PROPER LEFT TYPE- A COVERS

John Fountain and Gracinda M.S. Gomes ${ }^{1}$

Introduction

Left type- A monoids form a special class of left abundant monoids. Interest in the latter arose originally from the study of monoids by means of their associated S-sets. A left abundant monoid is a monoid with the property that all principal left ideals are projective. All regular monoids are left abundant and so are many other types of monoid including right cancellative monoids. A left abundant monoid S is said to be left type- A if the set $E(S)$ of idempotents of S is a commutative submonoid of S and S also satisfies the condition that for any elements e in $E(S)$ and a in S we have $e S \cap a S=e a S$. In fact, [see 2] left type- A monoids are precisely those monoids which are isomorphic to certain submonoids of symmetric inverse monoids, namely those submonoids S of $\mathcal{I}(X)$ which satisfy the condition that if α is in S, then $\alpha \alpha^{-1}$ is in S. Thus all inverse monoids are left type- A but there are many left type- A monoids which are not inverse, for example, right cancellative monoids which are not groups. We see from the characterization just given that for a topological space X, the submonoid of $\mathcal{I}(X)$ consisting of continuous one-one partial maps is left type- A. In general, of course, this example is not inverse. A significant body of structure theory has been developed for left type- A monoids, much of it inspired by corresponding theory for inverse monoids. In particular, it is shown in [2] that for the study of general left type- A monoids the subclass of proper left type- A monoids plays a special role.

This paper is the last of a series of three devoted to studying proper left type- A monoids via categories. The ideas and techniques are inspired by those which Margolis and Pin introduced [5] in their study of E-dense and inverse monoids. The first paper [3] of the series showed that the work of Margolis and

[^0]Pin for E-dense monoids could be strengthened in the case of left type- $A E$-dense monoids to give generalizations of results on inverse monoids. This paper and the second [4] of the series are concerned with extending the techniques to apply to left type- A monoids in general. The concept of a left type- A monoid is essentially a one-sided notion and this is reflected in the fact that it is possible to generalize the methods in two ways. In [4] we considered right actions on categories and were led to new results on left type- A monoids.

In the present paper we study left type- A monoids by means of left actions on categories. This forces us to change both the nature of the categories considered and the definition of the action.

In Section 1 we use our new techniques to obtain a new proof of a theorem of Palmer [6] which characterizes proper left type- A monoids in terms of M-systems. Palmer's result is a variation of a characterization obtained in [2]. The other main result of [2] is that every left type- A monoid has a proper left type- A cover. In [1] the categorical methods of Margolis and Pin were used to show that every E-dense monoid has an E-unitary dense cover. This result was relativized in [3] to the case of left type- $A E$-dense monoids showing that the cover constructed is proper and respects the relation \mathcal{R}^{*}. In Section 2 of the present paper we adapt the techniques of [1] to obtain a new proof of the covering theorem of [2]. That is, we prove that every left type- A monoid has a left type- A^{+}-cover. It is not difficult to see that this is, in fact, the dual of Theorem 3.3 of [2].

1 - Preliminaries

We start by recalling some of the definitions and results, presented in [3], for both left type- A monoids and categories.

On left type- A monoids

Let S be a monoid, with set of idempotents $E(S)$. On S, we define a binary relation \mathcal{R}^{*}, which contains the Green's relation \mathcal{R}, as follows: for all $a, b \in S$,

$$
(a, b) \in \mathcal{R}^{*} \quad \Leftrightarrow \quad[(\forall s, t \in S) s a=t a \Leftrightarrow s b=t b] .
$$

The monoid S is said to be left abundant if each \mathcal{R}^{*}-class, R_{a}^{*}, contains an idempotent. When $E(S)$ is a semilattice, such idempotent is unique and it is denoted by a^{+}. If, in addition, S satisfies the type- A condition: for all $a \in S$ and $e \in E(S)$,

$$
a e=(a e)^{+} a
$$

we say that S is a left type- A monoid. It is shown in [2] that this definition is equivalent to those given in the Introduction.

We remind the reader of the following basic properties of left type- A monoids which we use frequently and without further mention:

1) For every $a, b, c \in S, a \mathcal{R}^{*} b$ implies $c a \mathcal{R}^{*} c b$;
2) For every $a \in S, a=a^{+} a$;
3) For every $e \in E(S)$ and $a \in S,(e a)^{+}=e a^{+}$.

On a left type- A monoid S, the least right cancellative monoid congruence, σ, is defined by: for all $a, b \in S$,

$$
(a, b) \in \sigma \quad \Leftrightarrow \quad(\exists e \in E(S)) e a=e b ;
$$

and we say that S is proper if

$$
\sigma \cap \mathcal{R}^{*}=\iota
$$

where ι is the identity relation [2].
As usual by an E-unitary semigroup, we mean a semigroup S such that, for all $a \in S$ and $e \in E(S)$,

$$
a e \in E(S) \text { or } e a \in E(S) \quad \Rightarrow \quad a \in E(S)
$$

In [2], it is shown that every proper left type- A monoid is E - unitary but, however, the converse is not true.

