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Abstract. Four generalizations of the Filbert matrix are considered, with
additional asymmetric parameter settings. Explicit formulæ are derived for
the LU-decompositions, their inverses, and the inverse matrix. The approach
is mainly to use the q-analysis and to leave the justification of the necessary
identities to the q-version of Zeilberger’s algorithm for some of them, and for
the rest of the necessary identities, to guess the relevant quantities and proving
them later by induction.

1. Introduction

The Filbert matrix FN = (ȟij)N
i,j=1 is defined by ȟij = 1

Fi+j−1
as an analogue

of the Hilbert matrix where Fn is the nth Fibonacci number. It has been defined
and studied by Richardson [10]. The Filbert matrix has been extended by Berg [1]
and Ismail [2].

The present authors have generalized and extended this concept in a series of
papers [3, 4, 5, 6, 7, 9] to matrices with entries

1

Fλ(i+j)+rFλ(i+j+1)+r . . . Fλ(i+j+k−1)+r
and

1

Lλ(i+j)+r . . . Lλ(i+j+k−1)+r
.

Here, λ, k > 1 and r > −1 are integer parameters and Ln are Lucas numbers.
In another direction [5], the matrices with entries

gij =
Fλ(i+j)+r

Fλ(i+j)+s
and vij =

Lλ(i+j)+r

Lλ(i+j)+s

were introduced; here s, r and λ are integer parameters such that s 6= r, and
r, s > −1 and λ > 1. This was the first nontrivial instance where the numerator of
the entries is not equal to one.

2010 Mathematics Subject Classification: 11B39, 05A30, 15A23.
The second author was supported by an incentive grant of the NRF South Africa.

267



268 KILIÇ AND PRODINGER

All these extensions were driven by the search for “nice” explicit results: explicit
formulæ for the LU-decomposition, their inverses, and the Cholesky factorization.

Here, we go one step further, by allowing an asymmetric growth of indices. We,
however, confine ourselves to k = 1; for this instance, the inverse matrix also enjoys
nice closed form entries, which is no longer true for k > 2. To be more specific,
we introduce four generalizations of the Filbert matrix F, and define the matrices
T, M, H and W with entries

tij =
1

Fλi+µj+r
, mij =

Fλi+µj+r

Fλi+µj+s
, hij =

1

Lλi+µj+r
and wij =

Lλi+µj+r

Lλi+µj+s
,

respectively, where s, r, λ and µ are integer parameters such that s 6= r, and
r, s > −1 and λ, µ > 1.

Of course, because of these asymmetric entries, we cannot get a Cholesky de-
composition anymore.

Now we discuss our settings. Let {Un} and {Vn} be generalized Fibonacci and
Lucas sequences, respectively, whose Binet forms are

Un =
αn − βn

α − β
= αn−1 1 − qn

1 − q
and Vn = αn + βn = αn(1 + qn)

with q = β/α = −α−2, so that α = i/
√

q.

When α = 1+
√

5
2

(

or equivalently q =
(

1 −
√

5
)

/
(

1 +
√

5
))

, the sequence {Un}
is reduced to the Fibonacci sequence {Fn} and the sequence {Vn} is reduced to the
Lucas sequence {Ln}.

When α = 1 +
√

2
(

or equivalently q =
(

1 −
√

2
)

/
(

1 +
√

2
))

, the sequence
{Un} is reduced to the Pell sequence {Pn} and the sequence {Vn} is reduced to the
Pell-Lucas sequence {Qn}.

We will mostly deal with the q-forms; translating the results back to the Fi-
bonacci and Lucas world, say, is easy: We only have to systematically replace 1−qn

by 1−q
αn−1 Fn and 1 + qn by αnLn and replace what is eventually left by its numerical

values.

Throughout this paper we will use the notation of the q-Pochhammer symbol
(x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1).

We rewrite the entries of the matrices T, M, H and W in the q-form:

tij = i1−r−λi−µjq
1
2 (λi+µj+r−1) 1 − q

1 − qλi+µj+r
,

mij = ir−sq
s−r

2
1 − qλi+µj+r

1 − qλi+µj+s
,

hij = i−λi−µj−rq−
1
2 (λi+µj+r) 1

1 + qλi+µj+r
,

wij = ir−sq
s−r

2
1 + qλi+µj+r

1 + qλi+µj+s
.

In each of the four instances, we consider the LU-decomposition of the matrix
M = LU . We are able to get explicit formulæ for L, U , L−1, U−1 and M−1.
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As it was noted in the above cited earlier papers, the sizes of the matrices
do not really matter, and they can be thought of as infinite matrices and we may
restrict them whenever necessary to the first N rows resp. columns and write TN

etc. This is not true for the inverse matrices; here, the entries depend on N .
All our identities hold for general q, and the results about Fibonacci and Lucas

numbers come out as corollaries for the special choice of q, as explained.
The important part is to find the explicit forms. This was done by experiments

with a computer algebra system and spotting patterns. This becomes increasingly
complicated when more and more new parameters are introduced, as the guessing
only works for fixed choices of the parameters, and one needs to vary them as well.

