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CONVERGENCE IN CAPACITY

OF RATIONAL APPROXIMANTS

OF MEROMORPHIC FUNCTIONS

Hans-Peter Blatt

Abstract. Let f be meromorphic on the compact set E ⊂ C with maximal
Green domain of meromorphy Eρ(f), ρ(f) < ∞. We investigate rational ap-
proximants with numerator degree 6 n and denominator degree 6 mn for f .
We show that the geometric convergence rate on E implies convergence in ca-
pacity outside E if mn = o(n) as n → ∞. Further, we show that the condition
is sharp and that the convergence in capacity is uniform for a subsequence
Λ ⊂ N.

1. Introduction

Let E be compact in C with connected complement Ω = C r E. The set Ω is
called regular if there exists a Green function G(z) = G(z, ∞) on Ω with pole at ∞
satisfying G(z) → 0 as z → ∂Ω. Note that limz→∞(G(z) − log |z|) = − log cap E.
Here, cap E is the logarithmic capacity and cap E > 0 if Ω is regular (cf. Tsuji [5]).
Moreover, we define the Green domains Eρ by

Eρ := {z ∈ Ω : G(z) < log ρ} ∪ E, ρ > 1

and E1 := E◦, where E◦ is the set of interior points of E.
For B ⊂ C, we denote by C(B) the class of continuous functions on B, and

M(B) represents the class of functions f that are meromorphic in some open neigh-
borhood of B.

If f ∈ M(E), then there exists a maximal ρ(f) > 1 such that f ∈ M(Eρ(f)
).

ρ(f) = ∞ if and only if f is meromorphic on C.
Given n, m ∈ N0, N0 := N ∪ {0}, let Rn,m be the collection of all rational

functions,

Rn,m := {r = p/q : p ∈ Pn, q ∈ Pm, q 6≡ 0},

where Pn (resp. Pm) denotes the collection of all algebraic polynomials with degree
at most n (resp. m).
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Let r∗
n,m := r∗

n,m(f) ∈ Rn,m denote a rational function of best uniform approx-
imation to f on E, i.e.,

en,m(f) := inf
r∈Rn,m

‖f − r‖E = ‖f − r∗
n,m‖E,

where we use ‖ · ‖B for the supremum norm on B ⊂ C.
By Walsh’s theorem (cf. Walsh [6]), we know that

lim sup
n→∞

‖f − r∗
n,mn

‖
1/n
E 6

1

ρ(f)
,

if limn→∞ mn = ∞. Now, the starting point in [1] was a sequence of rational
approximants {rn,mn

}n∈N such that

(1.1) lim sup
n→∞

‖f − rn,mn
‖

1/n
∂E 6

1

τ
< 1.

In [1] the problem was considered whether the convergence (1.1) can be transferred
to domains Eσ, σ > 1. Concerning the convergence of {rn,mn

}n∈N, the m1-measure

was used: Let e be subset of C, and set m1(e) := inf
{

∑

|Uν |
}

, where the infimum is
taken over all coverings {Uν} of e by disks Uν , and |Uν | is the radius of the disk Uν .

Let D be domain in C and ϕ a function defined in D with values in C. A
sequence of functions {ϕn}, meromorphic in D, is said to converge to a function ϕ
m1-almost uniformly inside D if for any compact set K ⊂ D and any ε > 0 there
exists a set Kε such m1(Kε) < ε and {ϕn} converges uniformly to ϕ on K r Kε.

Theorem 1.1. [1, Theorem 1] Let E be compact in C with regular, connected

complement Ω = C r E, {mn}∞
n=1 a sequence in N0 with mn = o(n/ log n) as

n → ∞, {rn,mn
}n∈N a sequence of rational functions, rn,mn

∈ Rn,mn
, such that for

f ∈ M(E)

lim sup
n→∞

‖f − rn,mn
‖

1/n
∂E 6

1

τ
< 1.

Then there exists an extension f̃ of f to Eτ with the following property:

For any ε > 0 there exists a subset Ω(ε) ⊂ C with m1(Ω(E)) < ε such that f̃
is a continuous function on Eτ r Ω(ε) with

lim sup
n→∞

‖f̃ − rn,mn
‖

1/n

EσrΩ(ε)
6

σ

τ

for any σ with 1 < σ < τ and {rn,mn
}n∈N converges m1-almost uniformly to f̃

inside Eτ .