On left type- A categories

Let \mathcal{C} be a (small) category. We denote the set of objects of \mathcal{C} by $\operatorname{Obj} \mathcal{C}$ and the set of morphisms by Mor \mathcal{C}. For any object u of $\mathcal{C}, \operatorname{Mor}(u,-)$ stands for the set of morphisms of \mathcal{C} with domain u and $\operatorname{Mor}(-, u)$ for the set of morphisms of \mathcal{C} with codomain u; we denote the identity morphism at the object u by O_{u}.

As in [5], we adopt an additive notation for the composition of morphisms. A morphism p is said to be an idempotent if $p=p+p$. Clearly, if p is an idempotent then $p \in \operatorname{Mor}(u, u)$, for some $u \in \operatorname{Obj} \mathcal{C}$.

On the partial groupoid $\operatorname{Mor} \mathcal{C}$, we define the \mathcal{R}^{*}-relation as for a monoid.
A category \mathcal{C} is said to be E-left type- A if, for all $u \in \operatorname{Obj} \mathcal{C}, E(\operatorname{Mor}(u, u))$ is a semilattice, every \mathcal{R}^{*}-class R_{p}^{*} of Mor \mathcal{C} contains an idempotent p^{+}(necessarily unique) and \mathcal{C} satisfies the type- A condition, i.e. for all $u, v \in \operatorname{Obj} \mathcal{C}, p \in \operatorname{Mor}(u, v)$ and $f \in E(\operatorname{Mor}(v, v))$,

$$
p+f=(p+f)^{+}+p
$$

Let \mathcal{C}^{0} be an E-left type- A category with a distinguished object u_{0} such that $\operatorname{Mor}\left(u_{0}, u_{0}\right)$ is a semilattice. We say that \mathcal{C}^{0} is (left) u_{0}-connected if, for all
$v \in \operatorname{Obj} \mathcal{C}^{0}, \operatorname{Mor}\left(u_{0}, v\right) \neq \emptyset$. Also, \mathcal{C}^{0} is called (left) u_{0}-proper if, for all $v \in \operatorname{Obj} \mathcal{C}^{0}$ and $p, q \in \operatorname{Mor}\left(u_{0}, v\right)$,

$$
p^{+}=q^{+} \Rightarrow p=q,
$$

i.e. each \mathcal{R}^{*}-class has at most an element of $\operatorname{Mor}\left(u_{0}, v\right)$.

To simplify the terminology, we say that an E-left type- A, u_{0}-connected and u_{0}-proper category \mathcal{C}^{0}, with distinguished element u_{0} is a u_{0}-proper left category.

2 - u_{0}-proper left categories

In this section, we begin by considering left actions of right cancellative monoids on E-left type- A categories. In particular, we introduce the ideas of a downwards action and a u_{0}-closed action. We show that given a right cancellative monoid acting in this way on a u_{0}-proper left category we can form a proper left type- A monoid and that any proper left type- A monoid arises in this way. We then use this result to recover a theorem of Palmer which states that every proper left type- A monoid is isomorphic to an M-monoid.

Definition 2.1. Let \mathcal{C} be an E-left type- A category and T a right cancellative monoid. We say that T acts (on the left) on \mathcal{C} (by \mathcal{R}^{*}-endomorphisms) if, for all $u \in \operatorname{Obj} \mathcal{C}$ and $t \in T$, there exists a unique $t u \in \operatorname{Obj} \mathcal{C}$, and, for all $u, v \in \operatorname{Obj} \mathcal{C}$, $p \in \operatorname{Mor}(u, v)$, there is a unique $t p \in \operatorname{Mor}(t u, t v)$ such that, for all $u, v, w \in \operatorname{Obj} \mathcal{C}$, $p \in \operatorname{Mor}(u, v), q \in \operatorname{Mor}(v, w)$ and $t, t_{1}, t_{2} \in T$,

- $t(p+q)=t p+t q$,
- $\left(t_{1} t_{2}\right) p=t_{1}\left(t_{2} p\right)$,
- $t O_{v}=O_{t v}$,
- $1 p=p$,
- $(t p)^{+}=t p^{+}$.

It is not difficult to check that
Lemma 2.2. Let \mathcal{C}^{0} be a u_{0}-proper left category and T a right cancellative monoid acting on \mathcal{C}^{0}. Then

$$
\mathcal{C}_{u_{0}}=\left\{(p, t): t \in T, p \in \operatorname{Mor}\left(u_{0}, t u_{0}\right)\right\}
$$

with multiplication given by

$$
(p, t)(q, s)=(p+t q, t s)
$$

is a proper left type- A monoid such that $E\left(\mathcal{C}_{u_{0}}\right) \simeq \operatorname{Mor}\left(u_{0}, u_{0}\right)$.
Definition 2.3. Let \mathcal{C}^{0} be an E-left type- A category, with a distinguished object u_{0}, and T a right cancellative monoid acting on \mathcal{C}^{0}. We say that the action of T on \mathcal{C}^{0} is downwards if, for all $u \in \operatorname{Obj} \mathcal{C}^{0}$ and $t \in T$,

$$
\operatorname{Mor}(t v,-)=t \operatorname{Mor}(v,-)
$$

On the other side, if the action of T over u_{0} satisfies the following properties:

- $\operatorname{Obj} \mathcal{C}^{0}=T u_{0}$,
- for all $v \in \operatorname{Obj} \mathcal{C}^{0}$, if $\operatorname{Mor}\left(v, u_{0}\right) \neq \emptyset$ then $v=g u_{0}$, for some unit $g \in T$,
we say that the action is u_{0}-closed.
Lemma 2.4. Let \mathcal{C}^{0} be a u_{0}-proper left category and T a right cancellative monoid acting on \mathcal{C}^{0}. If, for all $v \in \operatorname{Obj} \mathcal{C}^{0}$,

$$
\operatorname{Mor}\left(v, u_{0}\right) \neq \emptyset \Rightarrow v=g u_{0}, \quad \text { for some unit } g \in T
$$

then, for all $p, q \in \operatorname{Mor}\left(v, u_{0}\right)$,

$$
p^{+}=q^{+} \Rightarrow p=q .
$$

Proof: Let $p, q \in \operatorname{Mor}\left(v, u_{0}\right)$ be such that $p^{+}=q^{+}$. As $\operatorname{Mor}\left(v, u_{0}\right) \neq \emptyset$, there exists a unit $g \in T$ such that $v=g u_{0}$. Now, as the action respects the operation ${ }^{+}$, we have

$$
\left(g^{-1} p\right)^{+}=g^{-1} p^{+}=g^{-1} q^{+}=\left(g^{-1} q\right)^{+}
$$

where $g^{-1} p, g^{-1} q \in \operatorname{Mor}\left(u_{0}, g^{-1} u_{0}\right)$. Whence, \mathcal{C}^{0} being u_{0}-proper, $g^{-1} p=g^{-1} q$ and, so $p=q$.

Let M be a proper left type- A monoid and $T=M / \sigma$. We define the derived category \mathcal{D}^{0} (of the natural morphism $M \rightarrow M / \sigma$) as in [3]: $\operatorname{Obj}^{0}=T$ and, for all $t_{1}, t_{2} \in T$,

$$
\operatorname{Mor}\left(t_{1}, t_{2}\right)=\left\{\left(t_{1}, m, t_{2}\right): m \in M, t_{1}(m \sigma)=t_{2}\right\}
$$

with composition given by

$$
\left(t_{1}, m, t_{2}\right)\left(t_{2}, n, t_{3}\right)=\left(t_{1}, m n, t_{3}\right) .
$$

The distinguished object of \mathcal{D}^{0} is 1 , the identity of T. The action of T over \mathcal{D}^{0} is given by: for all $u \in \operatorname{Obj} \mathcal{D}^{0}$ and $t \in T, t u$ is the result of the multiplication of t by u in T and for all $(u, m, v) \in \operatorname{Mor}(u, v)$,

$$
t(u, m, v)=(t u, m, t v)
$$

Lemma 2.5. Let M be a proper left type- A monoid. Then the derived category \mathcal{D}^{0} is a 1 -proper left category and the action of T on \mathcal{D}^{0} is downwards and 1-closed.

Proof: First, notice that if M is a proper left type- A monoid then M is E-unitary and, so $1=E(M)$. Then, following [3, 4], we have that \mathcal{D}^{0} is an E-left type- A category where, for all $\left(t_{1}, m, t_{2}\right) \in \operatorname{Mor} \mathcal{D}^{0}$,

$$
\left(t_{1}, m, t_{2}\right)^{+}=\left(t_{1}, m^{+}, t_{1}\right)
$$

and

$$
E(\operatorname{Mor}(t, t))=\{(t, e, t): e \in E(M)\} \simeq E(M)
$$

In particular,

$$
\operatorname{Mor}(1,1)=E(\operatorname{Mor}(1,1)) \simeq E(M)
$$

The category \mathcal{D}^{0} is 1 -connected since, for all $m \sigma \in M / \sigma=T$,

$$
(1, m, m \sigma) \in \operatorname{Mor}(1, m \sigma)
$$

On the other hand, \mathcal{D}^{0} is 1-proper, since M is proper, i.e. $\mathcal{R}^{*} \cap \sigma=\iota$.
It is a routine matter to verify that T acts on \mathcal{D}^{0} in such a way that $\operatorname{Obj} \mathcal{D}^{0}=$ $T 1$. To prove that T acts downwards, let $t \in T, u \in \operatorname{Obj} \mathcal{D}^{0}$ and $p \in \operatorname{Mor}(t u,-)$. Then, there exists $m \in M$ such that

$$
p=(t u, m, t u . m \sigma)
$$

and, so

$$
p=t(u, m, u . m \sigma) \in t \operatorname{Mor}(u,-)
$$

It is obvious that $t \operatorname{Mor}(u,-) \subseteq \operatorname{Mor}(t u,-)$, hence $t \operatorname{Mor}(u,-)=\operatorname{Mor}(t u,-)$.
Finally, let $p \in \operatorname{Mor}(v, 1)$. Then, $p=(v, m, 1)$ for some $m \in M$ and $v \cdot m \sigma=1$. As T is right cancellative, $v \cdot m \sigma=1=m \sigma \cdot v$ and $v=v .1$ is a unit of T, as required.

