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SINGULAR KLEIN MANIFOLDS

N.H. Abdel-All

Abstract: The aim of the present paper is an effort to make more exact some aspects

of seven-parameter group of collineations in a five-dimensional Klein projective Space.

Using the δ-variation of invariants in the first order contact elements, we derive several

types of Klein manifolds on the Klein absolutum. Our study is carried out using Cartan’s

methods of moving frames [1], [2], [3].

1 – Introduction

The space P 3 is defined as a homogeneous space P 3 ≡ (P3, S), where S

is a subgroup of the projective group PG(3, IR). We will now assume that all

transformations of S will be collineations of a 3-dimensional projective space P3

that leave fixed two real points and a real plane through one of them [4]. The

coordinate transformations in S are given by

(1) xi = aij xj , i, j = 1, 2, 3, 4 ,

where (aij) is a non-singular matrix with the stationarity conditions

(2)
a13 = a23 = a24 = a34 = a43 = 0 ,

a14 = a41, a12 = a32, a11 = a33 + a31 .

Hereafter, we assume that the Latin and Greek indices run over the ranges

{1, 2, 3, 4} and {1, 2, 3} except the indices µ, ν and η run over the ranges {1, 2}

and {3, 4} respectively.

We introduce a special family of frames {Ai} (Ai are linearly independent

points) such that the vertices A3 and A4 coincide with the two fixed points,
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but the invariant plane is determined by means of the points A2, A4, A1 + A3.

Therefore the fundamental equations of the frames are given by

(3) dAi = ωj
i Aj .

The one-forms ωj
i satisfy the stationarity conditions

(4)

{
ω1

3 = ω2
3 = ω4

3 = ω1
4 = ω2

4 = ω3
4 = 0 ,

ω1
2 = ω3

2, ω1
1 = ω3

1 + ω3
3, ω3

1 + ω2
2 + 2ω3

3 + ω4
4 = 0 .

Thus, we have ωj
i with the conditions (4) are the invariant one-forms of a seven-

parameter group of collineations. The integrability conditions of the invariant

group S are given by

(5)





Dω2
2 = ω3

2 ∧ ω
2
1, Dω3

1 = −ω
3
2 ∧ ω

2
1, Dω3

3 = 0 ,

Dω3
2 = ω3

2 ∧ (ω
3
1 + ω3

3 − ω
2
2) ,

Dω2
1 = −ω

2
1 ∧ (ω

3
1 + ω3

3 − ω
2
2) ,

Dω4
1 = −ω

4
1 ∧ (2ω

3
1 + 3ω3

3 + ω2
2) + ω2

1 ∧ ω
4
2 ,

Dω4
2 = −ω

4
2 ∧ (ω

3
1 + 2ω3

3 + 2ω2
2) + ω3

2 ∧ ω
4
1 .

For a general discussion of Klein-representation (for brevity K-R) of line man-

ifolds on the Klein-quadric (K-absolutum), the reader is referred to [5], [6], [7]. It

is well-known that a line ` ⊂ P 3 is represented by a point `
k of a Klein five dimen-

sional projective space P
k
5. The locus of `

k as the line ` varies is the Grassmann

manifold Gr(1, 3) of all lines in P 3. The manifold Gr(1, 3) is equivalent to the

K-R of the lines of P 3 by K-points (P
ij) (i < j, P ij = −P ji) of the K-absolutum

Q
2
4 ⊂ P

k
5.

We introduce the K-frames in P
k
5 as a six-hedron moving K-frame {Aij} in

which Aij are the K-images of the edges (Ai, Aj) of the frame {Ai} ⊂ P 3. The

infinitesimal displacements of the K-frame {Aij} are given by

(6) dAij = ωk
i Akj + ωk

j Aik

up to the stationarity conditions (4).

2 – Characterization of K-absolutum

From the displacements (6) with (4), it is easy to see that the space P
k
5

contains a degenerate K-absolutum Q
2
4. The absolutum Q

2
4 consist of two in-

variant K-planes P 1 ≡ (A13, A23, A34), P
2 ≡ (A14, A24, A34), invariant K-point

A34 ≡ P 1 ∩ P 2 and invariant K-line Lk ≡ (A24, A14 +A34) ⊂ P 2.
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Thus, we have the following:

Lemma 1. The K-absolutum Q
2
4 ⊂ P

k
5 consist of two fixed planes P 1, P 2,

fixed point P 1 ∩ P 2 and fixed line Lk ⊂ P 2.

From (6), (4) and (3), we have DetΩ(dA12, dA12) = 1, tracΩ(dA12, dA12) = 0

where Ω is a quadratic form defined as the following

Ω(Aij , Amn) = δijmn =

{
1, i 6= j 6= m 6= n,

0, otherwise .

