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A HADAMARD TYPE THEOREM
FOR THE STATIC SPACE-TIME

Walter Frattarolo

Abstract: Necessary and sufficient conditions on the static space-time are deter-

mined, in order that the exponential function expp be a diffeomorphism.

It is well known that the Hopf–Rinow theorem states that a connected and
complete Riemannian manifold is geodesically connected.
We can express this concept saying that, if M0 is such a manifold, then the

exponential map
expp : TpM0 →M0

is onto, for every p ∈M0.
Hadamard theorem goes beyond this result and shows that, if M0 is simply

connected and complete and if its sectional curvature is k ≤ 0, then the map expp
is a diffeomorphism, for every p ∈M0; in particular:

i) There are not couples of conjugate points on M0;

ii) M0 is diffeomorphic to IR
n (n = dimM0);

iii) For any couple of points p, q ∈M , there exists a unique geodesic

γ : IR→M0

such that
(

γ(0) = p; γ(1) = q
)

.

The property (iii) above implies not only the existence of γ, that is to claim
expp is onto, but also the uniqueness of it, that is: expp is one to one.
No result like Hadamard theorem is known about semi-Riemannian manifolds;

on the contrary, there are counter-examples to the Hopf–Rinow theorem in the
case of static Lorentz manifolds (e.g.: see the anti-De Sitter space, on [9], [13]).
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However sufficient conditions which guarantee the validity of the Hopf–Rinow
theorem for static space-times, have been established in [7].
The Lorentz metric g = g(P ) considered there applies to a manifold M of the

following form:
M =M0 × IR ,

whereM0 is furnished with a Riemannian metric (index = 0) denoted by: 〈 · , · 〉M0

and g(P ) is defined by:

g(P )
[

(ζ, τ), (ζ, τ)
]

= 〈ζ, ζ〉 − β(P0) τ
2

for every P = (P0, t0) ∈ M and (ζ, τ) ∈ TpM ; here β is a positive real function
on M0.
In the following g(P ) will be denoted by 〈 · , · 〉M , if the context is clear.
In this work we examine necessary and sufficient conditions on the metric g(P )

for the function expp to be a diffeomorphism, for any P ∈M . Such conditions, on
the contrary of what might be expected, are not a straightforward generalization
of the Hadamard ones. Before showing our results, we recall a result of [7]. Some
notation now.

Let P = (x0, t0), Q = (x1, t1) be two events in M . We shall consider loop
spaces Ω1 on M0 and M , defined in the following way:

Ω1 = Ω1(M0, x0, x1) =
{

x : [0, 1]→M0 : x absolutely continuous and such that
∫ 1

0
〈ẋ, ẋ〉M0

ds < +∞, x(0)=x0, x(1)=x1
}

.

Ω1 is a Riemannian manifold, modelled on Sobolev spaces, of curves in M0.
The geodesic on M , joining P and Q, are the critical points of the action

functional f , defined by:

f(γ) =

∫ 1

0
〈γ̇(s), γ̇(s)〉M ds .

In [7] the following variational principle has been proved:

Let M =M0 × IR be a static space-time with the metric 〈 · , · 〉M .

Let P = (x0, t0), Q = (x1, t1) two points in M .

A curve γ(s) = (x(s), t(s)) is a critical point of f (i.e.: a geodesic) if and only
if:

·) x = x(s) is a critical point of the functional J on Ω1, defined by:

J(x) =

∫ 1

0
〈ẋ, ẋ〉M0

ds− ∆2
∫ 1
0

ds
β(x)

,
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where: ∆ = t1 − t0;

··) t = t(s) is the function such that:

t(0) = 0 and ṫ(s) = ∆
(

∫ 1

0
(1/β(x)) ds

)−1
(1/β(x(s))) = Φ(x) .

Moreover if γ(s) = (x(s), t(s)) is a geodesic, then we have:

f(γ) = J(x) .

This variational principle allows to use the Riemannian techniques for prob-
lems over the manifold M and allows to apply the Lusternik and Schnirelman
critical point theory too.
We want also to recall a result obtained in [7] which is of interest for what

follows.
Using the same symbols as above, if M0 is connected and complete and if

β ∈ C3(M0; IR
+) is a function limited from above and from below by positive

constants, then the Lorentz manifold (M, g) is geodesically connected.
In the sequel we shall write simply:

J(x) = Φ1(x)−∆2Φ2(x) ,

where:

Φ1(x) =

∫ 1

0
〈ẋ, ẋ〉M0

ds ,

Φ2(x) =
1

∫ 1

0

ds

β(x)

.

