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POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS
IN TWO-DIMENSIONAL EXTERIOR DOMAINS

Adrian Constantin

Abstract: We consider the semilinear elliptic equation ∆u + f(x, u) = 0 in a two-

dimensional exterior domain. Sufficient conditions for the existence of a positive solution

are given.

1. We consider the semilinear elliptic equation

(1) Lu = ∆u+ f(x, u) = 0 , x ∈ Ga ,

in an exterior domain Ga = {x ∈ R2 : |x| > a} (here a > 0) where f is nonnega-

tive and locally Hölder continuous in Ga ×R.

Let us introduce the class < of nondecreasing functions w ∈ C1(R+, R+) with

w(t) > 0 for t > 0 satisfying limt→∞w(t) =∞ and
∫∞
1

dt
w(t) =∞.

Equation (1) is considered subject to the assumptions:

(A) f ∈ Cλ
loc(Ga ×R) for some λ ∈ (0, 1) (locally Hölder continuous);

(B) 0 ≤ f(x, t) ≤ α(|x|)w( t
|x|) for all x ∈ Ga and all t ≥ 0 where α ∈

C(R+, R+) and w ∈ < with w(0) = 0.

We intend to give sufficient conditions for the existence of a positive solution

of (1) — a C2-function satisfying (1) — in Gb = {x ∈ R2 : |x| > b} for some

b ≥ a.

2. Denote Sb = {x ∈ R2 : |x| = b} for b ≥ a. We will make use of the

following.

Received : January 19, 1995.

AMS Subject Classification (1991): 35B05.

Keywords and Phrases: Elliptic equation, Exterior domain.



472 A. CONSTANTIN

Lemma [2]. Let L be the operator defined by (1) where f is nonnegative

and satisfies assumption (A) in Ga. If there exists a positive solution u1 and a

nonnegative solution u2 of Lu1 ≤ 0 and Lu2 ≥ 0, respectively, in Gb (b ≥ a)

such that u2(x) ≤ u1(x) throughout Gb ∪ Sb, then equation (1) has at least one

solution u(x) satisfying u(x) = u1(x) on Sb and u2(x) ≤ u(x) ≤ u1(x) throughout

Gb.

We prove now

Theorem. Assume that (A), (B) hold and that

(2)

∫ ∞

a
r α(r) dr <∞ .

Then there is a b ≥ a such that (1) has a positive solution in Gb.

Proof: We consider the nonlinear differential equation

(3)
d

dr

{

r
dy

dr

}

+ r α(r)w

(

y

l n(r)

)

= 0 , r ≥ e ,

where we define w(−y) = −w(y) for y ≥ 0 (we can extend w this way since

w(0) = 0). As one can easily check, the so-defined w belongs to C1(R,R).

Liouville’s transformation r = es, h(s) = y(es) changes (3) into

(4) h′′(s) + e2s α(es)w

(

h(s)

s

)

= 0 , s ≥ 1 .

Let us show that equation (4) has a solution h(s) which is positive in [c,∞)

for some c ≥ 1.

Hypothesis (2) guarantees (see [1]) that for every solution h(s) of (4) there

exist real constants m, l such that h(s) = ms + l + o(s) as s → ∞ (m =

lims→∞ h′(s)). We will show that any nontrivial solution h(s) of (4) is of constant

sign for s in a neighbourhood of ∞ and since w is odd on R, this gives a solution

of (4) which is positive in [c,∞) for some c ≥ 1.

Assume that there is a nontrivial solution h(s) of (4) which has a strictly

increasing sequence of zeros {sn}n≥1 accumulating at ∞. Then we have that the

corresponding m, l are both equal to 0, i.e. lims→∞ h(s) = lims→∞ h′(s) = 0.