Once one knows how the entries look like, proofs are by reducing sums to
single terms. For this, the q-Zeilberger algorithm is a handy tool. However for
the matrices M and W, the present versions of the q-Zeilberger algorithm do not
work, and we have to simulate it by noticing that the relevant sums are Gosper-
summable. To do this, some more guessing (with an additional parameter) is
required. Consequently, since all these proofs are routine and somewhat tedious,
we only present two typical examples. It would be a good student project to work
them all out in full detail.

As an illustration, we always write out the Fibonacci/Lucas cases for λ, µ ∈
{2, 3} and r = 1, s = −1.

2. The matrix T

We obtain the LU-decomposition T = L · U :

Theorem 2.1. For 1 6 d 6 n we have

Ln,d = iλ(d−n)q−
1
2 λ(d−n) (qλ; qλ)n−1(qr+µ+λd; qµ)d

(qλ; qλ)n−d(qλ; qλ)d−1(qr+µ+λn; qµ)d
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 2.1. For 1 6 d 6 n,

Ln,d =

(n−1
∏

t=1
F3t

)( d
∏

t=1
F2t+3d+1

)

(n−d
∏

t=1
F3t

)(d−1
∏

t=1
F3t

)( d
∏

t=1
F2t+3d+1

)

.

Theorem 2.2. For 1 6 d 6 n we have

Ud,n = i1−r−λd−µnqµ n−d
2 +rd−

r
2 +(λ+µ) d2

2 −
1
2

× (qλ; qλ)d−1(1 − q)

(qr+µn+λ; qλ)d(qr+µ+λd; qλ)d−1

(qµ; qµ)n−1

(qµ; qµ)n−d
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:
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Corollary 2.2. For 1 6 d 6 n

Ud,n =

(−1)(
d
2)+d−1

(d−1
∏

t=1
F3t

)(n−1
∏

t=1
F2t

)

( d
∏

t=1
F3t+2n+1

)(n−d
∏

t=1
F2t

)(d−1
∏

t=1
F2t+3d+1

)

.

The inverses of the matrices L and U :

Theorem 2.3. For 1 6 d 6 n we have

L−1
n,d = (−1)n−diλ(d−n)qλ

(n−d)
2

2 (qλ; qλ)n−1

(qλ; qλ)n−d(qλ; qλ)d−1

(qr+µ+λd; qµ)n−1

(qr+µ+λn; qµ)n−1
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 2.3. For 1 6 d 6 n

L−1
n,d =

(−1)(
n−d+1

2 )
(n−1

∏

t=1
F3t

)(n−1
∏

t=1
F2t+3j+1

)

(n−d
∏

t=1
F3t

)(d−1
∏

t=1
F3t

)(n−1
∏

t=1
F2t+3n+1

)

.

Theorem 2.4. For 1 6 d 6 n we have

U−1
d,n = q−λ n2

2 +µ d2

2 −µnd−rn+ r
2 + 1

2 (−1)n+dir−1+λn+µd

× (qr+λ+µd; qλ)n−1(qr+µ+λn; qµ)n

(1 − q)(qλ; qλ)n−1(qµ; qµ)n−d(qµ; qµ)d−1
.

Its Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 2.4. For 1 6 d 6 n

U−1
d,n = (−1)(

n
2)+d−1

(n−1
∏

t=1
F3t+2d+1

)( n
∏

t=1
F2t+3n+1

)

(n−1
∏

t=1
F3t

)(n−d
∏

t=1
F2t

)(d−1
∏

t=1
F2t

)

.

As a consequence, we can compute the determinant of TN , since it is simply
evaluated as U1,1 · · · UN,N :

Theorem 2.5.

det TN = i(µ−λ)(N+1
2 )+N(1−r)q

1
2 N2(µ+r)−

1
2 N+ 1

6 µN(N2
−1)+ 1

12 λN(N+1)(2N+1)

×(1 − q)N
N

∏

d=1

(qλ; qλ)d−1(qµ; qµ)d−1

(qr+λ+µd; qλ)d(qr+µ+λd; qµ)d−1
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 2.5.

detTN = (−1)(
N+2

3 )+N
N

∏

d=1

1

F3d+2N+1

d−1
∏

t=1

F3tF2t

F3t+2N+1F2t+3d+1
.
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Now we compute the inverse of the matrix T. It depends on the dimension, so
we compute (TN )−1.

