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A HADAMARD TYPE THEOREM
FOR THE STATIC SPACE-TIME

WALTER FRATTAROLO

Abstract: Necessary and sufficient conditions on the static space-time are deter-
mined, in order that the exponential function exp,, be a diffeomorphism.

It is well known that the Hopf~Rinow theorem states that a connected and
complete Riemannian manifold is geodesically connected.

We can express this concept saying that, if My is such a manifold, then the
exponential map

exp,: Tp Mo — My

is onto, for every p € M.

Hadamard theorem goes beyond this result and shows that, if My is simply
connected and complete and if its sectional curvature is & < 0, then the map exp,,
is a diffeomorphism, for every p € My; in particular:

i) There are not couples of conjugate points on Mo;
ii) My is diffeomorphic to R" (n = dim My);
iii) For any couple of points p,q € M, there exists a unique geodesic
v: IR — M
such that

(v(0) =p; (1) =4q) -

The property (iii) above implies not only the existence of v, that is to claim
exp,, is onto, but also the uniqueness of it, that is: exp,, is one to one.

No result like Hadamard theorem is known about semi-Riemannian manifolds;
on the contrary, there are counter-examples to the Hopf~Rinow theorem in the
case of static Lorentz manifolds (e.g.: see the anti-De Sitter space, on [9], [13]).
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However sufficient conditions which guarantee the validity of the Hopf-Rinow
theorem for static space-times, have been established in [7].

The Lorentz metric g = g(P) considered there applies to a manifold M of the
following form:

MZM()X]R,,

where My is furnished with a Riemannian metric (index = 0) denoted by: (-, ),
and g(P) is defined by:

9(P)[(¢,7), (¢, 7)] = (¢.¢) = B(Ry) 72

for every P = (Py,tg) € M and (¢, 7) € T,M; here 3 is a positive real function
on Mo.

In the following g(P) will be denoted by (-, -),;, if the context is clear.

In this work we examine necessary and sufficient conditions on the metric g(P)
for the function exp,, to be a diffeomorphism, for any P € M. Such conditions, on
the contrary of what might be expected, are not a straightforward generalization
of the Hadamard ones. Before showing our results, we recall a result of [7]. Some
notation now.

Let P = (xo,ty), @ = (x1,t1) be two events in M. We shall consider loop
spaces Q' on My and M, defined in the following way:

Ol = QY (Mo, g, 1) = {:v: [0,1] — My: x absolutely continuous and such that
1

/ (,2) 5y, ds < 400, x(0)=u10, x(l):xl} .
0

Q! is a Riemannian manifold, modelled on Sobolev spaces, of curves in M.
The geodesic on M, joining P and (@), are the critical points of the action
functional f, defined by:

FO0) = [ 061N ds

In [7] the following variational principle has been proved:

Let M = My x IR be a static space-time with the metric (-, -),,.

Let P = (xq,t0), Q = (x1,t1) two points in M.

A curve y(s) = (z(s),t(s)) is a critical point of f (i.e.: a geodesic) if and only
if:

) @ = x(s) is a critical point of the functional J on Q!, defined by:

1 o A2
J(J«"):/ (@, &) pp, ds — —7——
0 Jo 30




A HADAMARD TYPE THEOREM FOR THE STATIC SPACE-TIME 259

where: A = t1 — ty;

) t = t(s) is the function such that:

10)=0 and i) =A( [ (/8 ds) " (1/8(9) = b(x)

Moreover if v(s) = (z(s),t(s)) is a geodesic, then we have:

This variational principle allows to use the Riemannian techniques for prob-
lems over the manifold M and allows to apply the Lusternik and Schnirelman
critical point theory too.

We want also to recall a result obtained in [7] which is of interest for what
follows.

Using the same symbols as above, if My is connected and complete and if
B € C3(Mo;R") is a function limited from above and from below by positive
constants, then the Lorentz manifold (M, g) is geodesically connected.