Theorem 2.6. Let M be a monoid. Then, M is proper and left type- A if and only if $M \simeq \mathcal{C}_{u_{0}}$, where u_{0} is the distinguished object of a u_{0}-proper left category \mathcal{C}^{0} on which a right cancellative monoid T acts via an action which is downwards and u_{0}-closed.

Proof: In view of Lemma 2.2, under the above conditions, if $M \simeq \mathcal{C}_{u_{0}}$, then M is a proper left type- A monoid.

Conversely, let M be a proper left type- A monoid. Then, by Lemma 2.5, the derived category \mathcal{D}^{0} of M is a 1-proper left category and $T=M / \sigma$ is a right
cancellative monoid which acts on \mathcal{D}^{0} with an action which is downwards and 1-closed. Now, we consider the map

$$
\begin{aligned}
\psi: M & \rightarrow C_{1}=\{(p, t): t \in T, p \in \operatorname{Mor}(1, t)\} \\
m & \mapsto((1, m, m \phi), m \phi)
\end{aligned}
$$

which is easily seen to be an isomorphism and the result follows.
Let \mathcal{C} be an E-left type- A category. On $\operatorname{Mor} \mathcal{C}$, we define a relation \preceq as follows: for all $p, q \in \operatorname{Mor} \mathcal{C}$,

$$
p \preceq q \quad \Leftrightarrow \quad(\exists a \in \operatorname{Mor} \mathcal{C}) \quad p^{+}=a^{+}, \quad a+q^{+}=a
$$

In [3], we showed that \preceq is a preorder on $\operatorname{Mor} \mathcal{C}$ and that the relation defined by

$$
p \sim q \quad \Leftrightarrow \quad p \preceq q \text { and } q \preceq p
$$

defines an equivalence relation on $\operatorname{Mor} \mathcal{C}$ which contains \mathcal{R}^{*}. Also, on the quotient set $\mathcal{X}=\operatorname{Mor} \mathcal{C} / \sim$, we consider the partial order \leq given by, for all $A_{p}, A_{q} \in \mathcal{X}$,

$$
A_{p} \leq A_{q} \quad \Leftrightarrow \quad p \preceq q
$$

If T is a right cancellative monoid acting on \mathcal{C}, we define an action (on the left) of T on the partially ordered set \mathcal{X} in the following way: for all $A_{p} \in \mathcal{X}$ and $t \in T$,

$$
t A_{p}=A_{t p}
$$

Lemma 2.7. Let \mathcal{C}^{0} be a u_{0}-proper left category and T a right cancellative monoid acting on \mathcal{C}^{0}. If the action is such that, for all $v \in \operatorname{Obj} \mathcal{C}^{0}$,

$$
\begin{equation*}
\operatorname{Mor}\left(v, u_{0}\right) \neq \emptyset \quad \Rightarrow \quad v=g u_{0}, \quad \text { for some unit } g \in T \tag{*}
\end{equation*}
$$

then the action of T over \mathcal{X} respects the relations \preceq, \sim and \leq.
Moreover, for all $t, t^{\prime} \in T, p \in \operatorname{Mor}\left(u_{0}, t u_{0}\right)$ and $q \in \operatorname{Mor}\left(u_{0}, t^{\prime} u_{0}\right)$,

$$
A_{p} \wedge A_{t q}=A_{p+t q}
$$

Proof: By bearing in mind condition (*) and Lemma 2.4, the proof is similar to the proof of Lemma 3.12 of [3]. Notice that here we need \mathcal{C}^{0} to be u_{0}-proper.

Lemma 2.8. Under the conditions of Lemma 2.7, let

$$
\mathcal{Y}=\left\{A \in \mathcal{X}: A \cap \operatorname{Mor}\left(u_{0}, u_{0}\right) \neq \emptyset\right\}
$$

Then
a) \mathcal{Y} is a semilattice of \mathcal{X} with greatest element $F=A_{O_{u_{0}}}$;
b) $\mathcal{Y}=\left\{A \in \mathcal{X}:\left(\exists v \in \operatorname{Obj}^{0}\right) A \cap \operatorname{Mor}\left(u_{0}, v\right) \neq \emptyset\right\}$;
c) $(\forall t \in T)(\forall B \in \mathcal{Y}) B \leq t F \Leftrightarrow B \cap \operatorname{Mor}\left(u_{0}, t u_{0}\right) \neq \emptyset$;
d) $(\forall t \in T)(\exists B \in \mathcal{Y}) B \leq t F$.

Proof: Since \mathcal{C}^{0} is a u_{0}-proper left category, $\operatorname{Mor}\left(u_{0}, u_{0}\right)$ is a semilattice and condition a) follows from the previous lemma.

