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Abstract. Let G be a finite group. The prime graph of G is denoted by Γ(G).
We prove that the simple group PSLn(3), where n > 9, is quasirecognizable by
prime graph; i.e., if G is a finite group such that Γ(G) = Γ(PSLn(3)), then G

has a unique nonabelian composition factor isomorphic to PSLn(3). Darafsheh
proved in 2010 that if p > 3 is a prime number, then the projective special
linear group PSLp(3) is at most 2-recognizable by spectrum. As a consequence
of our result we prove that if n > 9, then PSLn(3) is at most 2-recognizable
by spectrum.

1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n. If G
is a finite group, then π(|G|) is denoted by π(G). The spectrum of a finite group G
which is denoted by ω(G) is the set of its element orders. We construct the prime
graph of G which is denoted by Γ(G) as follows: the vertex set is π(G) and two
distinct primes p and q are joined by an edge (we write p ∼ q) if and only if G
contains an element of order pq. Let s(G) be the number of connected components
of Γ(G) and let πi(G), i = 1, . . . , s(G), be the connected components of Γ(G). If
2 ∈ π(G), we always suppose that 2 ∈ π1(G). In graph theory a subset of vertices
of a graph is called an independent set if its vertices are pairwise nonadjacent.
Denote by t(G) the maximal number of primes in π(G) pairwise nonadjacent in
Γ(G). In other words, if ρ(G) is some independent set with the maximal number
of vertices in Γ(G), then t(G) = |ρ(G)|. Similarly if p ∈ π(G), then let ρ(p,G) be
some independent set with the maximal number of vertices in Γ(G) containing p
and let t(p,G) = |ρ(p,G)|.
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A finite group G is called recognizable by prime graph whenever if for a finite
group H , we have Γ(H) = Γ(G), then H ∼= G. A nonabelian simple group P is
called quasirecognizable by prime graph if every finite group whose prime graph is
Γ(P ) has a unique nonabelian composition factor which is isomorphic to P (see
[16]). Obviously recognition (quasirecognition) by prime graph implies recognition
(quasirecognition) by spectrum, but the converse is not true in general. Also some
methods of recognition by spectrum cannot be used for recognition by prime graph.
If Ω is a nonempty subset of the set of natural numbers, we denote by h(Ω) the
number of nonisomorphic groups G with ω(G) = Ω. If G is a finite group, then
h(ω(G)) is denoted by h(G). If h(G) = ∞, then G is called nonrecognizable by
spectrum. If h(G) = r, then G is called r-recognizable by spectrum.

Hagie in [12], determined finite groups G satisfying Γ(G) = Γ(S), where S is
a sporadic simple group. It is proved that if q = 32n+1 (n > 0), then the simple
group 2G2(q) is uniquely determined by its prime graph [16, 35]. A group G is
called a CIT group if G is of even order and the centralizer in G of any involution is
a 2-group. In [18], finite groups with the same prime graph as a CIT simple group
are determined. Also in [19], it is proved that if p > 11 is a prime number and p 6≡ 1
(mod 12), then PSL2(p) is recognizable by prime graph. In [17, 23], finite groups
with the same prime graph as PSL2(q), where q is not prime, are determined. It
is proved that the simple group F4(q), where q = 2n > 2 (see [15]) and 2F4(q)
(see [1]) are quasirecognizable by prime graph. In [14], it is proved that if p is a
prime number which is not a Mersenne or Fermat prime and p 6= 11, 13, 19 and
Γ(G) = Γ(PGL2(p)), then G has a unique nonabelian composition factor which is
isomorphic to PSL2(p) and if p = 13, then G has a unique nonabelian composition
factor which is isomorphic to PSL2(13) or PSL2(27). Then it is proved that if p and
k > 1 are odd and q = pk is a prime power, then PGL2(q) is uniquely determined
by its prime graph [2]. In [20,21,22,24,27,28] finite groups with the same prime
graph as PSLn(2), Un(2), Dn(2), Bn(3) and 2Dn(2) are obtained. In [3, 4], it is
proved that 2D2m+1(3) is recognizable by prime graph.

The projective special linear groups defined over a finite field of order 3, called
the ternary field, are denoted by PSLn(3), PSL(n, 3), Ln(3) or An−1(3) as a finite
group of Lie type. In this paper as the main result we prove that the simple group
PSLn(3), where n > 9, is quasirecognizable by prime graph; i.e., ifG is a finite group
such that Γ(G) = Γ(PSLn(3)), then G has a unique nonabelian composition factor
isomorphic to PSLn(3). In [8], it is proved that the projective special linear group
PSLp(3), where p > 3 is a prime number, is at most 2-recognizable by spectrum,
i.e., if G is a finite group such that ω(G) = ω(PSLp(3)), where p > 3 is an odd
prime, then G is isomorphic to PSLp(3) or PSLp(3) ·2, the extension of PSLp(3) by
the graph automorphism. As a consequence of our result we prove that if n > 9,
then PSLn(3) is at most 2-recognizable by spectrum, i.e., if G is a finite group such
that ω(G) = ω(PSLn(3)), then G is isomorphic to PSLn(3) or PSLn(3) · 2, the
extension of PSLn(3) by the graph automorphism.