In the sequel we shall write simply:

J(z) = ®1(x) — A2Py(z) ,
where: .
Oy (z) = /0 iy g, ds

1

T g5
5

Theorem (1). Let M, My, IR, g, be defined as above. Suppose that:

@2(.%) =

Our main result is the following.

i) My is simple connected and complete;

ii) 3 € C3(Mp;IR") is a function limited from above and from below by
positive constants;

iii) the sectional curvature on My is k < 0.

Under such assumptions, if the function exp, : T, M — M is a diffeomor-
phism for any point P € M, then the Riemannian Hessian H g(Po) is a negative
semidefinite quadratic form, for any point Py € M.

Viceversa, if the Riemannian Hessian H Ig(Po) is a negative definite quadratic

form for any point Py € My, then the function exp, is a diffeomorphism for any
point P € M.
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Now we get to prove Theorem (1) and some complementary results.

Proposition (2). Let : 8 € C?*(Mo;R"); Py € My; R be the curvature
tensor on M. Let 7 be the unitary vector field along IR, tangent to IR. The
following results are valid:

. 1 2
i) <RU77—1?),7'1>(P0 0=5 Hﬁ(Po)[’U v]— (v,grad \/@po) ,VtoeR, VveTp, M.

ii) ng(Po) is a negative semidefinite form iff:
2
<RU,T1U7 T1>(P0,t0) S - ((grad \/Ba U>Po) )

Vio € R, Vv e Tp, M.

Proof: (ii) is a straightforward consequence of (i). In order to prove (i), we
recall that:

<RU,T1aval>(P07t0) = ﬁ(;o) H\/_(PO)[ ] <T17T1>M
(=L "
~ (S Y lew)) - ()

ﬂ(Po) H}}/E(Po)[v, U] s Vv e TPOMO .

Now we observe that:

(@) HY (Ry)lo, o] = (Dulgrad VB),v),, =

=3 ( gEo)e),

%<<<v grad ﬂl(P > > ﬂl(P) D (gradﬁ),v>P0
:< 111) 3(Py) 3/T0< v.grad )y, )+ 5 ﬁl(Po) (Dy(grad 8), v)
B (i) (Py) bTO(“ grad ), )+ 5 ;(PO) Hpy(Po)lv, o],

(i) follows from (1) and (2). m

Lemma (3). Assume:
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i) My is simply connected and complete;

ii) 3 € C3(Mp;IR") is a function limited from above and from below by
positive constants;

iii) the sectional curvature on M is K < 0.

If the Riemannian Hessian H g(Po) is a negative definite quadratic form for
any point Py € My, then the quadratic form J"(x) is positive definite for any
curve x = x(s) (s € I) which is a critical point of the functional J and for any
couple of extreme points x(0), z(1) € M.

Proof: Let x be a critical point of J. We shall show:

1) J"(z) is a positive definite form if ®4(x) is negative definite;

2) ®Y(x) is negative definite if the integral functional:
1
1@)fo.0] = [ Hj@)lo, ol ds
0

whose domain is the set of vector fields with compact support, tangent to My
along x, is a negative definite form.

If v = v(s) is a vector field having compact support and tangent to My along
T, we have:

1
) Da(a) = [ (g ds

1 1
) Y (z)[v,v] = 2/0 (Dsv, Dsv) ) ds — 2/0 (Rip @, 0), ) ds -
Besides that, we have:
1
) Po(z) = :
fO B( x(s
1 (grad B8, v),,
) ol =y [ s
(fo ﬁ(x(é’)))

\ 2 L (grad B,v) ) )2
) ®y7 (2)[v, v] = (fo )3</0 B2(z(s)) ds>

B(z
1 1 (<gradﬂ, V) ) 1 1 HE (2) [0, o]
+7> /0(_2) ) >2/0 1

5 s + (5
(o asy Blals ) (Jo ey Fals))

ds .
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Now (1) comes straight, because:
T () = @ (x) — A®5(x) .
Also (2) is soon found, as a consequence of the following