Theorem 2.6. For 1 6 n, d 6 N :

(TN )−1
n,d = (−1)n−dir−1+µn+λdqµ n2

2 +λ d2

2 −µNn−λNd−Ns+ r
2 + 1

2

× (qr+µn+λ; qλ)N (qr+λd+µ; qµ)N

(qλ; qλ)N−d(qλ; qλ)d−1(qµ; qµ)N−n(qµ; qµ)n−1

1

1 − qr+µn+λd

1

1 − q
.

Remark. The inverse matrix and the other inverse matrices presented in
this paper were not computed using the inverses of L and U , but rather obtained
directly by our usual guessing strategy. While the first alternative would mean
that we would have to simplify a sum, the second approach stays within our chosen
method.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 2.6. For 1 6 n, d 6 N :

(TN )−1
n,d =

(−1)(
n+1

2 )+(N+1)(n+1)+d
( N

∏

t=1
F2t+3d+1

)( N
∏

t=1
F3t+2n+1

)

(N−n
∏

t=1
F2t

)(n−1
∏

t=1
F2t

)(N−d
∏

t=1
F3t

)(d−1
∏

t=1
F3t

)

1

F2n+3d+1
.

3. The matrix M

We obtain the LU-decomposition M = L · U :

Theorem 3.1. For 1 6 d 6 n we have

Ln,d =
(qλ; qλ)n−1

(qλ; qλ)d−1(qλ; qλ)n−d

(qs+λd+µ; qµ)d

(qs+λn+µ; qµ)d

1 − q(λ+µ) d(d+1)
2 +λ(n−d)+r+s(d−1)

1 − q(λ+µ) d(d+1)
2 +r+s(d−1)

.

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 3.1. For 1 6 d 6 n,

Ln,d =

(d−1
∏

t=1
F2t

)( d
∏

t=1
F3t+2d

)

(d−1
∏

t=1
F2t

)(n−d
∏

t=1
F2t

)( d
∏

t=1
F3t+2n−1

)

F5d(d+1)/2+2n−3d+2

F5d(d+1)/2−d+2
.

Theorem 3.2. For 1 6 d 6 n we have

Ud,n = ir−sq(λ+µ) d(d−1)
2 −

r+s
2 +ds (qλ; qλ)d−1(qµ; qµ)n−1

(qµ; qµ)n−d(qs+λ+nµ; qλ)d(qs+µ+λd; qµ)d−1

×1 − q(λ+µ) (d+1)d
2 +µ(n−d)+r+s(d−1)

1 − q(λ+µ) d(d−1)
2 −2s+r+ds

(1 − qr−s).

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:
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Corollary 3.2. For 1 6 d 6 n

Ud,n = (−1)d+1(−1)(
d
2)

(d−1
∏

t=1
F2t

)(n−1
∏

t=1
F3t

)

(n−d
∏

t=1
F3t

)(d−1
∏

t=1
F3t+2d−1

)( d
∏

t=1
F2t+3n−1

)

×F5d(d+1)/2+3n−4d+2

F5d(d−1)/2−d+3
.

The inverses of the matrices L and U :

Theorem 3.3. For 1 6 d 6 n we have

L−1
n,d = (−1)n−dqλ

n(n−1)
2 +λ

d(d+1)
2 −λnd 1 − q−λd+ λ+µ

2 n2+ λ−µ
2 n+r+s(n−2)

1 − q−λn+ λ+µ
2 n2+ λ−µ

2 n+r+s(n−2)

× (qλ; qλ)n−1

(qλ; qλ)d−1(qλ; qλ)n−d

(qs+λd+µ; qµ)n−1

(qs+λn+µ; qµ)n−1
.

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 3.3. For 1 6 d 6 n

L−1
n,d =

(−1)n−d
(n−1

∏

t=1
F2t

)(n−1
∏

t=1
F3t+2d−1

)

(d−1
∏

t=1
F2t

)(n−d
∏

t=1
F2t

)(n−1
∏

t=1
F3t+2n−1

)

F5n(n+1)/2−4n−2d+3

F5n(n−1)/2−n+3
.

Theorem 3.4. For 1 6 d 6 n we have

U−1
d,n = is−r(−1)n−dq−λ

n(n−1)
2 +µ

d(d+1)
2 −µnd+ r+s

2 −ns 1

(1 − qr−s)

× (qλ+µd+s; qλ)n−1(qµ+λn+s; qµ)n

(qλ; qλ)n−1(qµ; qµ)n−d(qµ; qµ)d−1

1 − q(λ+µ) n(n−1)
2 +µ(n−d)+r+s(n−2)

1 − q(λ+µ) n(n+1)
2 +r+s(n−1)

.