On any E-left type- A category \mathcal{C}, for all $u, v \in \operatorname{Obj} \mathcal{C}$ and $p \in \operatorname{Mor}\left(u_{0}, v\right)$, we must have $p^{+} \in \operatorname{Mor}\left(u_{0}, u_{0}\right)$. Since the equivalence \sim contains \mathcal{R}^{*}, condition b) must hold.
c) Let $t \in T$ then $t F=A_{O_{t u_{0}}}$. Let $B=A_{q} \in \mathcal{Y}$, with $q \in \operatorname{Mor}\left(u_{0}, u_{0}\right)$. Suppose that $B \leq t F$. Then, $q \preceq O_{t u_{0}}$. Thus, there exists $r \in \operatorname{Mor}\left(u_{0}, t u_{0}\right)$ such that $q^{+}=r^{+}$and, so

$$
r \in A_{q} \cap \operatorname{Mor}\left(u_{0}, t u_{0}\right) .
$$

Conversely, suppose that there exists $r \in A_{q} \cap \operatorname{Mor}\left(u_{0}, t u_{0}\right)$. Then, $r+O_{t u_{0}}=r$. Hence, $r \preceq O_{t u_{0}}$ and $A_{r}=B \leq t F$.
d) Let $t \in T$. Since \mathcal{C}^{0} is u_{0}-connected, there exists $a \in \operatorname{Mor}\left(u_{0}, t u_{0}\right)$. Thus, $A_{a} \in \mathcal{Y}$, by condition b), and $a \preceq O_{t u_{0}}$.

Next, we make the connection between the characterization of a proper left type- A monoid M as an M-monoid [6] and the characterization of M, via categories, as a $\mathcal{C}_{u_{0}}$ monoid. We start by describing an M-monoid.

Definition 2.9 [6]. Let X be a partially ordered set and Y a subsemilattice of X with greatest element f. Let T be a right cancellative monoid acting (on the left) on X, in such a way that

- $(\forall a \in X) 1 a=a$;
- $(\forall a, b \in X)(\forall t \in T), a \leq b \Rightarrow t a \leq t b$;
- $X=T Y$;
- $(\forall t \in T)(\exists b \in Y) b \leq t f ;$
- $(\forall a, b \in Y)(\forall t \in T) a \leq t f \Rightarrow a \wedge t b \in Y$;
- $(\forall a, b, c \in Y)\left(\forall t, t^{\prime} \in T\right), a \leq t f, b \leq t^{\prime} f \Rightarrow(a \wedge t b) \wedge t t^{\prime} c=a \wedge t\left(b \wedge t^{\prime} c\right)$.

Then, we define

$$
M(T, X, Y)=\{(a, t) \in Y \times T: a \leq t f\}
$$

with multiplication given by

$$
(a, t)\left(b, t^{\prime}\right)=\left(a \wedge t b, t t^{\prime}\right),
$$

and obtain a monoid which we call an M-monoid.
Theorem $2.10[6]$. Every proper left type- A monoid M is isomorphic to an M-monoid $M(T, X, Y)$. Also, in $M(T, X, Y)$, for all $(a, t),\left(b, t^{\prime}\right)$:

- $(a, t) \mathcal{R}^{*}\left(b, t^{\prime}\right) \Leftrightarrow a=b ;$
- $(a, t) \sigma\left(b, t^{\prime}\right) \Leftrightarrow t=t^{\prime}$;
and so $T \simeq M(T, X, Y) / \sigma$. \square
Lemma 2.11. Let \mathcal{C}^{0} be a u_{0}-proper left category and T be a right cancellative monoid acting downwards on \mathcal{C}^{0}. If this action is u_{0}-closed, then $M(T, \mathcal{X}, \mathcal{Y})$ is an M-monoid.

Proof: By Lemma 2.8, \mathcal{Y} is a subsemilatice, with greatest element $F=$ $A_{O_{u_{0}}}$, of the partially ordered set \mathcal{X}. Now, we verify that $(T, \mathcal{X}, \mathcal{Y})$ satisfies the properties of Definition 2.9. Let $A_{p}, A_{q} \in \mathcal{X}$ and $t \in T$. Clearly, $1 A_{p}=A_{1 p}=A_{p}$ and, by Lemma 2.7,

$$
A_{p} \leq A_{q} \Rightarrow p \preceq q \Rightarrow t p \preceq t q \Rightarrow t A_{p} \leq t A_{q}
$$

Now, let $A_{p} \in \mathcal{X}$ with $p \in \operatorname{Mor}(v, v)$. As the action of T on \mathcal{C}^{0} is u_{0}-closed, $v=t u_{0}$, for some $t \in T$. Thus, $p^{+} \in \operatorname{Mor}\left(t u_{0}, t u_{0}\right)$ and, as T acts downwards on \mathcal{C}^{0}, there exists $r \in \operatorname{Mor}\left(u_{0}, u_{0}\right)$ such that $p^{+}=t r$. Whence, $A_{r} \in \mathcal{Y}$ and

$$
A_{p}=A_{p^{+}}=A_{t r}=t A_{r} \in \mathcal{Y}
$$

Next, let $t \in T$. By Lemma 2.8 d), there exists $A_{a} \in \mathcal{Y}$ such that

$$
A_{a} \preceq t F .
$$

To prove the fifth condition suppose that $A_{a}, A_{b} \in \mathcal{Y}$, with $a, b \in \operatorname{Mor}\left(u_{0}, u_{0}\right)$, and let $t \in T$ be such that $A_{a} \leq t A_{O_{u_{0}}}$. By Lemma 2.8 c), $A_{a}=A_{r}$, for some $r \in \operatorname{Mor}\left(u_{0}, t u_{0}\right)$. Hence, by Lemma 2.7, there exists

$$
A_{a} \wedge t A_{b}=A_{r} \wedge A_{t b}=A_{r+t b}=A_{(r+t b)^{+}} \in \mathcal{Y} .
$$