Our main result is the following.

Theorem (1). Let M , M0, IR, g, be defined as above. Suppose that:

i) M0 is simple connected and complete;

ii) β ∈ C3(M0; IR
+) is a function limited from above and from below by

positive constants;

iii) the sectional curvature on M0 is k ≤ 0.
Under such assumptions, if the function expp : TpM → M is a diffeomor-

phism for any point P ∈M , then the Riemannian Hessian Hβ
R(P0) is a negative

semidefinite quadratic form, for any point P0 ∈M0.
Viceversa, if the Riemannian Hessian Hβ

R(P0) is a negative definite quadratic
form for any point P0 ∈ M0, then the function expp is a diffeomorphism for any
point P ∈M .
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Now we get to prove Theorem (1) and some complementary results.

Proposition (2). Let : β ∈ C2(M0; IR
+); P0 ∈ M0; R be the curvature

tensor on M . Let τ1 be the unitary vector field along IR, tangent to IR. The
following results are valid:

i) 〈Rv,τ1v, τ1〉(P0,t0)
=
1

2
Hβ

R(P0)[v, v]−
(

〈v, grad
√

β〉P0

)2
, ∀ t0∈ IR, ∀ v∈TP0M0.

ii) Hβ
R(P0) is a negative semidefinite form iff:

〈Rv,τ1v, τ1〉(P0,t0)
≤ −

(

〈grad
√

β, v〉P0

)2
,

∀ t0 ∈ R, ∀ v ∈ TPO M0.

Proof: (ii) is a straightforward consequence of (i). In order to prove (i), we
recall that:

〈Rv,τ1 , v, τ1〉(P0,t0)
=

−1
√

β(P0)
H

√
β

R (P0)[v, v] · 〈τ1, τ1〉M

=

( −1
√

β(P0)
H

√
β

R (P0)[v, v]

)

· (−β(P0))

=
√

β(P0)H

√
β

R (P0)[v, v] , ∀ v ∈ TP0M0 .

Now we observe that:

(2) H

√
β

R (P0)[v, v] =
〈

Dv(grad
√

β), v
〉

P0

=

=
1

2

〈

Dv

(

1√
β
gradβ

)

, v

〉

P0

=
1

2

〈

(〈

v, grad
1

√

β(P )

〉

M0

)

gradβ +
1

√

β(P )
Dv(gradβ), v

〉

P0

=

(

−1
4

)

1

β(P0)
√

β(P0)

(

〈v, gradβ〉P0

)2
+

1

2
√

β(P0)
〈Dv(gradβ), v〉P0

=

(

−1
4

)

1

β(P0)
√

β(P0)

(

〈v, gradβ〉P0

)2
+

1

2
√

β(P0)
Hβ

R(P0)[v, v], ,

∀ v ∈ TP0M0 .

(i) follows from (1) and (2).

Lemma (3). Assume:
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i) M0 is simply connected and complete;

ii) β ∈ C3(M0; IR
+) is a function limited from above and from below by

positive constants;

iii) the sectional curvature on M is K ≤ 0.
If the Riemannian Hessian Hβ

R(P0) is a negative definite quadratic form for
any point P0 ∈ M0, then the quadratic form J ′′(x) is positive definite for any
curve x = x(s) (s ∈ I) which is a critical point of the functional J and for any
couple of extreme points x(0), x(1) ∈M0.

Proof: Let x be a critical point of J . We shall show:

1) J ′′(x) is a positive definite form if Φ′′2(x) is negative definite;

2) Φ′′2(x) is negative definite if the integral functional:

I(x)[v, v] =

∫ 1

0
Hβ

R(x)[v, v] ds ,

whose domain is the set of vector fields with compact support, tangent to M0

along x, is a negative definite form.

If v = v(s) is a vector field having compact support and tangent to M0 along
x, we have:

·) Φ1(x) =

∫ 1

0
〈ẋ, ẋ〉x(s) ds ;

··) Φ′′1(x)[v, v] = 2

∫ 1

0
〈Dsv,Dsv〉x(s) ds− 2

∫ 1

0
〈Rẋ,v ẋ, v〉x(s) ds .