2 1 (grad 3,v),5)  \?2 2 (<gradﬁ’ >“)2 _
(i >3</0 o) - (1 )2/0 T

0 B(z(s)) 1 x(s
= 2 1 1 (grad 3,v), 2
) (o 5y ) {fo EEO) </0 B2 (x(s ))ﬁ?’/?(:n(s))) +

~ /01 (terad 8,)) dS}

F((s)) =
- 2 {(/1 ds / ((erad 8, v),, )2d8> 1 N
(1 i) (Mo Slto) o 2te) Jo mcic

2
_/0 ((erad 8, v),(,)) ds} 0

33 (x(s))

Lemma (4). Assume:
i) My is simply connected and complete;

ii) 8 € C3(Mp;IR") is a function limited from above and from below by
positive constants;

iii) the sectional curvature on My is k < 0.

If the quadratic form J"(x) is positive definite, for any curve x = z(s) (s € I)
which is a critical point of the functional J, and for any couple of extreme points
x(0),x(1) € My, then the Riemannian Hessian Hg(Po) is a negative semidefinite
quadratic form, for any point Py € Mj.

Proof: Let Py € My. By [7], there exists a geodesic v(s) = (z(s),t(s)),
s € I, contained in the manifold M and starting from FPy. Such geodesic depends
on Cauchy data for a system of second order differential equations, then it de-
pends on the point Py, on the initial instant ¢(0) = ¢y and on the initial velocity
4(0) = (2(0),£(0)). Now, as we are dealing with a static metric, it results (see
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introduction):
Jo % sel
t(s) = 1(0) + —5 "= A,
A=1t(1)—t(0

Bz(p)) (1) =10,
. 1 A

ts) =12 )

T ()

then #(s) depends on z(s) and on A; therefore v(s) depends on the vector
w1 = x(0), on A and on the point (Py,tg) € M.

Fixing ¢(0) = tp and A, we fix the temporal extrema of the geodesic arc v(s),
s € I, whereas fixing P and 1, we fix its spatial extrema; the vector u(0) = puo,
such that:

pr = 2(0) = [[£(0) {74, Mo po

determines the direction of .
Stated that, let 1y = 4(0) and A be fixed and v = 7,,;a be the corresponding
geodesic, with extreme points:

P =7(0) = (2(0),t(0)), x(0) =P,
Q=~(1) = ((z(1),¢(1)) .

The curve x = z(s), s € I is a critical point of J. Let vy € Tp, My be a unitary
vector and let:

{1/ =v(s)| Vs €I v(s) € Ty Mo lv(s)llr, Mo = 1}

be the unitary vector field, obtained by parallel translation of vy along x. We
consider now a sequence of functions:

(1) s: I - R keIN

Lo
kk+1)’ k1

si(o) =

and set:
zi(0) = z(sk(0)) ,

tp(o) = t(sk(o)) ;

from (1) it follows:
. _ 1 .
xk(o—) - k(k 4 1) x(s) |S:Sk(0') ’

1 .

fk(ff) = m 75(8) \s:sk(a) ;
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besides that, we have:

A — /01 ir(0) do = /;:1 (%) k(k + 1) ds

e Lk e
1/k+1 1/k+1 B()
1/k
f/k+1 61
Io 5y ds

here, we have used: 3(x)f = c (see the introduction).

The curve v = (xg, tx) are monotone linear reparametrizations of pieces of
v = (xz,t), therefore they are all geodesics and the sequence {z;} is made of
critical points of J.