Thus, we have proved the following:

Lemma 2. The K-absolutum Q
2
4 ⊂ P

k
5 is a minimal hyper surface with

Gaussian curvature equal one.

The coordinates of the i-th vertex of the frame {Ai} are δ
i
j . Thus the coordi-

nates Aij
mn of the K-R to the line Amn are given by Aij

mn = δim δ
j
n − δ

i
n δ

j
m and so

we have the following:

Lemma 3. Each pair of the K-points Pij , Pmm, whose index pairs contain

at least one common number, satisfy

Ω(Pij , Pmn) = 0 .

In the case of Lemma 3, the lines Pij , Pmn are called in involution (projectively

orthogonal).

3 – Three-dimensional K-manifolds

We establish the fundamental equations of a 3-dimensional K-manifold (line

complex in P 3) immersed in Q
2
4 ⊂ P

k
5, for brevity M

k
3 ⊂ Q

2
4 ⊂ P

k
5. From the

displacement dA12 in (6), it follows that the principal forms on the K-absolutum

Q
2
4 are ωη

µ and from (5) we have Dω3
2 ≡ 0 (mod ω3

2). Thus, the differential

equation of the K-manifold Mk
3 can be written as the following

(7) ω3
2 = Bα θ

α ,

where (θα) = (ω3
1, ω

4
1, ω

4
2) are the principal forms on Mk

3 and Bα are real valued

functions on the first order contact element U1.
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Exterior differentiation of (7) leads to the quadratic exterior equation

(8)
{
dB1 +B1(B1θ1 + θ2 − θ3)− 3B2θ

2
}
∧ θ1 +

+
{
dB2 +B2(B1θ1 + 4θ2) +B1B3θ

1
}
∧ θ2 +

+
{
dB3 +B3(θ2 + 3θ3 + θ1) + ∆+θ1

}
∧ θ3 = 0 ,

where ∆+ = B2 +B1B3.

The variations δBα of the invariants Bα are given by [8]

(9) δBα = −Mαβ πβ ,

where θα(δ) = 0, θβ(δ) = πβ , (θβ) = (ω2
1 , ω

3
3, ω

2
2) and δ is the differentiation

with respect to the secondary parameters. The matrix (Mαβ) in (9) is called the

attitude matrix and is defined in terms of the invariants Bα as the following

(10)

M11 = B2
1 , M12 = −M13 = −B1, M22 = 0, M23 = 4B1 ,

4M21 =M13M23, M33 = 3B3 = 3M32 ,

4M31 = 4M32M13 +M23 .

In general the matrix (Mαβ) has rank h = 3, that is B1B2 ∆
+ 6= 0. From (6)

ad (7), we get

dA12 ≡ θ1(B1A13 −A23) + θ2(B2A13 −A24) + θ3(B3A13 +A14) (modA12) .

Using Lemma 3, we have the quadratic form

(11) Ω(dA12, dA12) ≡ aαβ θ
α θβ ,

defined on the K-manifoldMk
3 , where a11 = 0, a12 = −B1, a13 = −1, a22 = −2B2,

a23 = −B3, a33 = 0 and its determinant is ∆− = B2−B1B3. In general (∆
− 6= 0)

the rank h′ of the quadratic form (11) is three.

The following definitions are very important in the sequel [5].

Definition 1. The K-manifold Mk
3 for which h < 3 is called singular of rank

3− h, h ≤ 2.

Definition 2. The K-manifold Mk
3 for which h′ < 3 is called special of order

3− h′, h′ ≤ 2.

From (11), one can see that h′ can not be equal to zero or one and hence

h′ = 2 in the case where ∆− = 0. Thus, we have



SINGULAR KLEIN MANIFOLDS 503

Lemma 4. The K-manifold Mk
3 characterized by ∆− = 0 is of type special

of order one.

The definitions (1) and (2) lead to the following

Lemma 5. Singular K-manifoldsMk
3 of rank one and non-special are divided

into three subclasses given by

ω3
2 = B2θ

2 +B3θ
3, (Type T1)

ω3
2 = B1θ

1 +B3θ
3, (Type T2)

ω3
2 = B1θ

1 −B1B3θ
2 +B3θ

3, (Type T3)

Lemma 6. Singular K-manifolds Mk
3 of rank two and special of order one

are given by the following ω3
2 = B3θ

3. We denote its type by T4.

Lemma 7. Singular K-manifolds Mk
3 of rank three and special of order one

are given by the holonomic equation ω3
2 = 0.

In each of the above types, the existence theorem can be proved using Cartan’s

common methods. Thus, we have:

Theorem 1. The range of existence of the K-manifolds of types Tα(T4)

comprises one arbitrary function of two arguments (one argument).