In this paper, all groups are finite and by simple groups we mean nonabelian
simple groups. All further unexplained notations are standard and refer to [7].
Throughout the proof we use the classification of finite simple groups. In [31,
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Tables 2–9], independent sets also independent numbers for all simple groups are
listed and we use these results in the proof of the main theorem of this paper.

2. Preliminary results

Lemma 2.1. [33, Theorem 1] Let G be a finite group with t(G) > 3 and
t(2, G) > 2. Then the following hold:

(1) there exists a finite nonabelian simple group S such that S 6 Ḡ = G/K 6

Aut(S) for the maximal normal soluble subgroup K of G;
(2) for every independent subset ρ of π(G) with |ρ| > 3 at most one prime in

ρ divides the product |K||Ḡ/S|. In particular, t(S) > t(G) − 1;
(3) one of the following holds:

(a) every prime r ∈ π(G) nonadjacent to 2 in Γ(G) does not divide the
product |K||Ḡ/S|; in particular, t(2, S) > t(2, G);

(b) there exists a prime r ∈ π(K) nonadjacent to 2 in Γ(G); in which
case t(G) = 3, t(2, G) = 2, and S ∼= Alt7 or PSL2(q) for some odd q.

Remark 2.1. In Lemma 2.1, for every odd prime p ∈ π(S), we have t(p, S) >
t(p,G) − 1.

Lemma 2.2. [26] Let N be a normal subgroup of G. Assume that G/N is a
Frobenius group with Frobenius kernel F and cyclic Frobenius complement C. If
(|N |, |F |) = 1, and F is not contained in NCG(N)/N , then p|C| ∈ ω(G), where p
is a prime divisor of |N |.

Lemma 2.3 (Zsigmondy’s Theorem). [36] Let p be a prime and let n be a
positive integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn−1, that is, p′ | (pn−1) but p′ ∤ (pm−1),
for every 1 6 m < n, (usually p′ is denoted by rn)

(ii) p = 2, n = 1 or 6,
(iii) p is a Mersenne prime and n = 2.

Lemma 2.4. [13] Let G be a finite simple group.

(1) If G = Cn(q), then G contains a Frobenius subgroup with kernel of order
qn and cyclic complement of order (qn − 1)/(2, q − 1).

(2) If G = 2Dn(q), and there exists a primitive prime divisor r of q2n−2 − 1,
then G contains a Frobenius subgroup with kernel of order q2n−2 and cyclic
complement of order r.

(3) If G = Bn(q) or Dn(q), and there exists a primitive prime divisor rm of
qm − 1 where m = n or n − 1 such that m is odd, then G contains a
Frobenius subgroup with kernel of order qm(m−1)/2 and cyclic complement
of order rm.

Remark 2.2. [30] Let p be a prime number and (q, p) = 1. Let k > 1 be the
smallest positive integer such that qk ≡ 1 (mod p). Then k is called the order of
q with respect to p and we denote it by ordp(q). Obviously by the Fermat’s little
theorem it follows that ordp(q)|(p − 1). Also if qn ≡ 1 (mod p), then ordp(q)|n.
Similarly if m > 1 is an integer and (q,m) = 1, we can define ordm(q). If a is an
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odd prime, then orda(q) is denoted by e(a, q), too. If q is odd, then e(2, q) = 1 for
q ≡ 1 (mod 4) and e(2, q) = 2 for q ≡ −1 (mod 4).

Lemma 2.5. [32, Proposition 2.4] Let G be a simple group of Lie type, Bn(q)
or Cn(q) over a field of characteristic p. Define

η(m) =

{

m if m is odd,
m/2 otherwise.

Let r, s be odd primes with r, s ∈ π(G) r {p}. Put k = e(r, q) and l = e(s, q),
and suppose that 1 6 η(k) 6 η(l). Then r and s are nonadjacent if and only if
η(k) + η(l) > n, and l/k is not an odd natural number.

Lemma 2.6. [31, Proposition 2.1] Let G = An−1(q) be a finite simple group
of Lie type over a field of characteristic p. Let r and s be odd primes and r, s ∈
π(G) r {p}. Put k = e(r, q) and l = e(s, q), and suppose that 2 6 k 6 l. Then r
and s are nonadjacent if and only if k + l > n, and k does not divide l.

Lemma 2.7. [31, Proposition 2.2] Let G = 2An−1(q) be a finite simple group
of Lie type over a field of characteristic p. Define

ν(m) =







m if m ≡ 0 (mod 4);
m/2 if m ≡ 2 (mod 4);
2m if m ≡ 1 (mod 2).