Its Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 3.4. For 1 6 d 6 n

U−1
d,n = (−1)(

d+2
2 )+nd

(n−1
∏

t=1
F2t+3d−1

)( n
∏

t=1
F3t+2n−1

)

(d−1
∏

t=1
F3t

)(n−1
∏

t=1
F2t

)(n−d
∏

t=1
F3t

)

× F5n(n−1)/2+2n−3d+3

F5n(n+1)/2−n+2
.

As a consequence, we can compute the determinant of MN , since it is simply
evaluated as U1,1 · · · UN,N :

Theorem 3.5.

detMN = iN(r−s)q
1
6 (λ+µ)N(N2

−1)+ 1
3 N(Ns+s−2r)(1 − qr−s)N

×
N

∏

d=1

(qλ; qλ)d−1(qµ; qµ)d−1

(qλ+dµ+s; qλ)d(qµ+λd+s; qµ)d−1

1 − q(λ+µ) (d+1)d
2

+r+s(d−1)

1 − q(λ+µ) d(d−1)
2 −2s+r+ds

.
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Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 3.5.

detMN = (−1)N+ 1
6 N(N2

−1)
N

∏

d=1

F5d(d+1)/2−d+2

F5d(d−1)/2−d+3

d−1
∏

t=1

(d−1
∏

t=1
F2t

)(d−1
∏

t=1
F3t

)

(d−1
∏

t=1
F3t+2d−1

)( d
∏

t=1
F2t+3d−1

)

.

Now we compute the inverse of the matrix M. It depends on the dimension, so
we compute (MN )−1.

Theorem 3.6. For 1 6 n, d 6 N :

(MN )−1
n,d = (−1)n−dis−rq

r+s
2 +λ

d(d+1)
2 +µ

n(n+1)
2 −Ns−Ndλ−Nnµ

× (qs+λ+µn; qλ)N (qs+µ+λd; qµ)N

(qλ; qλ)N−d(qλ; qλ)d−1(qµ; qµ)n−1(qµ; qµ)N−n

× 1

(1 − qs+µn+λd)(1 − qr−s)

1 − q(λ+µ) N(N+1)
2 −λd−µn+r+sN−2s

1 − q(λ+µ) N(N+1)
2 +r+sN−s

.

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 3.6. For 1 6 n, d 6 N :

(MN )−1
n,d =

(−1)(
n+1

2 )+d+n+Nn
( N

∏

t=1
F3t+2d−1

)( N
∏

t=1
F2t+3n−1

)

(d−1
∏

t=1
F2t

)(n−1
∏

t=1
F3t

)(N−d
∏

t=1
F2t

)(N−n
∏

t=1
F3t

)

F2d+3n−1

×F5N(N+1)/2−2d−3n−N+3

F5N(N+1)/2−N+2
.

4. The matrix H

We obtain the LU-decomposition H = L · U :

Theorem 4.1. For 1 6 d 6 n we have

Ln,d = qλ n−d
2 i−λ(n−d) (−qr+µ+λd; qµ)d

(−qr+µ+λn; qµ)d

(qλ; qλ)n−1

(qλ; qλ)d−1(qλ; qλ)n−d
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 4.1. For 1 6 d 6 n,

Ln,d =

( d
∏

t=1
L2t+3d+1

)

( d
∏

t=1
L2t+3n+1

)

(n−1
∏

t=1
F3t

)

(d−1
∏

t=1
F3t

)(n−d
∏

t=1
F3t

)

.
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Theorem 4.2. For 1 6 d 6 n we have

Ud,n = (−1)d−1i−r−µn−λdqµ n−d
2 +rd−

r
2 +(λ+µ) d2

2

× (qλ; qλ)d−1

(−qr+µn+λ; qλ)d(−qr+µ+λd; qµ)d−1

(qµ; qµ)n−1

(qµ; qµ)n−d
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 4.2. For 1 6 d 6 n

Ud,n =
(−1)(

d
2)5d−1

( d
∏

t=1
L3t+2n+1

)(d−1
∏

t=1
L2t+3d+1

)

(d−1
∏

t=1
F3t

)(n−1
∏

t=1
F2t

)

(n−d
∏

t=1
F2t

)

.

The inverses of the matrices L and U :

Theorem 4.3. For 1 6 d 6 n we have

L−1
n,d = (−1)n−di−λ(n−d)qλ

(n−d)2

2
(−qr+µ+λd; qµ)n−1

(−qr+µ+λn; qµ)n−1

(qλ; qλ)n−1

(qλ; qλ)d−1(qλ; qλ)n−d
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 4.3. For 1 6 d 6 n

L−1
n,d = (−1)(

n+1
2 )+(d

2)−nd

(n−1
∏

t=1
L2t+3d+1

)(n−1
∏

t=1
F3t

)

(n−1
∏

t=1
L2t+3n+1

)(d−1
∏

t=1
F3t

)(n−d
∏

t=1
F3t

)

.