Besides that, we have:

Φ2(x) =
1

∫ 1
0

ds
β(x(s))

,·)

Φ′2(x)[v] =
1

(

∫ 1
0

ds
β(x(s))

)2

∫ 1

0

〈gradβ, v〉x(s)
β2(x(s))

ds ,··)

Φ2”(x)[v, v] =
2

(

∫ 1
0

ds
β(x(s))

)3

(
∫ 1

0

〈gradβ, v〉x(s)
β2(x(s))

ds

)2

· · ·)

+
1

(

∫ 1
0

ds
β(x(s))

)2

∫ 1

0
(−2)

(

〈gradβ, v〉x(s)
)2

β3(x(s))
ds+

1
(

∫ 1
0

ds
β(x(s))

)2

∫ 1

0

Hβ
R(x)[v, v]

β2(x(s))
ds .
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Now (1) comes straight, because:

J ′′(x) = Φ′′1(x)−∆Φ′′2(x) .

Also (2) is soon found, as a consequence of the following

2
(

∫ 1
0

ds
β(x(s))

)3

(
∫ 1

0

〈gradβ, v〉x(s)
β2(x(s))

ds

)2

− 2
(

∫ 1
0

ds
β(x(s))

)2

∫ 1

0

(

〈gradβ, v〉x(s)
)2

β3(x(s))
ds =

=
2

(

∫ 1
0

ds
β(x(s))

)2

{

1
∫ 1
0

ds
β(x(s))

(
∫ 1

0

〈gradβ, v〉x(s)
β1/2(x(s))β3/2(x(s))

)2

+

−
∫ 1

0

(

〈grad β, v〉x(s)
)2

β3(x(s))
ds

}

≤

≤ 2
(

∫ 1
0

ds
β(x(s))

)2

{

(
∫ 1

0

ds

β(x(s))

∫ 1

0

(

〈gradβ, v〉x(s)
)2

β3(x(s))
ds

)

· 1
∫ 1
0

ds
β(x(s))

+

−
∫ 1

0

(

〈gradβ, v〉x(s)
)2

β3(x(s))
ds

}

= 0 .

Lemma (4). Assume:

i) M0 is simply connected and complete;

ii) β ∈ C3(M0; IR
+) is a function limited from above and from below by

positive constants;

iii) the sectional curvature on M0 is k ≤ 0.
If the quadratic form J ′′(x) is positive definite, for any curve x = x(s) (s ∈ I)

which is a critical point of the functional J , and for any couple of extreme points
x(0), x(1) ∈M0, then the Riemannian Hessian Hβ

R(P0) is a negative semidefinite
quadratic form, for any point P0 ∈M0.

Proof: Let P0 ∈ M0. By [7], there exists a geodesic γ(s) = (x(s), t(s)),
s ∈ I, contained in the manifold M and starting from P0. Such geodesic depends
on Cauchy data for a system of second order differential equations, then it de-
pends on the point P0, on the initial instant t(0) = t0 and on the initial velocity
γ̇(0) =

(

ẋ(0), ṫ(0)
)

. Now, as we are dealing with a static metric, it results (see
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introduction):

t(s) = t(0) +

∫ s
0

dρ
β(x(ρ))

dρ
β(x(ρ))

∆ ,

{

s ∈ I
∆ = t(1)− t(0) ,

ṫ(s) =
1

∫ 1
0

dρ
β(x)

· ∆

β(x(s))
,

then ṫ(s) depends on x(s) and on ∆; therefore γ(s) depends on the vector
µ1 = ẋ(0), on ∆ and on the point (P0, t0) ∈M .
Fixing t(0) = t0 and ∆, we fix the temporal extrema of the geodesic arc γ(s),

s ∈ I, whereas fixing P and µ1, we fix its spatial extrema; the vector µ(0) = µ0,
such that:

µ1 = ẋ(0) = ‖ẋ(0)‖TP0
M0 µ0

determines the direction of γ.
Stated that, let µ1 = ẋ(0) and ∆ be fixed and γ = γµ1;∆ be the corresponding

geodesic, with extreme points:

P = γ(0) = (x(0), t(0)) , x(0) = P0 ,

Q = γ(1) = ((x(1), t(1)) .