Let r and s be odd primes and r, s ∈ π(G) r {p}. Put k = e(r, q) and l = e(s, q),
and suppose that 2 6 ν(k) 6 ν(l). Then r and s are nonadjacent if and only if
ν(k) + ν(l) > n, and ν(k) does not divide ν(l).

Let q be a prime. We denote by D+
n (q) the simple group Dn(q), and by D−

n (q)
the simple group 2Dn(q).

Lemma 2.8. [32, Proposition 2.5] Let G = Dε
n(q) be a finite simple group

of Lie type over a field of characteristic p and let function η(m) be defined as in
Lemma 2.5. Let r and s be odd primes and r, s ∈ π(G) r {p}. Put k = e(r, q)
and l = e(s, q), and 1 6 η(k) 6 η(l). Then r and s are nonadjacent if and only
if 2η(k) + 2η(l) > 2n − (1 − ε(−1)k+l), l/k is not an odd natural number, and if
ε = +, then the equality chain n = l = 2η(l) = 2η(k) = 2k is not true.

Lemma 2.9. [5, Lemma 3.1] Let G be a finite group satisfying the conditions of
Lemma 2.1, and let the groups K and S be as in the claim of Lemma 2.1. Let there
exist p ∈ π(K) and p′ ∈ π(S) such that p ≁ p′ in Γ(G), and S contains a Frobenius
subgroup with kernel F and cyclic complement C such that (|F |, |K|) = 1. Then
p|C| ∈ ω(G).

Lemma 2.10. [34, Theorem 1] Let L = PSLn(q), where n > 5 and q = pα. If
L acts on a vector space W over a field of characteristic p, then ω(L) 6= ω(W ⋋L).

3. Main Results

Theorem 3.1. The simple group PSLn(3), where n > 9, is quasirecognizable
by prime graph; i.e., if G is a finite group such that Γ(G) = Γ(PSLn(3)), then G
has a unique nonabelian composition factor which is isomorphic to PSLn(3).
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Proof. Let D = PSLn(3), where n > 9, and G be a finite group such that
Γ(G) = Γ(D). Using [32, Tables 4-8], we conclude that t(D) = [ n+1

2 ] > 5 and
t(2, D) = 2. Therefore t(G) > 5 and t(2, G) = 2. Also ρ(D) = {ri | [ n

2 ] < i 6 n},

where ri is a primitive prime divisor of 3i − 1. Also using [32, Table 6], it follows
that ρ(2,PSLn(3)) = {2, rn−1} if n is even and ρ(2,PSLn(3)) = {2, rn} if n is odd.
Using Lemma 2.1, we conclude that there exists a finite nonabelian simple group
S such that S 6 Ḡ = G/N 6 Aut(S), where N is the maximal normal soluble
subgroup of G. Also t(S) > t(G) − 1 > 4 and t(2, S) > t(2, G) > 2, by Lemma 2.1.
Now we consider each possibility for S, by the tables in [32].
Step 1. Let S ∼= Am, where m > 5.

We know that t(S) > 4. Thus m > 17. So 17 | |Am|. Since e(17, 3) = 16, we
conclude that n > 16. Therefore t(G) = [(n + 1)/2] > 8, and so m > 19. If p is a
prime number such that p 6 m−17, then p ∼ 17 in Γ(S). Let A := [m−17,m]∩Z.
Then 12 = [18/2] + [18/3] − [18/6] elements of A are divisible by 2 or 3. Therefore
t(17, S) 6 7.

On the other hand, we know that e(17, 3) = 16. Let k = e(p, 3). Then p is not
adjacent to 17 in Γ(G) if and only if 16 + k > n and 16 ∤ k if 16 6 k, and k ∤ 16 if
k 6 16. There are 16 consecutive numbers in (n−16, n]∩Z. So 16 can divide exactly
one of them. Also at most 5 of them divide 16. Hence t(17, G) > 16 − 1 − 5 = 10.
Therefore 7 > t(17, S) > t(17, G) − 1 > 10 − 1 = 9, which is a contradiction.
Step 2. In this step, we prove that the simple group S is not isomorphic to a
simple group of Lie type over GF(pα), where p 6= 3. Using Table 8 in [32], we
consider the independent set B = {ri | n− 4 6 i 6 n} in Γ(G), since n > 9 and so
[ n

2 ] < n− 4. By Lemma 2.1, |B ∩ π(S)| > 4.
Case 1. Let S ∼= PSLm(q), where q = pα, p 6= 3.