Theorem 4.4. For 1 6 d 6 n we have

U−1
d,n = (−1)d−1ir+λn+µdq−λ n2

2 +µ d2

2 −µnd−rn+ r
2

× (−qr+µd+λ; qλ)n−1(−qr+λn+µ; qµ)n

(qλ; qλ)n−1(qµ; qµ)d−1(qµ; qµ)n−d
.

Its Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 4.4. For 1 6 d 6 n

U−1
d,n = (−1)(

n+1
2 )−d

( n
∏

t=1
L2t+3n+1

)(n−1
∏

t=1
L3t+2d+1

)

5n−1
(d−1

∏

t=1
F2t

)(n−d
∏

t=1
F2t

)(n−1
∏

t=1
F3t

)

.

As a consequence, we can compute the determinant of HN , since it is simply
evaluated as U1,1 · · · UN,N :

Theorem 4.5.

detHN = i
1
2 N(N+1)(λ+µ)+Nr+N(N+1)q

N(λ+µ)
12 + N2(λ+µ)

4 + N3(λ+µ)
6 + N2r

2
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×
N
∏

d=1

(qλ; qλ)d−1(qµ; qµ)d−1

(−qr+µd+λ; qλ)d(−qr+µ+λd; qµ)d−1
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 4.5.

detHN = 5N(N−1)/2(−1)(
N+1

2 )
N

∏

d=1

(d−1
∏

t=1
F3t

)(d−1
∏

t=1
F2t

)

( d
∏

t=1
L3t+2d+1

)(d−1
∏

t=1
L2t+3d+1

)

.

Now we compute the inverse of the matrix H. It depends on the dimension, so
we compute (HN )−1.

Theorem 4.6. For 1 6 n, d 6 N :

(HN )−1
n,d = (−1)N−1−n−dir+µn+λdqµ n2

2 +λ d2

2 −µNn−λNd−Nr+ r
2

× (−qr+µn+λ; qλ)N (−qr+λd+µ; qµ)N

(qλ; qλ)N−d(qλ; qλ)d−1(qµ; qµ)N−n(qµ; qµ)n−1

1

1 + qr+µn+λd
.

Fibonacci Corollary for λ = 3, µ = 2 and r = 1:

Corollary 4.6. For 1 6 n, d 6 N :

(HN )−1
n,d = (−1)(

d+1
2 )+Nd+n+d

( N
∏

t=1
L3t+2n+1

)( N
∏

t=1
L2t+3d+1

)

5N−1
(N−d

∏

t=1
F3t

)(d−1
∏

t=1
F3t

)(N−n
∏

t=1
F2t

)(n−1
∏

t=1
F2t

)

.

5. The matrix W

Now we collect our results related to the matrix W.
For convenience, we use the same letters L, U , but with a different meaning.
We obtain the LU-decomposition W = L · U :

Theorem 5.1. For 1 6 d 6 n we have

Ln,d =
(qλ; qλ)n−1

(qλ; qλ)d−1(qλ; qλ)n−d

(−qs+λd+µ; qµ)d

(−qs+λn+µ; qµ)d

× 1 − (−1)dq(λ+µ) d(d+1)
2 +λ(n−d)+r+s(d−1)

1 − (−1)dq(λ+µ) d(d+1)
2 +r+s(d−1)

.

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 5.1. For 1 6 d 6 n,

Ln,d =

(n−1
∏

t=1
F2t

)

(d−1
∏

t=1
F2t

)(n−d
∏

t=1
F2t

)

d
∏

t=1
L3t+2d−1

d
∏

t=1
L3t+2n−1

×
{ L5d(d+1)/2+2n−3d+2

L5d(d+1)/2−d+2
if d is even,

F5d(d+1)/2+2n−3d+2

F5d(d+1)/2−d+2
if d is odd.
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Theorem 5.2. For 1 6 d 6 n we have

Ud,n =
is−r(−1)d−1q+(λ+µ) d(d−1)

2 −
r+s

2 +ds(qλ; qλ)d−1(qµ; qµ)n−1

(qµ; qµ)n−d(−qλ+nµ+s; qλ)d(−qµ+λd+s; qµ)d−1

×1 − (−1)dq(λ+µ) (d+1)d
2 +µ(n−d)+r+ds−s

1 + (−1)dq(λ+µ) d(d−1)
2 +r+ds−2s

(1 − qr−s).

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 5.2. For 1 6 d 6 n

Ud,n = (−1)(
d
2)

(d−1
∏

t=1
F2t

)(n−1
∏

t=1
F3t

)

(n−d
∏

t=1
F3t

)(d−1
∏

t=1
L3t+2d−1

)( d
∏

t=1
L2t+3n−1

)

×







5d−1L5(d+1)d/2+3n−4d+2

F5d(d−1)/2−d+3
if d is odd,

5dF5(d+1)d/2+3n−4d+2

L5d(d−1)/2−d+3
if d is even.