In [1] it was noted that it is not known for f ∈ M(Eρ), ρ > 1, whether

the continuous extension f̃ of Theorem 1.1 is m1-equivalent to f on Eτ ∩ Eρ if
limn→∞ mn = ∞, mn = o(n/ log n) as n → ∞.

The main result of this paper is to show that this is true even if mn = o(n)
as n → ∞. Moreover, we can show not only convergence in m1-measure, but more
stronger, convergence in capacity and even uniform convergence in capacity at least
for a subsequence of {rn,mn

}n∈N.
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2. Convergence in capacity

Let D be a domain in C, ϕ a function in C with values in C. A sequence
ϕn : D → C, n ∈ N, converges in capacity inside D if for any compact set K ⊂ D
and any ε > 0 one has cap({z ∈ K : |(ϕ − ϕn)(z)| > ε} → 0 as n → ∞. Moreover,
{ϕn}n∈N converges uniformly in capacity inside D to ϕ if for any compact set
K ⊂ D and any ε > 0 there exists a set Kε ⊂ K such that cap Kε < ε and
{ϕn}n∈N converges uniformly to ϕ on K r Kε (cf. Gonchar [2]).

Our main theorems for convergence in capacity can be formulated as follows.

Theorem 2.1. Let E be compact in C with regular connected complement,

{mn}n∈N a sequence in N with

(2.1) mn = o(n) as n → ∞ and lim
n→∞

mn = ∞.

Let f ∈ M(E) and let {rn,mn
}n∈N be a sequence of rational functions, rn,mn

∈
Rn,mn

, such that

lim sup
n→∞

‖f − rn,mn
‖

1/n
∂E 6

1

τ
< 1.

Then the sequence {rn,mn
}n∈N converges in capacity to f inside Emin(τ,ρ(f)).

Theorem 2.1 can be proved by using the methods of the proof of the following
Theorem 2.2. For the statement of Theorem 2.2 we choose a parameter d > 1
such that diameter(Eρ(f)) < d, if ρ(f) < ∞. The parameter d results from the
subadditivity theorem for the capacity, due to Nevanlinna [3, p. 217] (cf. Pommer-
enke [4]).

Theorem 2.2. Let f ∈ M(E) with ρ(f) < ∞, {mn}n∈N with (2.1), {rn,mn
}n∈N

a sequence of rational functions, rn,mn
∈ Rn,mn

, such that

(2.2) lim sup
n→∞

‖f − rn,mn
‖

1/n
∂E 6

1

ρ(f)
.

Let σ, 1 < σ < ρ(f), and 1 < θ < ρ(f)/σ. Then there exists n0 = n0(σ, θ) and

compact sets Ωn(σ, θ) ⊂ Eσ such that for all n > n0(σ, θ)

cap Ωn(σ, θ) 6 d1/2
(

1 −
θ − 1

1 + 3θ

)n/2mn

,(2.3)

‖f − rn,mn
‖EσrΩn(σ,θ) 6

( θσ

ρ(f)

)n

.(2.4)

Concerning uniform convergence inside Eρ(f) the following theorem holds.

Theorem 2.3. Let f , {mn}n∈N and {rn,mn
}n∈N be as in Theorem 2.2 and

let (2.2) hold. Then there exists a subset {nk}k∈N of N such that the subsequence

{rnk,mnk
}k∈N converges uniformly in capacity to f inside Eρ(f).

Such a type of geometric convergence in capacity was proved by Gonchar [2]
for the Padé approximation. In [1] geometric uniform convergence in m1-measure
of real rational approximants to real functions was proved only for Chebyshev
approximation on an interval. So far Theorem 2.3 seems to be the first result for
uniform convergence in capacity.
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3. Proofs

As already mentioned, we may restrict ourselves to the proof of Theorem 2.2.

Proof of Theorem 2.2. For abbreviation, we write ρ = ρ(f). Let ε :=
(θ − 1)/4; then we get

ε =
θ − 1

4
<

ρ/σ − 1

4
=

1

4

ρ − σ

σ
< ρ − σ.

We choose τ such that ρ − ε < τ < ρ, and we denote by hτ the monic polynomial
whose zeros are the poles of f in Eτ , counted with their multiplicities. Then

(fhτ )(z) = f(z)hτ(z)

is holomorphic in Eτ . Let us denote by pτ
n ∈ Pn the best uniform approximation

of fhτ on E. Then there exists n1 = n1(σ, ε) such that for n > n1(σ, ε)

‖fhτ − rn,mn
hτ ‖∂E 6

1

2

( 1

ρ − ε

)n

,(3.1)

‖fhτ − pτ
n‖E 6

1

2

( 1

ρ − ε

)n

,(3.2)

‖fhτ − pτ
n‖Eσ

6
1

2

( σ

ρ − ε

)n

,(3.3)

degree(hτ ) 6 mn.(3.4)

For (3.1) we have used (2.2), the theorem of Bernstein–Walsh for (3.2) and (3.3),
(3.4) follows from (2.1).