We know that t(S) > t(G) − 1. Therefore [ m+1
2 ] > t(S) > [ n+1

2 ] − 1 > 4,
which implies that m > 7 and m > n − 3. Also t(p, S) 6 3 by Table 4 in [32].
Thus t(p,G) 6 4. So we conclude that p /∈ B. Therefore p is joined to at least
two elements of B in Γ(G). In the sequel we consider one case and other cases are
similar to it. We assume that p is joined to rn−4 and rn−3 in Γ(G). Let t = e(p, 3)
and note that e(rn−4, 3) = n− 4 and e(rn−3, 3) = n− 3. By Lemma 2.6, one of the
following subcases occurs:

(1) t+ n− 3 6 n and t+ n− 4 6 n; (3) t+ n− 4 6 n and t | (n− 3);
(2) t+ n− 3 6 n and t | (n− 4); (4) t|(n− 4) and t | (n− 3).

Therefore in each case we conclude that t 6 4. Therefore p ∈ {2, 5, 13}.
• If p = 5, then S ∼= PSLm(5α). We note that e(71, 5) = 5 and e(71, 3) = 35. We
know that m > 6 and e(71, 5α) divides e(71, 5) = 5. Therefore 71 ∈ π(S) ⊆ π(G).
Now by Lemma 2.6, if e(x, 5α) 6 m − 5, then x is joined 71 in Γ(S). Therefore
t(71, S) 6 6. On the other hand, by Lemma 2.6, we conclude that if e(y, 3) 6 n−35,
then y ∼ 71 in Γ(G). Therefore ρ(71, G) ⊆ {ri | n − 35 < i 6 n}. Also we know
that ri ≁ 71 if and only if n − 35 < i 6 n and i/35, 35/i are not integers.
Let C = {n − 34, . . . , n}. Thus there is only one i ∈ C such that i/35 is an
integer. Also since 35 = 5 × 7, there are at most 4 elements i ∈ C such that
35/i is an integer. Thus t(71, G) > 35 − 5 = 30, which is a contradiction since
29 6 t(71, G) − 1 6 t(71, S) 6 6.
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• If p = 2, then S ∼= PSLm(2α). Since e(31, 2) = 5 and e(31, 3) = 30, similarly we
get a contradiction.
• If p = 13, then S ∼= PSLm(13α). We know that e(30941, 13) = 5 and e(30941, 3) =
30940. Now similarly to the above we get a contradiction.
Case 2. Let S ∼= Um(q), where q = pα, p 6= 3. Since t(S) = [(m + 1)/2], similarly
to Case 1 we have m > 7 and m > n − 3. By [32, Table 4], we have t(p, S) 6 3,
and similarly to the last case, we conclude that p = 2, 5, 13.
• If p = 2, then S ∼= Um(2α). If m = 7, then t(S) = 4, which implies that
t(G) = 5 and so n = 9, 10. Therefore 757 ∈ ρ(2, G) ⊆ π(S). On the other hand
e(757, 2) = 756 = 22 × 33 × 7 and since m = 7, the order of U7(2α) shows that
9 × 7 | α. Now π(263 − 1) * π(G), which is a contradiction. Therefore m > 8,
and so π(28 − 1) ⊆ π(S), which implies that 17 ∈ π(S) and since e(17, 3) = 16,
we get that n > 16. This implies that m > 13 and so 31 ∈ π(210α − 1) ⊆ π(S).
We note that e(31, 3) = 30 and e(31, 2) = 5. Hence e(31, 2α) | 5. We know that if
ν(e(x, 2α)) 6 m− 10, then 31 ∼ x in Γ(S), by Lemma 2.7. Therefore t(31, S) 6 10.
Now we determine t(31, G). As e(31, 3) = 30 similarly to the above, we conclude
that if e(x, 3) 6 m − 30, then 31 ∼ x in Γ(G). Let C = {n − 29, . . . , n}. So 30
divides exactly one element of C. Also since 30 = 2 × 3 × 5, there are at most
8 elements in C such that 30/i is an integer. Thus 22 6 t(31, G). Therefore
21 6 t(31, G) − 1 6 t(31, S) 6 10, which is a contradiction.
• If p = 5, then S ∼= Um(5α). Since m > 7, we have 449 ∈ π(S). Also e(449, 3) =
448 and e(449, 5) = 14. Now similarly to the above we get a contradiction.
• If p = 13, then similarly to the above by using e(157, 3) = 78 and e(157, 13) = 6,
we get a contradiction.
Case 3. Let S ∼= Dm(q), where q = pα, p 6= 3. Then t(S) > t(G) − 1 implies that
m > 5. Similarly to the last cases, we conclude that p = 2, 5 or 13.

If p = 2, then we note that e(31, 2) = 5. Therefore e(31, 2α) | 5. Thus for every
x ∈ π(S), such that 2η(e(x, 2α)) 6 2n− 10 − 2, we have x ∼ 31 in Γ(S). Therefore
t(31, S) 6 12. On the other hand, as we mentioned above t(31, G) > 22, which is
a contradiction. Similarly if p = 5, then we use t(31, S) and if p = 13, then we use
t(157, S) and similarly to the above we get a contradiction.
Case 4. Let S ∼= Bm(q) or S ∼= Cm(q), where q = pα and p 6= 3.