The inverses of the matrices L and U :

Theorem 5.3. For 1 6 d 6 n we have

L−1
n,d =

(−1)n−dqλ(n−d
2 )(qλ(n−d+1); qλ)d−1(−qs+µ+λd; qµ)n−1

(qλ; qλ)d−1(−qs+µ+λn; qµ)n−1

× 1 + (−1)nq(λ+µ) n(n+1)
2 −µn−λd+r−2s+ns

1 + (−1)nq(λ+µ) n(n+1)
2 −µn−λn+r−2s+ns

.

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 5.3. For 1 6 d 6 n

L−1
n,d =

(−1)n−d
(n−1

∏

t=1
F2t

)(n−1
∏

t=1
L3t+2d−1

)

(d−1
∏

t=1
F2t

)(n−d
∏

t=1
F2t

)(n−1
∏

t=1
L3t+2n−1

)

×
{F5n(n+1)/2−2d−4n+3

F5n(n+1)/2−6n+3
if n is odd,

L5n(n+1)/2−2d−4n+3

L5n(n+1)/2−6n+3
if n is even.

Theorem 5.4. For 1 6 d 6 n we have

U−1
d,n = q

r+s
2 −

r
2 +µ

d(d+1)
2 −λ

n(n−1)
2 −ns−µnd

× is−r(−1)d−1(−qs+λ+µd; qλ)n−1(−qs+µ+λn; qµ)n

(1 − qr−s)(qλ; qλ)n−1(qµ; qµ)n−d(qµ; qµ)d−1

× 1 + (−1)nq(λ+µ)(n(n−1)/2)+µ(n−d)+r+s(n−2)

1 − (−1)nq(λ+µ) n(n+1)
2 +r+s(n−1)

.

Its Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:
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Corollary 5.4. For 1 6 d 6 n

U−1
d,n = (−1)(

d+1
2 )+d+n−nd

(n−1
∏

t=1
L2t+3d−1

)( n
∏

t=1
L3t+2n−1

)

(d−1
∏

t=1
F3t

)(n−1
∏

t=1
F2t

)(n−d
∏

t=1
F3t

)

×
{L5n(n−1)/2+2n−3d+3

5nF5n(n+1)/2−n+2
if n is even,

F5n(n−1)/2+2n−3d+3

5n−1L5n(n+1)/2−n+2
if n is odd.

As a consequence, we can compute the determinant of WN , since it is simply
evaluated as U1,1 · · · UN,N (we only state the Fibonacci version for λ = 2, µ = 3,
r = 1 and s = −1):

Theorem 5.5.

detWN = (−1)
1
6 N(N2

−1)

×
N
∏

d=1

(d−1
∏

t=1
F2t

)(d−1
∏

t=1
F3t

)

(d−1
∏

t=1
L3t+2d−1

)( d
∏

t=1
L2t+3N−1

)







5d−1L5(d+1)d/2−d+2

F5d(d−1)/2−d+3
if d is odd,

5dF5(d+1)d/2−d+2

L5d(d−1)/2−d+3
if d is even.

Now we compute the inverse of the matrix W. It depends on the dimension, so
we compute (WN )−1.

Theorem 5.6. For 1 6 d 6 n 6 N :

(WN )−1
n,d = is−r(−1)n−d−1+Nqλ d(d+1)

2 +µ n(n+1)
2 −Ns−Ndλ−Nnµ+ r+s

2

× 1

(1 + qs+µn+λd)(1 − qr−s)

(−qλ+µn+s; qλ)N (−qµ+λd+s; qµ)N

(qλ; qλ)N−d(qλ; qλ)d−1(qµ; qµ)n−1(qµ; qµ)N−n

× 1 + (−1)N q(λ+µ) N(N+1)
2 −λd−µn+r+sN−2s

1 − (−1)Nq(λ+µ) N(N+1)
2 +r+sN−s

.

Fibonacci Corollary for λ = 2, µ = 3, r = 1 and s = −1:

Corollary 5.5. For 1 6 d 6 n 6 N :

(WN )−1
n,d =

(−1)(
n+1

2 )+n+d−Nn
( N

∏

t=1
L3t+2d−1

)( N
∏

t=1
L2t+3n−1

)

(d−1
∏

t=1
F2t

)(n−1
∏

t=1
F3t

)(N−d
∏

t=1
F2t

)(N−n
∏

t=1
F3t

)

L2d+3n−1

×
{ L5N(N+1)/2−2d−3n−N+3

5N F5N(N+1)/2−N+2
if N is even,

F5N(N+1)/2−2d−3n−N+3

5N−1L5N(N+1)/2−N+2
if N is odd.
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6. Proofs

Following our introductory remarks, we present now two proofs about the ma-
trix T.