Combining (3.1) and (3.2),

(3.5) ‖rn,mn
hτ − pτ

n‖∂E 6

( 1

ρ − ε

)n

, n > n1(σ, ε).

Let rn,mn
(z) = pn(z)/qmn

(z), normalized by

qmn
(z) := q∗

mn
(z)

∏

ξn,i /∈Eρ

(

1 −
z

ξn,i

)

and q∗
mn

(z) :=
∏

ξn,i∈Eρ

(z − ξn,i)

where ξn,i denote the poles of rn,mn
. Then for any compact set K ⊂ C

lim sup
n→∞

‖qmn
‖

1/n
K 6 1.

Because of (3.5) and the normalization of qm,n, there exists a constant c > 0 such
that for z ∈ E

|pn(z)hτ (z) − pτ
n(z)qmn

(z)| 6 cmn

( 1

ρ − ε

)n

.

We apply the lemma of Bernstein–Walsh to the polynomial

w(z) = pn(z)hτ (z) − pτ
n(z)qmn

(z) ∈ Pn+mn

and obtain |w(z)| 6 (cσ)mn
(

σ
ρ−ε

)n
for z ∈ Eσ. Consequently, for z ∈ Eσ, where

qmn
(z) 6= 0, we get

|rn,mn
(z)hτ (z) − pτ

n(z)| =
∣

∣

∣

w(z)

qmn
(z)

∣

∣

∣
6 (cσ)mn

( σ

ρ − ε

)n 1

|qmn
(z)|

.
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Hence, there exists n2 = n2(σ, ε), n2 > n1, such that

|rn,mn
(z)hτ (z) − pτ

n(z)| 6
1

2

( (1 + ε)σ

ρ − ε

)n 1

|q∗
mn

(z)|

for all z ∈ Eσ with q∗
mn

(z) 6= 0 and all n > n2. Let us consider the set

Sn(σ, ε) :=
{

z ∈ Eσ : |rn,mn
(z)hτ (z) − pτ

n(z)| >
1

2

((1 + 2ε)σ

ρ − ε

)n}

;

then

Sn(σ, ε) ⊂ en = en(σ, ε) :=
{

z ∈ Eσ : |q∗
mn

(z)| 6
( 1 + ε

1 + 2ε

)n}

.

Since q∗
mn

is monic and degree (q∗
mn

) 6 mn, we obtain

(3.6) cap en 6

( 1 + ε

1 + 2ε

)
n

degree(q∗

mn
)
6

( 1 + ε

1 + 2ε

)
n

mn
.

Therefore, we have shown that for z ∈ Eσ r en and n > n2 = n2(σ, ε)

(3.7) |rn,mn
(z)hτ (z) − pτ

n(z)| 6
1

2

((1 + 2ε)σ

ρ − ε

)n

.

By (3.3) and (3.7), we have for z ∈ Eσ r en and n > n2

|f(z)hτ (z) − rn,mn
(z)hτ (z)| 6

( (1 + 2ε)σ

ρ − ε

)n

or

|f(z) − rn,mn
(z)| 6

( (1 + 2ε)σ

ρ − ε

)n 1

|hτ (z)|
,

when hτ (z) 6= 0. Let us consider

S̃n(σ, ε) :=
{

z ∈ Eσ : |f(z) − rn,mn
(z)| >

( (1 + 3ε)σ

ρ − ε

)n}

;

then

S̃n(σ, ε) ⊂ ẽn = ẽn(σ, ε) :=
{

z ∈ Eσ : |hτ (z)| 6
(1 + 2ε

1 + 3ε

)n}

and by (3.4)

(3.8) cap ẽn 6

(1 + 2ε

1 + 3ε

)n/mn

.

Summarizing, we have obtained for z ∈ Eσ r (en ∪ ẽn) and n > n2

(3.9) |f(z) − rn,mn
(z)| 6

( (1 + 3ε)σ

ρ − ε

)n

.