So (3m+ 5)/4 > [(3m + 5)/4] = t(S) > t(G) − 1 = [(n + 1)/2] − 1 > 4. Thus
similarly m > 4 and p = 2, 5 or 13. For p = 5, we note that e(31, 3) = 30 and
e(31, 5) = 3. By Lemma 2.5 we know that if η(e(x, 5α)) 6 m − 3, then x ∼ 31 in
Γ(S). Therefore t(31, S) 6 6, which is a contradiction since t(31, G) > 22.

If p = 13, then using e(157, 3) = 78 and e(157, 13) = 6, we get a contradiction.
If p = 2, then S ∼= Bm(2α). Now we note that e(17, 3) = 16, e(17, 2) = 8. Then

e(17, 2α) | 8 and so η(e(17, 2α)) 6 4. If η(e(x, 2α)) 6 m − 4, then x ∼ 17 in Γ(S)
by Lemma 2.5. So only 8 elements, where η(e(x, 2α)) > m− 4 may not be joined
17 in Γ(S). Hence the independent set which contains 17 has at most 9 elements
in Γ(S). On the other hand, if ri ≁ 17 in Γ(G), then m − 16 < i 6 m; and i/16,
16/i are not integers. Then 16 divides one of the numbers in [m− 15,m] ∩Z. Also
at most 5 numbers in this interval can divide 16. So at least 10 elements are not
adjacent to 17 in Γ(G). Therefore ρ(17, G) has at least 11 elements and we get a
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contradiction since 10 6 t(17, G) − 1 6 t(17, S) 6 9.
Case 5. Let S ∼= 2Dm(q), where q = pα, p 6= 3. Therefore (3m+ 4)/4 > t(S) > 4
implies that 3m > 2n− 6 and m > 4. Now we consider the following cases.
• Let n > 11. Then B′ = {r′

i | n− 5 6 i 6 n} is an independent set in Γ(G). Since
t(p, S) 6 4, we conclude that p is joined to at least two elements of B in Γ(G). In
each case similarly to the previous cases we conclude that p = 2, 5, 11 or 13.

If p = 2, then since e(31, 3) = 30 and e(31, 2) = 5, similarly to the last cases
we get a contradiction. Also we know that e(31, 3) = 30, e(31, 5) = 3; e(7321, 3) =
1830, e(7321, 11) = 8 and e(157, 3) = 78, e(157, 13) = 6. Hence for p = 5, 11 and
13 we get a contradiction.
• Let n = 9 and S ∼= 2Dm(q), where p ∈ π(PSL9(3)) r {3}.

If p ∈ {2, 13, 41, 757, 1093}, then π(p8 − 1) * π(G). Also for p ∈ {5, 7, 11}, we
see that π(p6 − 1) * π(G).
• If n = 10, then similarly we get a contradiction.
Case 6. In this case we prove that S is not isomorphic to an exceptional simple
group. Let S ∼= F4(q), E6(q) or 2E6(q), where q = pα and p ∈ π(G). Then
t(S) 6 5 and so 9 6 n 6 12. Easily we can see that for each 3 6= p ∈ π(G),
π((p8 − 1)(p12 − 1)) * π(G), which is a contradiction since π((p8 − 1)(p12 − 1)) ⊆
π(S).

If S ∼= E7(q), where q = pα, then t(S) = 8 and so t(G) 6 9. Therefore
9 6 n 6 18. Similarly to the last case for each 3 6= p ∈ π(G), we can get a
contradiction.

If S ∼= E8(q), where q = pα, then 9 6 n 6 24 and for each p ∈ π(PSLn(3)) we
have π(p10 − p5 + 1) * π(G), which is a contradiction.

If S ∼= 2F4(22n+1), then 9 6 n 6 12. If n = 9 or n = 10, then 757 ∈ ρ(2, G)
and so 757 ∈ π(2F4(22n+1)). We know that e(757, 2) = 756 and so 756 | 12(2n+ 1).
Therefore 7 | (2n+ 1), and so π(27 − 1) ⊆ π(S) ⊆ π(G), which is a contradiction.

If n = 11, 12, then 3851 ∈ ρ(2, G) and similarly we get a contradiction, since
e(3851, 2) = 3850.

If S ∼= 2B2(22n+1), then similarly we get a contradiction.
Step 3. Now we consider the simple groups of Lie type over GF(3α). In the sequel,
we use r′

k for a primitive prime divisor of (3α)k − 1.
Case 1. Let S ∼= PSLm(q), where q = 3α.
By [32, Table 6], rn−1 ∈ π(S) or rn ∈ π(S). Also m > n− 3.
(I) Let n be odd and so rn ∈ ρ(2, S) = {2, r′

m, r
′

m−1}.
• If rn = r′

m, then n | αm and so n 6 αm. On the other hand, using Zsigmondy’s
Theorem, we conclude that αm 6 n, since π(S) ⊆ π(G). Therefore αm = n.