Finally, let $A_{a}, A_{b}, A_{c} \in \mathcal{Y}$ with $a, b, c \in \operatorname{Mor}\left(u_{0}, u_{0}\right)$ and $t, t^{\prime} \in T$. Suppose that $A_{a} \leq t F$ and $A_{b} \leq t^{\prime} F$. Then, as before, there exist $r \in \operatorname{Mor}\left(u_{0}, t u_{0}\right) \cap A_{a}$ and $r^{\prime} \in \operatorname{Mor}\left(u_{0}, t^{\prime} u_{0}\right) \cap A_{b}$. Now, by Lemma 2.7,

$$
A_{a} \wedge t A_{b}=A_{r} \wedge t A_{r^{\prime}}=A_{r+t r^{\prime}}
$$

and

$$
A_{b} \wedge t^{\prime} A_{c}=A_{r^{\prime}+t^{\prime} c} .
$$

Again, by Lemma 2.7,

$$
\begin{aligned}
\left(A_{a} \wedge t A_{b}\right) \wedge t t^{\prime} A_{c} & =A_{r+t r^{\prime}} \wedge t t^{\prime} A_{c} \\
& =A_{r+t r^{\prime}+t t^{\prime} c}
\end{aligned}
$$

and

$$
\begin{aligned}
A_{a} \wedge t\left(A_{b} \wedge t^{\prime} A_{c}\right) & =A_{r} \wedge t A_{r^{\prime}+t^{\prime} c}=A_{r+t\left(r^{\prime}+t^{\prime} c\right)} \\
& =A_{r+t r^{\prime}+t^{\prime} c} .
\end{aligned}
$$

Therefore $M(T, \mathcal{X}, \mathcal{Y})$ is an M-monoid, as required.
By Theorem 2.10, we know that every proper left type- A monoid M is isomorphic to an M-monoid \mathcal{M}. The above results allow us to obtain a clearer construction of such an \mathcal{M} and a new proof of the theorem.

Theorem 2.12. Let M be a proper left type- A monoid, $T=M / \sigma$ and \mathcal{D}^{0} its derived category. Then, $M \simeq M(T, \mathcal{X}, \mathcal{Y})$, where $\mathcal{X}=\operatorname{Mor} \mathcal{D}^{0} / \sim$ and $\mathcal{Y}=\{A \in \mathcal{X}: A \cap \operatorname{Mor}(1,1) \neq \emptyset\}$.

Proof: In view of Theorem 2.6 and Lemma 2.11, it only remains to prove that $C_{1} \simeq M(T, \mathcal{X}, \mathcal{Y})$. Consider the map

$$
\begin{aligned}
\theta: C_{1} & \rightarrow M(T, \mathcal{X}, \mathcal{Y}) \\
(p, t) & \mapsto\left(A_{p}, t\right) .
\end{aligned}
$$

It follows from Lemma 2.8 c) that θ is well defined. By Lemma 2.7, θ is a morphism. Again, by Lemma 2.8 c), θ is onto. To see that θ is injective, let $q, p \in \operatorname{Mor}(1, t)$, for some $t \in T$, be such that $A_{p}=A_{q}$, i.e. $p \sim q$. Thus, there exists $a \in \operatorname{Mor} \mathcal{D}^{0}$ such that $p^{+}=a^{+}, a+q^{+}=a$. Hence $a \in \operatorname{Mor}(1,1)$ and $a=a^{+}$. Thus $p^{+}=a^{+}=a^{+}+q^{+}=p^{+}+q^{+}$. Similarly, $q^{+}=q^{+}+p^{+}$. As $\operatorname{Mor}(1,1)$ is a semilattice, $p^{+}=q^{+}$. Finally, \mathcal{D}^{0} being 1-proper, it follows that $p=q$, as required.

3 - Proper left type- A covers of left type- A monoids

In this section we are concerned to show that for each left type- A monoid M there is a proper left type- A monoid P and an idempotent separating homomorphism $\theta: P \rightarrow M$ from P onto M such that $a^{+} \theta=(a \theta)^{+}$. We express this result by saying that M has a proper left type- A^{+}-cover. It (or rather its dual) was originally proved in [2] although it is stated somewhat differently there. For the
alternative proof which we present here we use the theory developed in Section 2 and a modification of the method of [1].

Before embarking on the proof we illustrate the notion of proper left type- A ${ }^{+}$-cover by the following example. Let X be a topological space. We denote by $G(X)$ the monoid of all continuous bijections from X to itself under composition. Certainly $G(X)$ is cancellative but it is not a group in general. We let $\mathcal{I}_{c}(X)$ denote the monoid of all continuous one-one partial maps from X to itself under composition of partial functions. Finally, $\mathcal{P}(X)$ denotes the power set of X regarded as a semilattice under the operation of intersection. We define a left action of $G(X)$ on $\mathcal{P}(X)$ by the rule that $\sigma Y=Y \sigma^{-1}$ for all σ in $G(X)$ and all subsets Y of X. It is then easy to verify that the multiplication