The curve x = x(s), s ∈ I is a critical point of J . Let ν0 ∈ TP0M0 be a unitary
vector and let:

{

ν = ν(s) | ∀ s ∈ I : ν(s) ∈ Tx(s)M0; ‖ν(s)‖Tx(s)M0 = 1
}

be the unitary vector field, obtained by parallel translation of ν0 along x. We
consider now a sequence of functions:

(1) s : I → IR k ∈ IN

sk(σ) =
1

k(k + 1)
σ +

1

k + 1

and set:
xk(σ) = x(sk(σ)) ,

tk(σ) = t(sk(σ)) ;

from (1) it follows:

ẋk(σ) =
1

k(k + 1)
ẋ(s) |s=sk(σ) ,

ṫk(σ) =
1

k(k + 1)
ṫ(s) |s=sk(σ) ;
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besides that, we have:

∆k =

∫ 1

0
ṫk(σ) dσ =

∫ 1/k

1/k+1

(

ṫ(s)

k(k + 1)

)

k(k + 1) ds

=

∫ 1/k

1/k+1
ṫ(s) ds =

∫ 1/k

1/k+1

c

β(x)
ds

=

∫ 1/k
1/k+1

1
β(x) ds

∫ 1
0

1
β(x) ds

∆ ;

here, we have used: β(x) ṫ = c (see the introduction).

The curve γk = (xk, tk) are monotone linear reparametrizations of pieces of
γ = (x, t), therefore they are all geodesics and the sequence {xk} is made of
critical points of J .

Now we use an arbitrarily fixed function ϕ ∈ C∞0 (I, IR
+) and build up the

following vector fields with compact support:







vk(s) = vk(x(s)) |s=sk(σ) = ϕ(σk(s)) ν(s),
1

k+1 ≤ s ≤ 1
k ,

vk(s) = 0, s ∈ I\[ 1k+1 , 1k ] ;

here, σk is the inverse function of sk.

We can also write: vk(σ) = ϕ(σ) ν(sk(σ)); then observe that:

∫ 1

0
〈Dσvk, Dσvk〉xk(σ) dσ =

∫ 1

0
〈Dẋkvk, Dẋkvk〉xk(σ) dσ =

=

∫ 1

0

〈

Dẋk

(

ϕ(σ) ν(sk(σ)
)

, Dẋk

(

ϕ(σ) ν(sk(σ)
)〉

xk(σ)
dσ

=

∫ 1

0

〈

ϕ̇(σ) ν(sk(σ)) + ϕ(σ)Dẋkν(sk(σ)), ϕ̇(σ) ν(sk(σ))

+ ϕ(σ)Dẋkν(sk(σ))
〉

xk(σ)
dσ

=

∫ 1

0

(

dϕ

dσ

)2

dσ =
1

k(k + 1)

∫ 1/k

1/k+1

(

dϕ

ds

)2

ds ,

indeed:

〈ẋk, ϕ〉xk(σ) =
〈

x∗k

(

d

dσ

)

, ϕ

〉

xk(σ)

=

〈

d

dσ
, ϕ ◦ xk

〉

xk(σ)
=

d

dσ
ϕ(xk(σ)) =

dϕ(σ)

dσ
.
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Therefore, we have (see Lemma (3)):

(3) J ′′(xk)[vk, vk] = Φ
′′
1(xk)[vk, vk]−∆2kΦ′′2(xk)[vk, vk] =

= 2

∫ 1

0
〈Dσvk, Dσvk〉xk(σ) dσ − 2

∫ 1

0
〈Rẋk,vk ẋk, vk〉xk(σ) dσ +

−∆2k
{

2
(

∫ 1
0

dσ
β(xk)

)3

(
∫ 1

0

〈gradβ, vk〉xk(σ)
β2(xk)

dσ

)2

+

− 2
(

∫ 1
0

dσ
β(xk)

)2

∫ 1

0

(

〈gradβ, vk〉xk(σ)
)2

β3(xk)
dσ +

+
1

(

∫ 1
0

dσ
β(xk)

)2

∫ 1

0

1

β2(xk)
Hβ

R(xk)[vk, vk] dσ

}

> 0 ,

whence:

(4) 2

∫ 1

0

(

dϕ

dσ

)2

dσ − 2
∫ 1

0
〈Rẋk,vk , ẋk, vk〉xk(σ) dσ +

−
(

∆k
∫ 1
0

dσ
β(xk)

)2 ∫ 1

0

1

β2(xk)
Hβ

R(xk)[vk, vk] dσ >

> 2

(

∆k
∫ 1
0

dσ
β(xk)

)2
{

1
∫ 1
0

dσ
β(xk)