Because of the subadditivity of the capacity (Nevanlinna [3], Pommerenke [4])

1
/

log
d

cap(en ∪ ẽn)
6 1

/

log
d

cap en
+ 1

/

log
d

cap ẽn
,
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where d is greater than the diameter of en ∪ ẽn and d > 1. The parameter d of
Theorem 2.2 fulfills these conditions. Using (3.7) and (3.9), we get

1/ log
d

cap(en ∪ ẽn)
6 1/ log

[

d
(1 + 2ε

1 + ε

)n/mn

]

+ 1/ log

[

d
(1 + 3ε

1 + 2ε

)n/mn

]

6 2/ log

[

d
(1 + 3ε

1 + 2ε

)n/mn

]

or

log
d

cap(en ∪ ẽn)
>

1

2
log

[

d
(1 + 3ε

1 + 2ε

)n/mn

]

and finally

(3.10) cap(en ∪ ẽn) 6 d1/2
(1 + 2ε

1 + 3ε

)n/2mn

.

Since ε = (θ − 1)/4, we obtain

1 + 2ε

1 + 3ε
=

2 + 2θ

1 + 3θ
= 1 −

θ − 1

1 + 3θ
< 1

and some calculations show that

1 + 3ε

ρ − ε
<

θ

ρ
.

Inserting these inequalities into (3.9) and (3.10), and define the compact sets
Ωn(σ, θ) := en(σ, θ) ∪ ẽn(σ, θ). Then we have proved the inequalities (2.3) and
(2.4) of Theorem 2.2. �

We remark that Theorem 2.1 follows directly from Theorem 2.2 if we choose θ
so small that θ < ρ(f)/σ and keeping in mind that

lim
n→∞

cap(en(σ, ε) ∪ ẽn(σ, ε)) = 0

with ε = (θ − 1)/4. Moreover, for τ < ρ(f) the same method of proof leads to the
result of Theorem 2.1 under the condition

(3.11) lim sup
n→∞

‖f − rn,mn
‖

1/n
∂E 6

1

τ
< 1.

Then the technique of the proof leads immediately to the following Corollary of
Theorem 2.2.

Corollary 3.1. Let f ∈ M(E) with ρ(f) < ∞, {mn}n∈N a sequence with

(2.1), {rn, mn}n∈N, rn,mn
∈ Rn,mn

, a sequence such that (3.11) holds. Then there

exists for any σ, 1 < σ < min(τ, ρ(f)) and arbitrary θ, 1 < θ < min(τ, ρ(f))/σ, a

natural number n0 = n0(σ, θ) and set Ωn(σ, θ) ⊂ Eσ such that (2.3) and (2.4) hold

for n > n0(σ, θ).

Proof of Theorem 2.3. We consider a monotonically increasing sequence
{σi} such that limi→∞ σi = ρ(f) and a monotonically decreasing sequence {θi},
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1 < θi < ρ(f)/σi, such that limi→∞ θi = 1. Let Ωn(σ, θ) and n0(σ, θ) be defined as
in Theorem 2.2, i.e., for n > n0(σ, θ)

|f(z) − rn,mn
(z)| 6

( θσ

ρ(f)

)n

for z ∈ Eσ r Ωn(σ, θ)

and cap Ωn(σ, θ) 6 d1/2γn/2mn , where γ = 1 − θ−1
1+3θ . Replacing (σ, θ) by (σ1, θ1),

we can find, by using mn = o(n) as n → ∞, a subsequence Λ1 =
{

n
(1)
j

}∞

j=1 of N

such that n
(1)
j > n0(σ1, θ1) and

m
(1)
nj

n
(1)
j

/

log
1

γ1
6

2

(j + 1)2

for j = 1, 2, . . . , where

γ1 = 1 −
θ1 − 1

1 + 3θ1
.

Recursively, we can define subsequences Λk =
{

n
(k)
j

}∞

j=1 ⊂ Λk−1 (k = 2, 3, . . .)

such that n
(k)
j > n0(σk, θk) and

m
(k)
nj

n
(k)
j

/

log
1

γk
6

2

(k + j)2

for j = 1, 2, . . .. We define Λ :=
{

n
(k)
1

}∞

k=1 and we have to show that Λ fulfills the
assertions of our theorem.

Let K be compact in Eρ(f) and ε > 0. For ε we can find an index i∗ > 1 such
that

(3.12) 2

∞
∑

j=1

1

(i∗ + j)2 < 1
/

log
d

ε
.

Then we define

k∗ := max(i∗, min{i : K ⊂ Eσi
}) and Kε :=

∞
⋃

j=1

Ω
n

(k∗)
j

(σk∗ , θk∗).