In order to show that indeed T = L · U , we need to show that for any m, n:
∑

d

Lm,dUd,n = tm,n = i1−r−λm−µnq
1
2 (λm+µn+r−1) 1 − q

1 − qλm+µn+r
.

In a rewritten form the formula to be proved reads
∑

d

Lm,dUd,n = (qλ; qλ)m−1(qµ; qµ)n−1(1 − q)i1−r−µn−λmq
1
2 (λm+µn−r−1)

×
∑

d

q
1
2 d2(λ+µ)+rd−

1
2 µd−

λ
2 d(qr+µ+λd; qµ)d

(qλ; qλ)m−d(qr+µ+λm; qµ)d(qµ; qµ)n−d(qr+λ+µn; qλ)d(qr+µ+λd; qµ)d−1
.

Apart form the constant factor, it should be proven that

∑

d

q
1
2 d2(λ+µ)+rd−

1
2 µd−

λ
2 d(qr+µ+λd; qµ)d

(qλ; qλ)m−d(qr+µ+λm; qµ)d(qµ; qµ)n−d(qλ+µn+r ; qλ)d(qr+µ+λd; qµ)d−1

=
1

(qλ; qλ)m−1(qµ; qµ)n−1(1 − qλm+µn+r)
.

(6.1)

For the verification of the last equation, let us denote the LHS of the equation (6.1)
by SUMm, then the Mathematica version of the q-Zeilberger algorithm [8] produces
the recursion

SUMm =
1 − qm(λ−1)+µn+r

(1 − qm(λ−1))(1 − qmλ+µn+r)
SUMm−1.

Now we move to the inverse matrices. Since L and L−1 are lower triangular
matrices, we only need to look at the entries indexed by (m, n) with m > n:

∑

n6d6m

Lm,dL−1
d,n =

(qλ; qλ)m−1

(qλ; qλ)n−1
i−λmq

1
2 λm(−1)niλnq

1
2 λn2

×
∑

n6d6m

(−1)dq−λdn+ 1
2 λd2

−
1
2 λd(qµ+λd+r; qµ)d(qµ+λn+r ; qµ)d−1

(qλ; qλ)m−d(qµ+λm+r ; qµ)d(qλ; qλ)d−n(qµ+λd+r ; qµ)d−1
.

For the sum on d in the last expression, the q-Zeilberger algorithm evaluates it and
gives us 0 for m 6= n. For m = n, it is easy:

(qλ; qλ)n−1

(qλ; qλ)n−1
i−λnq

1
2 λn(−1)niλnq

1
2 λn2

× (−1)nq−λn2+ 1
2 λn2

−
1
2 λn(qµ+λn+r ; qµ)n(qµ+λn+r; qµ)n−1

(qµ+λn+r ; qµ)n(qµ+λn+r ; qµ)n−1
= 1.

In that case, the equality is valid as well and so the proof is complete.

Now we present a proof for M.
We start with an introductory remark. For all the identities that we need to

prove, experiments indicate that they are Gosper-summable. However, the entries
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that we encounter in our instances, do not qualify for the q-Zeilberger algorithm
that we used in our earlier papers. Therefore, it was necessary to guess the relevant
quantities; the justification is then complete routine. However, this guessing pro-
cedure is (with all the parameters involved) extremely time consuming, and so we
confined ourselves to the demonstration of one such proof. We hope that extensions
of the q-Zeilberger algorithm will be developed that fit our needs.

We deal now with
∑

n6d6m

Lm,dL−1
d,n

and prove that it is 1 for n = m (there is only one term in the sum) and 0 for
n > m since we have lower triangular matrices. So let us assume m > n. We will
prove a general formula depending on an extra variable K:

∑

n6d6K

Lm,dL−1
d,n = (−1)K−nqλ

K(K+1)
2 −λKn+λ

n(n−1)
2

× 1 − q(λ+µ) K(K+1)
2 +r+sK−s+(m−n)λ

1 − q(λ+µ) K(K+1)
2 +r+sK−s

× 1

1 − qλm−λn

(qλ; qλ)m−1

(qλ; qλ)K−n(qλ; qλ)m−1−K(qλ; qλ)n−1

(qs+λn+µ; qµ)K

(qs+λm+µ; qµ)K
.