Now we use an arbitrarily fixed function ¢ € C§°(I,IR") and build up the
following vector fields with compact support:

Uk(3> = Uk({L'(S)) ’s:sk(a) = @(Uk(s)) V(S)’ ki—&-l
0, €

IN
Va)
IA

-

E

=

N
here, o, is the inverse function of sy.
We can also write: vg(0) = ¢(0) v(sk(0)); then observe that:

1 1
/0 (D, Do) g, (o) dor = / (D vk, Diy ),y dor =

_/ xk Yv(sk(o )) Dy, ((p(a) y(sk(g))> do

zk (o)

-/ <<P( ) (5(0)) + 0(0) D v(st(0). $(0) v(sa(c)

0
+¢(0) Diyv(s1(0)) do

zi (o)

1 2 1/k 2
LY e [ ()
o \do k(k + 1) 1/k+1 ds

indeed:
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Therefore, we have (see Lemma (3)):
(3)  J"(w) vk, vi] = @Y (1) [vr, vx] — AFPG (k) [vk, 03] =

1 1
= 2/ <Dﬂvk’DUU7€>xk(a) do — 2/ <R¢k’vkik,vk>xk(0) do +

0 0

X 2 (/1 (grad B, k), (o) d0>2+
(i ste) o P
0 B(zk)

2 1 ( grad 3, vg) - U))Z p
o

(fo B( wk) Flar)
1 1 1

e At CRIC dff} >0,
(fo ﬂ(u’vk))

o+

1 d(p 2 1 )
(4) 2/0 (da) dJ—Q/O <Rikvvk’$k7vk>zk(a) do +

(A NP s
<JJ%> Jy ey Ml ] d >

A 2 1 1 (grad B3, vk),. (» 2
>2< 1 fég ) { T _do (/ & 32( k; £l )d0> +
0 B(z) IO (@) 0 Tk

_ /01 (tgr205.00) ) dff}

B3 (xr,)

and using (2):

1/ do\2 1
2/ (_(p) d0_2/ <R5ﬂk7vk’£k’vk>x k(o) do +

< ) ( 1Ads )2}715 Bg(l y HE (), V]) /Oltpz(a)da>

OB(

(i) () e e =)

/k+1 Bx)
1/k (grad 3, vg) s
—k:(k:+1)/ Mw()ds}.

1k+1 B3(x)
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Afterwards, we are going to apply the mean theorem for continuous functions to
the second part of inequality (5); so we obtain:

L/dg\? 1 .
(6) 2/0 (da) d0—2/0 <Rz'k,'ukl‘k‘7vk>g;k(o—) do +

- (k:(k + 1?]01 %)2 killggéi<ﬁ%($) Hg(a?)[l/, 1/]) /014,02(0) do >

2 2

2( A )2{5( () ((gradﬁ, Uk>x(s(2k))) ((gradﬁ, Uk>x(sgk))) }

T _ds ! k - k )
k(k+1) fy 525 F(a(s5)) 3 (a(s§"))
here, the s; 6]%“, %[ are suitable points.

At last observe that, by the completeness of M, the geodesic 7 = y(s) can be
extended from s € I up to s € IR; after making that, let’s divide the inequality
(6) by A% and go to the limit for (A — +oc), then let’s multiplicate the resulting
inequality by (k(k + 1))2 and go again to the limit for (kK — +o00). We shall
obtain the thesis of the lemma. u

Proposition (5). We suppose that

1) v = (z,t) is a geodesic contained in M ;

2) f(v) = fol (Vs V) ar ds;

3) ®(x) =t is the function obtained in [7] ( see the introduction);
let us denote

4) v a vector field having compact support and tangent to My along x;

5) (w,T) a vector field having compact support and tangent to M along -.

Then:

J'(@)[o,w] = f"(7) (v, @ @)[e]), (w,7)] .

Proof: On smooth curves y = y(s) contained in My, it is identically (see

[7]):
(1) fé(?/,t) ‘t:@(y) =0;

therefore we have identically:

d
dfyft'(y,@(y)) =0,
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that is, for any vector field w = w(s) having compact support and tangent to M)
along y, for any vertical vector field 7 along ®(y), having compact support, we
have:

(2) (Y, ®(y)[w, 7] + fii(y, @(y)) [ (y)[w], 7] =0 .