(
∫ 1

0

〈gradβ, vk〉xk(σ)
β2(xk)

dσ

)2

+

−
∫ 1

0

(

〈gradβ, vk〉xk(σ)
)2

β3(xk)
dσ

}

and using (2):

(5) 2

∫ 1

0

(

dϕ

dσ

)2

dσ − 2
∫ 1

0
〈Rẋk,vk , ẋk, vk〉xk(σ) dσ +

−
(

1

k(k + 1)

)2( ∆
∫ 1
0

ds
β(x)

)2

inf
σ∈I

(

1

β2(xk)
Hβ

R(xk)[ν, ν]

)
∫ 1

0
ϕ2(σ) dσ >

> 2

(

1

k(k + 1)

)2( ∆
∫ 1
0

ds
β(x)

)2
{

k(k + 1)
∫ 1/k
1/k+1

ds
β(x)

(
∫ 1/k

1/k+1

〈gradβ, vk〉x(s)
β2(x)

ds

)2

+

− k(k + 1)

∫ 1/k

1/k+1

〈gradβ, vk〉x(s)
β3(x)

ds

}

.
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Afterwards, we are going to apply the mean theorem for continuous functions to
the second part of inequality (5); so we obtain:

(6) 2

∫ 1

0

(

dφ

dσ

)2

dσ − 2
∫ 1

0
〈Rẋk,vk ẋk, vk〉xk(σ) dσ +

−
(

∆

k(k + 1)
∫ 1
0

ds
β(x)

)2

inf
1

k+1
≤s≤ 1

k

(

1

β2(x)
Hβ

R(x)[ν, ν]

)
∫ 1

0
ϕ2(σ) dσ >

> 2

(

∆

k(k+1)
∫ 1
0

ds
β(x)

)2
{

β(x(s
(k)
1 ))

(

〈gradβ, vk〉x(s(k)2 )

)2

β4(x(s
(k)
2 ))

−

(

〈gradβ, vk〉x(s(k)3 )

)2

β3(x(s
(k)
3 ))

}

;

here, the si ∈ ] 1k+1 , 1k [ are suitable points.
At last observe that, by the completeness of M , the geodesic γ = γ(s) can be

extended from s ∈ I up to s ∈ IR; after making that, let’s divide the inequality
(6) by ∆2 and go to the limit for (∆→ +∞), then let’s multiplicate the resulting
inequality by (k(k + 1))2 and go again to the limit for (k → +∞). We shall
obtain the thesis of the lemma.

Proposition (5). We suppose that

1) γ = (x, t) is a geodesic contained in M ;

2) f(γ) =
∫ 1
0 〈γ̇, γ̇〉M ds;

3) Φ(x) = t is the function obtained in [7] ( see the introduction);

let us denote

4) v a vector field having compact support and tangent to M0 along x;

5) (w, τ) a vector field having compact support and tangent to M along γ.

Then:

J ′′(x)[v, w] = f ′′(γ)
[

(v,Φ′(x)[v]), (w, τ)
]

.

Proof: On smooth curves y = y(s) contained in M0, it is identically (see
[7]):

(1) f ′t(y, t) |t=Φ(y) = 0 ;

therefore we have identically:

d

dy
f ′t(y,Φ(y)) = 0 ,
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that is, for any vector field w = w(s) having compact support and tangent to M0

along y, for any vertical vector field τ along Φ(y), having compact support, we
have:

(2) f ′′tx(y,Φ(y))[w, τ ] + f ′′tt(y,Φ(y))
[

Φ′(y)[w], τ
]

= 0 .

Now recall that:

f ′′(γ) [(v, τ1), (w, τ2)] =

=

∫ 1

0

{

2 〈Dsv,Dsw〉M0
− 2 〈Rẋ,vẋ, w〉M0

−Hβ
R(x)[v, w] ṫ

2
}

ds

−
∫ 1

0

{

2 〈gradβ, v〉M0
ṫ τ̇2 + 2 〈gradβ,w〉M0

ṫ τ̇1
}

ds−
∫ 1

0
2β(x) τ̇1 τ̇2 ds

= f ′′xx(γ)[v, w] + f ′′xt(γ)[v, τ2] + f ′′xt(γ)[w, τ1] + f ′′tt(γ)[τ1, τ2]

=
(

f ′′xx(γ)[v, w] + f ′′xt(γ)[w, τ1]
)

+
(

f ′′xt(γ)[v, τ2] + f ′′tt(γ)[τ1, τ2]
)

,

so that, (2) implies:

(3) f ′′(x,Φ(x))
[

(v,Φ′(x)[v]), (w, τ2)
]

=

= f ′′xx(x,Φ(x))[v, w] + f ′′x,t(x,Φ(x))
[

w,Φ′(x)[v]
]

.