Also we know that m > n − 3. If α > 2, then n = αm > 2m > 2n − 6,
which implies that 6 > n and this is a contradiction. Thus α = 1, and so m = n.
Therefore S = PSLn(3).
• If rn = r′

m−1, then n | α(m − 1) and so n 6 α(m − 1). Also by Zsigmondy’s
Theorem, α(m− 1) 6 n. Hence α(m− 1) = n. On the other hand, (3αm − 1) | |S|
and since π(S) ⊆ π(G), we conclude that αm 6 n, which is a contradiction.
(II) Let n be even and so rn−1 ∈ π(S). Therefore rn−1 ∈ ρ(2, S) = {2, r′

m, r
′

m−1}.
• If rn−1 = r′

m−1, then (n − 1) | α(m − 1) and α(m − 1) 6 n, since π(S) ⊆ π(G).
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Hence α(m− 1) = n− 1. We know that m > n− 3. If α > 2, then

n− 1 = α(m − 1) > 2(m− 1) > 2(n− 3) − 2 > 2n− 8.

Hence n 6 7, which is a contradiction. Thus α = 1 and so m = n. Therefore
S ∼= PSLn(3).
• If rn−1 = r′

m, then (n − 1) | αm. Also αm 6 n, since π(S) ⊆ π(G). Therefore
αm = n − 1. If α > 2, we get that n − 1 = αm > 2m > 2n − 6. Thus n 6 5,
which is a contradiction. Thus α = 1 and so m = n− 1. Therefore S ∼= PSLn−1(3).
So rn ∈ π(K) ∪ π(Ḡ/S). Also we note that π(Ḡ/S) ⊆ π(Out(S)) = {2}. So
rn ∈ π(K). We note that there exists a Frobenius subgroup of PSLn−1(3) of the
form 3n−2 : (3n−2 − 1)/d, where d = (n − 1, 2). On the other hand, rn ≁ rn−1 in
Γ(G). So by Lemma 2.9, we conclude that rn is joined to rn−2 in Γ(G), which is a
contradiction.
Case 2. Let S ∼= Um(q), where q = 3α. Then m > n − 3 and rn ∈ π(S) or
rn−1 ∈ π(S).
(I) Let n be odd and so rn ∈ π(S). Using [32, Table 4] we must consider four cases,
since rn ∈ {r′

2m, r
′

2m−2, r
′

m, r
′

m/2}.

• If rn = r′

2m, then m is odd by [32, Table 4]. Also similar to the previous cases,
n | 2αm. On the other hand, since π(S) ⊆ π(G), we conclude that 2αm 6 n.
Therefore 2αm = n, which is a contradiction since n is odd.
• If rn = r′

2m−2, then m is even and n | 2α(m− 1). Also since π(S) ⊆ π(G), we get
that 2α(m− 1) 6 n. Thus n = 2α(m− 1), which is a contradiction since n is odd.
• If rn = r′

m, then 4 | m, by [32, Table 4]. Also n | αm. Thus n = αm, a contra-
diction since n is odd.
• Let rn = r′

m/2. Thus n | αm/2, which implies that n 6 αm/2 6 n, since

π(S) ⊆ π(G). Therefore n = αm/2. Hence αm = 2n and rαm ∈ π(S) ⊆ π(G),
which is a contradiction.
(II) Let n be even and so rn−1 ∈ π(S).
• Let rn−1 = r′

2m. Thus (n−1) | 2αm. So n−1 6 2αm 6 n. Therefore 2αm = n−1,
which is a contradiction, since n is even.
• Let rn−1 = r′

2m−2. So (n−1) | 2α(m−1). So similarly to the above, we conclude
that 2α(m− 1) = n− 1, which is a contradiction since n is even.
• Let rn−1 = r′

m. So n − 1 = αm. If α > 2, then n − 1 = αm > 2m > 2n − 6.
Therefore 5 > n, which is a contradiction. If α = 1, then m = n − 1. Therefore
S = Un−1(3). Since n − 1 is odd, we conclude that (3n−1 + 1) | |S|. Hence
r2(n−1) ∈ π(G), which is a contradiction.
• Let rn−1 = r′

m/2. Thus m is even and n− 1 = αm/2. We know that n− 1 is odd

and so α is odd. If α > 3, then n−1 > 3m/2 > 3(n−3)/2. Therefore 7 > n, which
is a contradiction. If α = 1, then m = 2n− 2. So r2n−2 ∈ π(S) ⊆ π(G), which is a
contradiction.
Case 3. Let S ∼= Bm(q), where q = 3α.
Since t(S) > t(G) − 1. We have 3m > 2n− 11. Also ρ(2, S) = {2, r′

m, r
′

2m}.
(I) Let n be odd and so rn ∈ ρ(2, G). Therefore rn = r′

m or rn = r′

2m.
• Let rn = r′

m. Then m is odd by [32, Table 6]. Also n | αm. Hence n 6 αm 6 n,
since π(S) ⊆ π(G). Thus n = αm. Obviously α is odd. If α > 5, then n = αm >
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5m > 10
3 n − 55