The formula we need follows from setting K := m. Note that the RHS of
formula equals 0 when K = m > n because of the term (qλ; qλ)m−K−1 in the
denominator of the second row. The proof of the formula is by induction. Clearly
it is true for K = n, and the induction step amounts to show that

∑

n6d6K

Lm,dL−1
d,n + Lm,K+1L−1

K+1,n =
∑

n6d6K+1

Lm,dL−1
d,n,

which equals

(−1)K−nqλ
K(K+1)

2 −λKn+λ
n(n−1)

2
1 − q(λ+µ) K(K+1)

2 +sK−s+r+(m−n)λ

1 − q(λ+µ) K(K+1)
2 +sK−s+r

1

1 − qλm−λn

× (qλ; qλ)m−1

(qλ; qλ)K−n(qλ; qλ)m−1−K(qλ; qλ)n−1

(qs+λn+µ; qµ)K

(qs+λm+µ; qµ)K

+
(qλ; qλ)m−1

(qλ; qλ)K(qλ; qλ)m−K−1

(qs+λ(K+1)+µ; qµ)K+1

(qs+λm+µ; qµ)K+1

× 1 − q(λ+µ) (K+1)(K+2)
2 +λ(m−K−1)+sK+r

1 − q(λ+µ) (K+1)(K+2)
2 +sK+r

× (−1)K+1−nqλ
K(K+1)

2 +λ
n(n+1)

2 −λn(K+1) (qs+λn+µ; qµ)K

(qs+λ(K+1)+µ; qµ)K

× 1 − q−λn+ λ+µ
2 (K+1)2+ λ−µ

2 (K+1)+r+s(K−1)

1 − q−λ(K+1)+ λ+µ
2 (K+1)2+ λ−µ

2 (K+1)+r+s(K−1)

(qλ; qλ)K

(qλ; qλ)n−1(qλ; qλ)K+1−n

= (−1)K+1−nqλ
(K+1)(K+2)

2 −λn(K+1)+λ
n(n−1)

2
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× 1 − q(λ+µ) (K+1)(K+2)
2 +s(K+1)−s+r+(m−n)λ

1 − q(λ+µ) (K+1)(K+2)
2 +s(K+1)−s+r

1

1 − qλm−λn

× (qλ; qλ)m−1

(qλ; qλ)K−n+1(qλ; qλ)m−K−2(qλ; qλ)n−1

(qs+λn+µ; qµ)K+1

(qs+λm+µ; qµ)K+1
,

or

− (1 − q(λ+µ) K(K+1)
2 +sK−s+r+(m−n)λ)(1 − q(λ+µ) (K+1)(K+2)

2 +sK+r)

× (1 − qλ(K−n+1))(1 − qs+λm+µ+µK)

+ (1 − qs+λ(K+1)+µ+µK) × (1 − q(λ+µ) (K+1)(K+2)
2 +λ(m−K−1)+sK+r)

× (1 − q−λn+ λ+µ
2 (K+1)2+ λ−µ

2 (K+1)+r+s(K−1))(1 − qλm−λn)

= qλ+Kλ−nλ(1 − q(λ+µ) (K+1)(K+2)
2 +s(K+1)−s+r+(m−n)λ)

× (1 − q(λ+µ) K(K+1)
2 +sK−s+r)(1 − qλ(m−K−1))(1 − qs+λn+µ+µK),

which is a routine check. Thus we have the claimed result.

References

1. C. Berg, Fibonacci numbers and orthogonal polynomials, Arab. J. Math. Sci. 17 (2011), 75–88.
2. M. E. H. Ismail, One parameter generalizations of the Fibonacci and Lucas numbers, Fibonacci

Quart. 46/47 (2008/2009), 167–180.
3. E. Kılıç, H. Prodinger, A generalized Filbert matrix, Fibonacci Quart. 48(1) (2010), 29–33.
4. , The q-Pilbert matrix, Int. J. Comput. Math. 89(10) (2012), 1370–1377.
5. , Variants of the Filbert matrix, Fibonacci Quart. 51(2) (2013), 153–162.
6. , The generalized Lilbert matrix, submitted.
7. , The generalized q-Pilbert Matrix, Math. Slovaca, to appear.

8. P. Paule, A. Riese, A mathematica q-analogue of Zeilberger’s algorithm based on an alge-

braically motivated approach to q-hypergeometric telescoping; in: Special functions, q-series

and related topics, Fields Inst. Commun. 14 (1997), 179–210.
9. H. Prodinger, A generalization of a Filbert matrix with 3 additional parameters, Trans. Roy.

Soc. South Africa 65 (2010), 169–172.
10. T. Richardson, The Filbert matrix, Fibonacci Quart. 39(3) (2001), 268–275.

Department of Mathematics (Received 18 06 2013)
TOBB University of Economics and Technology
Ankara 06560, Turkey
ekilic@etu.edu.tr

Department of Mathematics

University of Stellenbosch
Stellenbosch 7602, South Africa
hproding@sun.ac.za


	1. Introduction
	2. The matrix T
	3. The matrix M
	4. The matrix H
	5. The matrix W
	6. Proofs
	References