Recall also that:

J(x) = f(x,Φ(x)) ,·)

J ′(x)[v] = f ′x(x,Φ(x))[v] + f ′t(x,Φ(x))
[

Φ′(x)[v]
]

,··)

J ′′(x)[v, w] = f ′′xx(x,Φ(x))[v, w] + f ′′xt(x,Φ(x))
[

v,Φ′(x)[w]
]

+· · ·)
+ f ′′xt(x,Φ(x))

[

w,Φ′(x)[v]
]

+ f ′′tt(x,Φ(x))
[

Φ′(x)[v],Φ′(x)[w]
]

;

here, (· · ·) can be obtained easily, using a variation of x corresponding to the
directions of v and w and observing that β(x) ṫ = constant (see [7]). At this
point, the thesis springs out from (2), (3), (· · ·).

Corollary (6). The following a) and b) are equivalent.

a) J ′′(x)[v, w] = 0, for any vector field w;

b) f ′′(γ) [(v,Φ′(x))[v], (w, τ)] = 0, for any vector field (w, τ).

So that, the null spaces of J ′′(x) and of f ′′(γ) have the same dimension.

Proof: The equivalence a)↔b) is straightforward.
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We shall show the second statement. Let (v, τ1) belong to the null space of
f ′′(γ):

f ′′(γ) [(v, τ1), (w, τ2)] =
(

f ′′xx(γ)[v, w] + f ′′xt(γ)[w, τ1]
)

+

+
(

f ′′xt(γ)[v, τ2] + f ′′tt(γ)[τ1, τ2]
)

= 0, ∀ (w, τ2) .

So, it is identically:

(1)

{

f ′′xx(γ)[v, w] + f ′′xt(γ)[w, τ1] = 0, ∀w,
f ′′xt(γ)[v, τ2] + f ′′tt(γ)[τ1, τ2] = 0, ∀ τ2 .

Comparing the second equation of the above system (1) with the equation (2)
of the proposition (5), we obtain:

f ′′xt(γ)[v, τ2] + f ′′tt(γ)[τ1, τ2] = f ′′xt(γ)[v, τ2] + f ′′tt(γ)
[

Φ′(x)[v], τ2
]

, ∀ τ2
f ′′tt(γ)[τ1, τ2] = f ′′tt(γ)

[

Φ′(x)[v], τ2
]

, ∀ τ2⇒

f ′′tt(γ)
[

τ1 − Φ′(x)[v], τ2
]

= 0, ∀ τ2⇒
∫ 1

0
β(x)

d

ds

(

τ1 − Φ′(x)[v]
)

τ̇2 ds = 0, ∀ τ2 .⇒

If (τ2 = τ1 − Φ′(x)[v]), then:
∫ 1

0

∥

∥

∥

∥

d

ds

(

τ1 − Φ′(x)[v]
)

∥

∥

∥

∥

2

Tγ(s)M
ds = 0 ,

so,
τ1 = Φ

′(x)[v] + constant ;

but, as τ1(0) = 0 = Φ
′(x)[v] |s=0, then:

τ1 = Φ
′(x)[v] .

Remark (7). A vector field (v, τ) belongs to the null space of f ′′(γ) iff it is:

(v, τ) =
(

v,Φ′(x)[v]
)

and v belongs to the null space of J ′′(x).

Proof of Theorem (1): We already know, by [7], that the function expp
is onto, for any point P ∈M . In order to prove it is one to one, it will suffice to
show that all the critical points of the functional J are minima; afterwards, the
unicity of the geodesic joining two given points onM will follow from well known
results of the critical points theory (see e.g.: [8], Theorem (6, 5, 3), page 354).
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Viceversa, if expp is a diffeomorphism for any point P ∈ M , then no couple
of conjugate points with respect to the action functional exists, on any geodesic
γ contained in M ; then corollary (6) and remark (7) imply the lack of couples of
conjugate points, with respect to the functional J , on the critical curves of J .

This fact shows that expp is a diffeomorphism for any P ∈ M , iff the form
J ′′ is positive definite on any critical curve of J , independently of the extreme
points of that, so Lemmas (3) and (4) complete the proof.
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