Now recall that:
f”(’}/) [(’U, Tl)? (wv 7_2)] =

1
_ / {2(D0, D)y, — 2 (Rt )y — Hiy(a)[o, w] 2} ds
0

1 1
_/ {2(gradﬂ,v>MO i%2+2(gradﬁ,w>M0 i%l}ds—/ 26(x) 11 Tods
0 0

= CZ’Z‘(’Y) [’U, w] + f;/t(fy)[v7 7—2] + falslt(’Y) [w7 Tl] + féz{,(’)/) [Tl7 TQ]

= (flo(Nl,w] + fr ko, 1)) + (F)o 7] + (D7)
so that, (2) implies:

B) Mz 2(2) (v, () [v]), (w, m2)] =
= fae(, 2(2))[v, w] + £ (2, &(2)) [w, ®'(2)[v]] .

Recall also that:

) J(x) = [z, ®(2)) ,
<) T(@)] = fole, @) v] + fi(x, () [()[v]
) TN @), w] = fr (2, @ ()0, w] + fry (2, ©(x) [v, () [w] +
+ [or(@, ®(2) [w, @ (2) o] + fii(x, @(2)) [@'(2)[v], @ (x)[w]] ;

here, (- - -) can be obtained easily, using a variation of x corresponding to the
directions of v and w and observing that 3(x)f = constant (see [7]). At this
point, the thesis springs out from (2), (3), (---). =

Corollary (6). The following a) and b) are equivalent.

a) J"(z)[v,w] = 0, for any vector field w;

b) f"(7) [(v, ®'(x))[v], (w,7)] = 0, for any vector field (w, T).

So that, the null spaces of J"(z) and of f”() have the same dimension.

Proof: The equivalence a)<b) is straightforward.
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We shall show the second statement. Let (v, 7)) belong to the null space of
0
£ [ m), (w,m2)] = (freO)lo,w] + F()w 7)) +
+ (Flo, ] + il m]) =0, ¥ (w,72) .
So, it is identically:
0 { 1O, wl + )] =0, Y,
fa(, 7l + fli(y)[m, 7] = 0, V7o

Comparing the second equation of the above system (1) with the equation (2)
of the proposition (5), we obtain:

for(o, 2] + fr (V) 2l = f (Do, 72l + fi () [¥' (@) W], 2], Y7
= felrs 2] = fu(y) [/ ()], 2], V7
= ”(’y) [7‘1 — ‘I’l(x>[1}],7'2] = 0, V1

= /Olﬁ(:r);i(ﬁ—@’(x)[vD Tods =0, V7.

If (o =71 — ®(x)[v]), then:

[

d 2

— ds =0
ds 5 ’

TysM

(11 — @' (2)[v])

S0,
71 = ®'(z)[v] + constant ;

but, as 71(0) = 0 = ®'(2)[v] |s=0, then:
7= (x)[v] . u
Remark (7). A vector field (v, 7) belongs to the null space of f” () iff it is:
(v,7) = (v, ®'(2)[v])
and v belongs to the null space of J"(z).

Proof of Theorem (1): We already know, by [7], that the function exp,,
is onto, for any point P € M. In order to prove it is one to one, it will suffice to
show that all the critical points of the functional J are minima; afterwards, the
unicity of the geodesic joining two given points on M will follow from well known
results of the critical points theory (see e.g.: [8], Theorem (6, 5, 3), page 354).



A HADAMARD TYPE THEOREM FOR THE STATIC SPACE-TIME 269

Viceversa, if exp,, is a diffeomorphism for any point P € M, then no couple

of conjugate points with respect to the action functional exists, on any geodesic
~ contained in M; then corollary (6) and remark (7) imply the lack of couples of
conjugate points, with respect to the functional J, on the critical curves of J.

This fact shows that exp,, is a diffeomorphism for any P € M, iff the form

J" is positive definite on any critical curve of J, independently of the extreme
points of that, so Lemmas (3) and (4) complete the proof.
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