$$
(Y, \sigma)(Z, \tau)=(Y \cap \sigma Z, \sigma \tau)
$$

makes the set $\mathcal{P}(X) \times G(X)$ into a monoid $\mathcal{P}(X) * G(X)$ (a semidirect product of $\mathcal{P}(X)$ and $G(X))$. It is also readily checked that this monoid is proper left type- A with semilattice of idempotents $\{(Y, 1): Y \in \mathcal{P}(X)\}$ and $(Y, \sigma)^{+}=(Y, 1)$. Indeed, $\mathcal{P}(X) * G(X)$ is nothing other than $M(G(X), \mathcal{P}(X), \mathcal{P}(X))$. We claim that it is a left type- A^{+}-cover of $\mathcal{I}_{c}(X)$. To see this consider the surjective function $\theta: \mathcal{P}(X) * G(X) \rightarrow \mathcal{I}_{c}(X)$ defined by

$$
(Y, \sigma) \theta=\sigma_{Y}
$$

where σ_{Y} denotes the partial map with domain Y obtained by restricting σ. It is routine to show that θ is an idempotent separating homomorphism and that $\left((Y, \sigma)^{+}\right) \theta=((Y, \sigma) \theta)^{+}$. Of course, this example is very familiar when X has the discrete topology and we have an E-unitary cover of the symmetric inverse monoid on X.

We now start our proof with a technical lemma on left type- A monoids.
Lemma 3.1. Let M be a left type- A monoid and let $s \in S$. If $s=$ $e_{0} x_{1} e_{1} \cdots e_{n-1} x_{n} e_{n}$, for some $n \in \mathbb{N}, x_{i} \in M(i=1, \ldots, n)$ and $e_{j} \in E(M)$ $(j=0, \ldots, n)$, then

$$
s=s^{+}\left(x_{1} \cdots x_{n}\right)
$$

Proof: Suppose that $n=0$, then $s=e_{0}$ and $s=s^{+}$. Now, let us assume that the result is true for n. Suppose that

$$
s=e_{0} x_{1} \cdots x_{n} e_{n} x_{n+1} e_{n+1}
$$

Then,

$$
s=r x_{n+1} e_{n+1}
$$

where $r=e_{0} x_{1} e_{1} \cdots x_{n} e_{n}$. Hence, by the induction hypothesis, $r=r^{+}\left(x_{1} \cdots x_{n}\right)$ and so

$$
s=r^{+}\left(x_{1} \cdots x_{n}\right) \cdot x_{n+1} e_{n+1}
$$

Thus

$$
\begin{aligned}
s & =r^{+}\left(x_{1} \cdots x_{n+1} e_{n+1}\right)^{+} x_{1} \cdots x_{n+1} \\
& =\left(r^{+} x_{1} \cdots x_{n+1} e_{n+1}\right)^{+} x_{1} \cdots x_{n+1} \\
& =s^{+} x_{1} \cdots x_{n+1}
\end{aligned}
$$

as required.
Let M be a left type- A monoid with set of idempotents E. Put $X=M \backslash\{1\}$. We start by considering X^{*}, the free monoid on X with identity 1 . We write the non-identity elements as sequences $\left(x_{1}, \ldots, x_{n}\right)$, where $n \geq 1$ and $x_{i} \in X$ $(i=1, \ldots, n)$. To each word $w \in X^{*}$ we associate a subset M_{w} of M, in the following way:

$$
M_{w}= \begin{cases}E & \text { if } w=1 \\ E x_{1} E x_{2} E \cdots x_{n-1} E x_{n} E & \text { if } w=\left(x_{1}, \ldots, x_{n}\right)\end{cases}
$$

It is clear that, for all $v, w \in X^{*}$, we have

$$
M_{v w}=M_{v} M_{w}
$$

Now, define a category \mathcal{C}^{0} as follows:

$$
\operatorname{Obj} \mathcal{C}^{0}=X^{*}
$$

and, for all $v, w \in X^{*}$,

$$
\operatorname{Mor}(v, w)= \begin{cases}\left\{(v, s, w): s \in M_{w_{1}}\right\} & \text { if } w=v w_{1}, \text { for some } w_{1} \in X^{*} \\ \emptyset, & \text { otherwise }\end{cases}
$$

The composition law is given by

$$
(v, s, w)+(w, t, u)=(v, s t, u)
$$

Clearly, the composition is well defined and associative. Also, for any object v,

$$
\operatorname{Mor}(v, v)=\{(v, e, v): e \in E\}
$$

and $\left(v, 1_{M}, v\right)$ is the identity on $\operatorname{Mor}(v, v)$, where 1_{M} denotes the identity of M. Thus, \mathcal{C}^{0} is indeed a category.

Next, we consider a (left) action of the (right) cancellative monoid X^{*} on the category \mathcal{C}^{0} : the action of X^{*} on Obj^{0} is given by the multiplication on X^{*} and, for all $u \in X^{*}$ and $(v, s, w) \in \operatorname{Mor} \mathcal{C}^{0}$,

$$
u(v, s, w)=(u v, s, u w) .
$$

It is easy to verify that this action is well defined.
We choose 1 to be the distinguished object of \mathcal{C}^{0}.
Lemma 3.2. Let M be a left type- A monoid. Then \mathcal{C}^{0} is a left proper category with distinguished object 1. Also, the right cancellative monoid X^{*} acts (on the left) downwards on \mathcal{C}^{0}. The action is 1-closed.