3 . So 55 > 7n, which is a contradiction. If α = 1, then n = m. So
S ∼= Bn(3α). Hence r2n ∈ π(S) ⊆ π(G), which is a contradiction. If α = 3, then
n = 3m. Hence S ∼= Bn/3(27). Thus π(272n/3 − 1) = π(32n − 1) ⊆ π(S) ⊆ π(G),
which is a contradiction.
• Let rn = r′

2m. So m is even. Therefore similarly to the above, we conclude that
n = 2αm, which is a contradiction since n is odd.
(II) Let n be even and so rn−1 ∈ ρ(2, G). Then rn−1 = r′

m or rn−1 = r′

2m. Similarly
to the above we get a contradiction.
Case 4. Let S = Dm(q), where q = 3α. Similarly, we conclude that if m 6≡ 3
(mod 4), then 3m > 2n − 2 and if m ≡ 3 (mod 4), then 3m > 2n − 4, since
t(S) > t(G) − 1. Therefore in each case we have 3m > 2n − 4. We know that
ρ(2, S) = {2, r′

m−1, r
′

m, r
′

2m−2}. Also if r′

m−1 ∈ ρ(2, S), then m is even and if
r′

m ∈ ρ(2, S), then m is odd.
(I) If n is odd, then rn ∈ π(S).
• Let rn = r′

m. So n and m are odd. Similarly to the above, we conclude that
n = αm. If α = 1, then n = m. So S ∼= Dn(3). Hence r2n−2 ∈ π(S) ⊆ π(G),
which is a contradiction. If α > 2, then n = αm > 2m > 4(n − 2)/3, which is a
contradiction.
• Let rn = r′

m−1. So n is odd and m is even. Similarly, we conclude that n =

α(m− 1). Now since π((3α)2(m−1) − 1) ⊆ π(S) ⊆ π(G), we get a contradiction.
• Let rn = r′

2m−2. Then n | 2α(m − 1), and so n = 2α(m − 1), which is a
contradiction since n is odd.
(II) If n is even, then rn−1 ∈ π(S).
• Let rn−1 = r′

m−1. Hence (n − 1) | α(m − 1) and α(m − 1) 6 n. Hence n− 1 =
α(m− 1). Then r2α(m−1) ∈ π(S) ⊆ π(G), which is a contradiction.
• Let rn−1 = r′

m. So n is even and m is odd. Similarly to the above, we conclude
that (n − 1) | αm. Thus αm = n − 1 and so α is odd. Also we know that
3m > 2n− 4. If α > 3, then n− 1 = αm > 3m > 2n− 4. Therefore n 6 3, which
is a contradiction.
If α = 1, then n− 1 = m and so S ∼= Dn−1(3). Hence r2n−2 ∈ π(S) ⊆ π(G), which
is a contradiction.
• If rn−1 = r′

2m−2, then n−1 = 2(m−1)α, which is a contradiction since n is even.
Case 5. Let S ∼= 2Dm(q), where q = 3α.

Similarly to the above, we conclude that 3m > 2n − 10. By [32, Table 6] it
follows that if r′

2m−2 ∈ ρ(2, S), then m is odd.
(I) If n is odd, then rn ∈ π(S). Hence rn = r′

2m or rn = r′

2m−2. If rn = r′

2m or
r′

2m−2, then similarly to the above, we conclude that n = 2αm or 2α(m− 1), which
is a contradiction since n is odd.
(II) If n is even, then rn−1 ∈ π(S). If rn−1 = r′

2m, or r′

2m−2, then n− 1 = 2αm or
2α(m− 1), which is a contradiction since n− 1 is odd.
Case 6. Let S ∼= F4(q), where q = 3α.
Since t(S) = 5, t(G) 6 6 and so 9 6 n 6 12. We know that π(312α − 1) ⊆ π(F4(q)).
Therefore α = 1 and so q = 3, n = 12. Now r11 ∈ ρ(2, G) ⊆ π(S), which is a
contradiction.
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Similarly, we conclude that S can not be isomorphic to E6(q) and 2E6(q).
Case 7. Let S ∼= 2G2(32m+1), where m > 1. Since t(S) = 5, we get that 9 6

n 6 12. Similarly to the previous case if n > 11, then we get a contradiction since
3 ∈ ρ(S), for each independent set ρ(S). Therefore t(G) = 5 and so n = 9 or
n = 10.

Now Zsigmondy’s Theorem implies that 6(2m+ 1) 6 10, which is a contradic-
tion.