Denote

K = sup
s≥1
{|h(s)|} > 0 , M = sup

|u|≤K

{|w′(u)|} > 0

and observe that |w(u)| ≤ M |u| for |u| ≤ K (by the mean-value theorem since

w(0) = 0).
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Since limn→∞ sn = ∞ and
∫∞
a r α(r) dr < ∞, there exists an n0 such that

∫∞
sn0

e2s α(es) ds < 1
M
. The relation h(sn0

) = 0 implies |h′(sn0
)| > 0 (we have

local uniqueness for the solutions of (4) since w ∈ C1(R,R) so that h(sn0
) =

h′(sn0
) = 0 would imply h(s) = 0 for all s ≥ 1) and since lims→∞ h′(s) = 0, there

is a root sn1
of h(s) with |h′(s)| < 1

2 |h
′(sn0

)| for s ≥ sn1
. Let T ∈ [sn0

, sn1
] be

such that |h′(s)| attains its maximal value on this interval at T .

Since |h′(T )| is by construction equal to supsn0
≤s{|h

′(s)|}, we have by the

mean-value theorem that

|h(s)| =
∣

∣

∣h(s)− h(sn0
)
∣

∣

∣ ≤ (s− sn0
) |h′(T )| , sn0

≤ s ,

and we obtain
|h(s)|

s
≤ |h′(T )| , sn0

≤ s .

Integrating (4) on [T, s] (T < s), we get

h′(s)− h′(T ) +

∫ s

T
e2τ α(eτ )w

(

|h(τ)|

τ

)

dτ = 0 , T ≤ s ,

thus

|h′(T )| ≤ |h′(s)|+

∫ ∞

T
e2τ α(eτ )w

(

|h(τ)|

τ

)

dτ , T ≤ s .

Letting s→∞ (remember that lims→∞ h′(s) = 0) we get, in view of the previous

remarks,

|h′(T )| ≤

∫ ∞

T
e2τ α(eτ )w

(

|h(τ)|

τ

)

dτ ≤M

∫ ∞

T
e2τ α(eτ )

|h(τ)|

τ
dτ ≤

≤M |h′(T )|

∫ ∞

T
e2τ α(eτ ) dτ ≤M |h′(T )|

∫ ∞

sn0

e2τ α(eτ ) dτ < |h′(T )| ,

a contradiction which shows that equation (4) has a solution h(s) which is positive

in [c,∞) for some c ≥ 1.

To this solution there corresponds a solution y(r) of (3), defined for r ≥ e and

that is positive on [ec,∞).

Let us define u1(x) = y(r), r = |x| ≥ b = max{a, ec}. We have

rLu1(x) =
d

dr

{

r
dy

dr

}

+ r f(x, u1(x))

≤
d

dr

{

r
dy

dr

}

+ r α(r)w

(

y(r)

r

)

≤
d

dr

{

r
dy

dr

}

+ r α(r)w

(

y(r)

l n(r)

)

= 0 , r ≥ b ,
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so that Lu1(x) ≤ 0 for all x ∈ Gb. Clearly u2(x) = 0 satisfies Lu2(x) ≥ 0 in

Gb. The Lemma shows that (1) has a solution u(x) in Gb with 0 ≤ u(x) ≤

u1(x) = y(r) for |x| = r > b and u(x) = u1(x) > 0 for |x| = b. Let now

d > b. Since u(x) ≥ 0 for |x| = d > b, by the maximum principle (∆u(x) ≤ 0 in

{x ∈ R2 : b < |x| < d}) we get that u(x) > 0 for b < |x| < d. This shows (d > b

was arbitrary) that u(x) is a positive solution of (1) in Gb.

3. To show the applicability of our result and its relation to other similar

results from the literature ([2], [3], [4]) we consider the following

Example: The semilinear elliptic equation

∆u+
u

|x|4
l n

(

u

|x|
+ 1

)

= 0 , |x| > 1 ,

has a positive solution in Gb for some b ≥ 1.

Indeed, we can apply our theorem with α(r) = 1
r3 for r ≥ 1 and w(s) =

s l n(s + 1), s ≥ 0. We cannot apply the results of [2], [3] or [4] since it is

impossible to find a function g ∈ Cλ
loc(R+×R+) with g(r, t) nonincreasing of t in

R+ for each fixed r > 0, such that f(t, x) ≤ tg(|x|, t), |x| > 1, t ≥ 0.
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