Proof: Most of the required properties of \mathcal{C}^{0} and of the action of X^{*} over \mathcal{C}^{0} are easy to prove, once we notice that:

- For all $u \in \operatorname{Obj} \mathcal{C}^{0}, \operatorname{Mor}(u, u)=\{(u, e, u): e \in E\} \simeq E ;$
- For all $(u, s, v) \in \operatorname{Mor}(u, v),(u, s, v)^{+}=\left(u, s^{+}, u\right)$;
- The unique unit of X^{*} is the empty word 1 .

Here, we only prove that \mathcal{C}^{0} is 1 -proper. Let $v \in X^{*}$ and $(1, s, v),(1, t, v) \in$ $\operatorname{Mor}(1, v)$ be such that $(1, s, v)^{+}=(1, t, v)^{+}$. Then, $s^{+}=t^{+}$and $s, t \in M_{v}$. If $v=1$, then $M_{v}=E$ and we have $s=s^{+}=t^{+}=t$. Whence $(1, s, v)=(1, t, v)$. If $v \neq 1$, let $v=\left(x_{1}, \ldots, x_{n}\right)$, where $n>0$ and $x_{i} \in X(i=1, \ldots, n)$. Thus, there exist $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n} \in E$ such that

$$
s=e_{1} x_{1} e_{2} \cdots e_{n} x_{n} e_{n+1}
$$

and

$$
t=f_{1} x_{1} f_{2} \cdots f_{n} x_{n} f_{n+1}
$$

By Lemma 3.1,

$$
s=s^{+}\left(x_{1} \cdots x_{n}\right) \quad \text { and } \quad t=t^{+}\left(x_{1} \cdots x_{n}\right) .
$$

Hence, as $s^{+}=t^{+}$, we have $s=t$. Therefore

$$
(1, s, v)=(1, t, v)
$$

and \mathcal{C}^{0} is 1 -proper, as required.
Definition 3.3. Let M and N be left type- A monoids we say that N is a ${ }^{+}$-cover of M if there exists an idempotent separating monoid morphism θ from N onto M that respects the operation ${ }^{+}$, that is, for all $a \in N, a^{+} \theta=(a \theta)^{+}$.

Theorem 3.4. Every left type- A monoid has a proper left type- $A{ }^{+}$-cover.
Proof: Suppose that M is a left type- A monoid. Let \mathcal{C}^{0} be the category defined before. We have

$$
C_{1}=\left\{((1, s, u), u): u \in X^{*}, s \in M_{u}\right\}
$$

and the multiplication on C_{1} is given by

$$
((1, s, u), u)((1, t, v), v)=((1, s t, u v), u v) .
$$

The identity of C_{1} is $\left(\left(1,1_{M}, 1\right), 1\right)$. By Lemmas 3.2 and $2.2, C_{1}$ is a proper left type- A monoid. Now, let us consider the map

$$
\begin{aligned}
& \theta: C_{1} \longrightarrow M \\
& \quad((1, s, u), u) \mapsto s .
\end{aligned}
$$

Clearly, θ is monoid morphism and is, in fact, a ${ }^{+}$-morphism. Because

$$
((1, s, u), u)^{+} \theta=\left(\left(1, s^{+}, 1\right), 1\right) \theta=s^{+}=(((1, s, u), u) \theta)^{+}
$$

That θ is onto follows from the fact that, for all $a \in M \backslash\{1\}=X$,

$$
a=((1, a,(a)),(a)) \theta
$$

Finally, as

$$
E\left(C_{1}\right)=\{((1, e, 1), 1): e \in E\}
$$

we have that $\left.\theta\right|_{E\left(C_{1}\right)}$ is an isomorphism from $E\left(C_{1}\right)$ into E. Therefore, C_{1} is a proper left type- A^{+}-cover of M, as required.

REFERENCES

[1] Fountain, J. - E-unitary dense covers of E-dense monoids, Bull. London Math. Soc., 22 (1990), 353-358.
[2] Fountain, J. - A class of right PP monoids, Quart. J. Math. Oxford, 28(2) (1977), 285-300.
[3] Fountain, J. and Gomes, G.M.S. - Left proper E-dense monoids, J. Pure and Applied Algebra, 80 (1992), 1-27.
[4] Fountain, J. and Gomes, G.M.S. - Proper left type- A monoids revisited, Glasgow Math. J., 35 (1993), 293-306.
[5] Margolis, S.W. and Pin, J.-E. - Inverse semigroups and extensions of groups by semilattices, J. Algebra, 110 (1987), 277-297.
[6] Palmer, A. - Proper right type-A semigroups, M. Phil. Thesis, York, 1982.

John Fountain,

Dept. Mathematics, University of York, Heslington, York, YO15DD - ENGLAND
and
Gracinda M.S. Gomes,
Dep. Matemática, Universidade de Lisboa,
Rua Ernesto de Vasconcelos, C1, 1700 Lisboa - PORTUGAL

[^0]: Received: November 29, 1991; Revised: November 12, 1993.
 ${ }^{1}$ This research was supported by "Plano de Reforço da Capacidade Científica do Departamento de Matemática", Fundação Calouste Gulbenkian.