Step 4. In this step we prove that S is not isomorphic to a sporadic simple
group. If S ∼= J4, then 43 | |S| and since e(43, 3) = 42 we have n > 42. So
t(G) > [ 42+1

2 ] = 21, which is a contradiction since t(J4) = 7. For the rest of
sporadic simple groups t(S) 6 5 and so 9 6 n 6 12. Hence {757, 1093}∩ π(S) 6= ∅,
which is a contradiction.

Therefore the quasirecognition of PSLn(3), where n > 9, is proved. �

Theorem 3.2. If Γ(G) = Γ(PSLn(3)), where n > 9, then PSLn(3) 6 G/N 6

Aut(PSLn(3)), where N is a 3-group for even n and N is a {2, 3}-group for odd n.

Proof. By Theorem 3.1, we know that PSLn(3) 6 G/N 6 Aut(PSLn(3)).
Similarly to [20], we can assume that N is an elementary abelian p-group for some
p ∈ π(G). Now we prove that PSLn(3) acts faithfully on N . For this reason, we
prove that C = CG(N) 6 N . Since C is a normal subgroup of G, if C � N , then
CN/N is a nontrivial normal subgroup of G/N . As the proof of the main theorem
in [20] shows that socle(G/N) ∼= PSLn(3) and so CN/N has a subgroup isomorphic
to PSLn(3). Therefore rn−1, rn ∈ π(PSLn(3)) implies that rn−1, rn divide the order
of CN/N ∼= C/(C ∩ N). Hence p ∼ rn and p ∼ rn−1 in Γ(G), which implies that
p = 1, by Lemma 2.6. Therefore C 6 N and PSLn(3) acts faithfully on N . Also
PSLn(3) contains Frobenuis subgroups of the form 3n−1 : (3n−1 − 1)/(n, 2) and
3n−2 : (3n−2 − 1)/(n− 1, 2). Hence if p 6= 3, then using Lemma 2.2 it follows that
p ∼ rn−1 and p ∼ rn−2 in Γ(G). Therefore p = 2 or p = 3, using Lemma 2.6. Now
if n is even, then 2 ≁ rn−1, which is a contradiction. Therefore if n is odd, then N
is a {2, 3}-group and if n is even, then N is a 3-group. �

Corollary 3.1. Let Γ(G) = Γ(PSLn(3)), where n > 9. Then G/N ∼= PSLn(3)
or PSLn(3) · 2, the extension of PSLn(3) by the graph automorphism, where N is
a 3-group, if n is even and N is a {2, 3}-group, if n is odd.

Proof. We know that using the notations of [7], f = 1, g = 2 and d = (n, 2).
By the assumption, we know that PSLn(3) 6 Ḡ := G/N 6 Aut(PSLn(3)). Let
S = PSLn(3). Then Ḡ/S 6 Aut(S). Now if φ is a diagonal automorphism of S,
and ψ is a graph automorphism of S, then S · φ and S · (φψ) have elements of
orders 2rn−1 and 2rn, which is a contradiction, since in the prime graph of G we
have 2 ≁ rn−1 if n is even and 2 ≁ rn if n is odd. Therefore Ḡ ∼= S or S · ψ, the
extension of PSLn(3) by the graph automorphism. �

Theorem 3.3. Let ω(G) = ω(PSLn(3)), where n > 9. Then G ∼= PSLn(3) or
PSLn(3) · 2, the extension of PSLn(3) by the graph automorphism.
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Proof. Using Corollary 3.1 we know that if n is even, then G/N ∼= PSLn(3)
or PSLn(3) ·2, where N is a 3-group. Now using Lemma 2.10 it follows that N = 1.
Therefore G ∼= PSLn(3) or PSLn(3) · 2.

Similarly if n is odd, then N can not be a 3-group. Also as we stated in the proof
of Theorem 3.2, PSLn(3) has a Frobenius subgroup of the form 3n−1 : (3n−1 − 1).
Now if 2 | |N |, then using Lemma 2.9 we get that 2(3n−1 − 1) ∈ ω(PSLn(3)),
which is a contradiction by [6]. Therefore in each case we have G ∼= PSLn(3) or
PSLn(3) · 2. �

Remark 3.1. In [29], it is proved that h(PSL3(3)) = ∞. Also PSL4(3) and
PSL5(3) are recognizable by spectrum (see [10, 25]). In [11], it is shown that
h(PSL6(3)) = 2. In [9], it is proved that h(PSL7(3)) = 2 and h(PSL8(3)) = 1. Also
in [8] for each prime number p > 3, the following conjectures arise.

Conjecture 1. If p ≡ 1 (mod 3), then PSLp(3) is 2-recognizable by spectrum.

Conjecture 2. If p ≡ 2 (mod 3), then PSLp(3) is recognizable by spectrum.

Acknowledgement. The authors would like to thank the referees.
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