FA( o)

Q(zo — y) R (A; x0,
_/ ( 0 y) min,10 y)f(y) dy
lzo—y|<t |

cx ([ (e

2 0\ /2
3

/ (Q(w—y)(:v—y)a
lal= oyl<t \ T —y[mrrT

) / Q(xo — y) (w0 — y)a)D"‘fl(y)f(y) dy
|

2dt>1/2
zo—y|<t |{E0 - y|m+n71 t3

Ul e el )l ) )
0 lz—y|<t, [zo—y[>t |x — y|mtn—1 3
Ul it |f<y>|dy]2@>l/2
0 |lz—y|>t, |[zo—y|<t |170 — y|m+n71 tg

/°° U Qz — y) R (A; 2, y)
0 le—yl<t|eo—yl<t | |z =yt
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Qxo — y)Rm A:UO, ‘|f |d}ﬁ)1/2

|I0 |m+n 1

2 (o G

— / Q(IO - y)(IO — y)a)D"‘fl(y)f(y) dy
|

lzg — y[mtnT

(e

\al

zo—y|<t

i=L1+La+ Lz + Ly

L, <C/ W[ R (A; 2, y)] (/ ﬂ) /dy
n |$ — ylm-i—n—l l—y|<t<|zo—y| 3

i 1/2
If(y)IIRm(Aw,y)l('x 1y|2_ 1 ) "

and

<C
e |z —ymtnol lzo — y/?
A _ 1/2
Qe |lz—ylmtr |z — y[3/
<C Y ID*Allpmo M (£)(%).
laj=m

Similarly, we have Ly < C' ., [D*AllBmoM (f)(2).
For L3, by the following 1nequahty [12]:

Qr-y)  Qzo—y) C<|:C—xo| n |z — 20]" >
|z —y|"=t Jxe —y[n! lzog —y[*  |zo —y[m 1Y)

we gain

|z — ol |z — o
Ly < C E DA BMO/ ( +
3 X H ” Q) |170 _ y|n |170 _ y|n71+’y

Jal= (2
dt 1/2
<(f %) lrmla
|zo—y|<t,Jo—y|<t ¢

<C Y D Ao YRR+ 27 M () (a)

la|=m k=1
<C Y ID*AllymoM (f)(&);
la]=m

Similarly to the cases of L1, Ly and L3, we obtain for Ly
L / |z — ol | — ao['/? |z — o[”
'S arr1guzkg \|zo =yt ag —y[n 2 g — y[n Y

|oz\ m k=1
x [D*Ay) |1 f ()| dy
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o0 B B _ 1 o -
<O Y Yokt e My [ DA )] dy

|a]=m k=1

<C Y D Allgymo M (f)().

lo|=m

Thus, Theorem 1.2 holds for ,ué.

=

10.

11.

12.
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