We know that

(3.13) |f(z) − rn,mn
(z)| 6

(θk∗σk∗

ρ(f)

)n

for z ∈ Eσk∗
r Ω

n
(k∗)
j

(σk∗ , θk∗ ) and

(3.14) cap Ω
n

(k∗)
j

(σk∗ , θk∗) 6 d1/2(γ∗
k)

n
(k∗)

j
/2m

n
(k∗)

j

for j = 1, 2, . . .. The subadditivity of the capacity (Nevanlinna) yields with (3.12),
(3.14)
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1
/

log
d

cap Kε
6

∞
∑

j=1

1
/

log
d

cap Ω
n

(k∗)
j

(σk∗ , θk∗ )

6

∞
∑

j=1

(

log d −
1

2
log d −

n
(k∗)
j

2m
n

(k∗)
j

log γ∗
k

)−1

6 2

∞
∑

j=1

m
n

(k∗)

j

n
(k∗)
j

/

log
1

γ∗
k

6 2

∞
∑

j=1

1

(k∗ + j)2 < 1
/

log
d

ε
,

and consequently cap Kε < ε. Since
{

n ∈ Λ : n > n
(k∗)
1

}

⊂ Λk∗ we obtain by (3.13)

|f(z) − rn,mn
(z)| 6

(θk∗ σk∗

ρ(f)

)n

, z ∈ K r Kε.

for all n ∈ Λ, n > n
(k∗)
1 . Hence the uniform convergence in capacity of {rn,mn

}n∈Λ

to f inside Eρ(f) is proven. �

4. Sharpness of the theorems

The result in Theorem 2.1 is sharp in the sense that in (2.1) the condition
mn = o(n) as n → ∞ is essential. To verify this we consider the following example:
Let E be compact with regular connected complement, f ∈ M(E) with ρ(f) < ∞.
If {mn}n∈N is a sequence in N with (2.1), then Walsh’s theorem implies that there
exist best uniform rational approximants r∗

n,mn
∈ Rn,mn

to f on E such that

lim sup
n→∞

‖f − r∗
n,mn

‖
1/n
E 6

1

ρ(f)
.

According to Theorem 2.1 the sequence {r∗
n,mn

}n∈N converges in capacity to f
inside Eρ(f).

Furthermore, let {m̃n}n∈N be a sequence in N with

(4.1) m̃n > mn and lim
n→∞

m̃n

n
> 0.

We choose a point ξ ∈ Eρ(f) r E, hence α := dist(ξ, E) > 0. Then we define the
sequence

rn,m̃n
:= r∗

n,mn
+ Rn(z) ∈ Rn,m̃n

, where Rn(z) =
αm̃n−mn

ρ(f)n

1

(z − ξ)m̃n−mn
.

Then

‖f − rn,m̃n
‖E 6 ‖f − r∗

n,mn
‖E +

1

ρ(f)n
,

lim sup
n→∞

‖f − rn,m̃n
‖

1/n
E 6

1

ρ(f)
.

Consider the disks

Dn :=
{

z ∈ C : |z − ξ| 6
α

ρ(f)n/(m̃n−mn)

}

.
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Using (2.1) and (4.1), we conclude that there exists a number κ > 0 and n0 ∈ N

such that
n

m̃n − mn
6 κ for all n > n0.

Hence, with r := α/ρ(f)κ we get Dn ⊃ K := Kr(ξ) = {z ∈ C : |z − ξ| 6 r} for all
n > n0. Moreover, we can choose κ big enough such that K ⊂ Eρ(f).

Now, fix ε > 0, 0 < ε < 1, and consider the sets

Sn(ε) := {z ∈ K : |(f − r∗
n,mn

)(z)| > ε}.

By Theorem 2.1, we know that {r∗
n,mn

}n∈N converges in capacity to f inside Eρ(f).
Therefore

(4.2) lim
n→∞

cap Sn(ε) = 0.

By definition of rn,m̃n
, we have

|(f − rn,m̃n
)(z)| > |Rn(z)| − |(f − r∗

n,mn
)(z)|.

Consequently,

|(f − rn,m̃n
)(z)| > 1 − ε for all z ∈ K r Sn(ε).

Since cap K = r > 0, we obtain by Nevanlinna’s inequality, together with (4.2),
that

lim inf
n→∞

cap{z ∈ K : |(f − rn,m̃n
)(z)| > 1 − ε} > 0.

Hence, {rn,m̃n
}n∈N does not converge in capacity to f inside Eρ(f), and the condi-

tion “mn = o(n) as n → ∞" is essential in Theorem 2.1.
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