For the general K-manifold (7), we may specialize the frames such that

(12) θα = Cαβ θ
β .

Using Cartan’s lemma in (8), we have

(13) dBα +Mαβ θβ = Eαβ θ
β ,

where Eαβ are invariants defined in the 2nd order contact element U2 ⊂ U1 on

the K-manifold Mk
3 . The invariants Eαβ satisfy the integrability conditions

(14) E12 = E21 + 2B2 +∆+ , E23 = E32 , E13 = E31 +B3 .

From (12), (13) and (14), we get

(15) dBα = bαβ θ
β ,
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where

b1α = E1α −B1(B1C1α − C2α + C3α) + 3B2(α− 1) (3− α) ,

b2α = E2α −B2(B1C1α + 4C3α)−B1B3(2− α) (3− α)/2 ,

b3α = E3α −
(
∆+C1α +B3(C2α + 3C3α + (2− α) (3− α)/2)

)
.

The Gauss equation is given by

(16) d2A12 ≡ b2αβ θ
α θβA13 − aαβ θ

α θβA34 .

The quantities b2αβ are the components of covariant quadratic symmetric tensor

defined in terms of the quadratic tensors aαβ , Eαβ , Cαβ as the following:

b211 = E11 +B3 −B1(1 + C31 − C21) ,

b222 = E22 +B2(B3 − 4C32) ,

b233 = E33 −B3(C23 + 3C33) ,

b212 = 2E12 +B1(2B3 − C32 + C22)− 4B2(1 + C31) ,

b213 = 2E13 −B3(2 + C21 + 3C31)−B1(C33 − C23) ,

b223 = 2E23 +B3(B3 − C22 − 3C32)− 4B2C33 .

The Wiengarten equations are

dA34 = −
(
θ1 + (C3α + C2α) θ

α
)
A34 ,

dA13 = (θ1 + 2C3α θ
α)A13 − θ

2A34 + C1αθ
αA23 .

In our present investigation we are again concerned with the K-manifold M k
3

given by (7) and we continue to require that h = 3, h′ = 3.

4 – Two-dimensional K-manifold

If there exists a relation between the forms θα onMk
3 , we have a 2-dimensional

K-manifold. Without loss of generality, if we take

(17) ω4
2 = Eµ ψ

µ ,

where (ψµ) = (θη), such that the equation (7) for (17) represents a two-dimensional

K-manifold (line congruence in P 3) immersed in the K-manifold Mk
3 and we de-

note it by M̂k
2 . This immersion is given by [9], [10]

(18) ω4
2 = Eµ ψ

µ , ω3
2 = Êµ ψ

µ ,
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where Êµ = Bµ + B3Eµ and Eµ are functions defined in the 1st order contact

element Û1 of the K-point A12 on

M̂k
2 ⊂Mk

3 ⊂ Q
2
4 .

Exterior differentiation of (18) and using Cartan’s lemma, there exist the real

valued functions Êiµ : Û2 ⊂ Û1 → IR such that

(19) dEi + M̂iα θα = Êiµ ψ
µ ,

where (Eη) = (Êµ) and the invariants Êiµ satisfy the integrability conditions

Ê12 − Ê21 = 3Ê2 , E32 − E41 = E2 − Ê1 + M̂21 .

The invariants M̂iα are defined in terms of Eµ, Êµ as the following:

M̂11 = E1(E2 + Ê1) , M̂12 = M̂13 = −2E1 ,

M̂21 = E1Ê2 + E2
2 , M̂22 = −M̂23 = −E2 ,

M̂31 = E1Ê2 − Ê
2
1 , M̂32 = −M̂33 = −Ê1 ,

M̂41 = Ê2(E2 + Ê1) , M̂42 = 0 , M̂43 = −4Ê2 .

Using (12), the forms θα on the K-manifold M̂k
2 are given by

θα = Ĉαµ ψ
µ , Ĉαµ = Cαµ + Cα3Eµ .

The Gauss and Wiengarten equations of the immersion (18) are given as the

following

(20)
dA12 ≡ ψµ eµ (modA12) ,

d2A12 ≡ φ14A14 + φ13A13 + φ34A34 (modA12, dA12) ,

where eµ = EµA14 + ÊµA13 − Nµ, N1 = A23, N2 = A24, φ
14 = F 1

µν ψ
µ ψν ,

φ13 = F 2
µν ψ

µ ψν , φ34 ≡ âµν ψ
µ ψν ≡ Ω(dA12, dA12), A12 ∈ M̂

k
2 .
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The invariants F µ
µν , âµν are symmetric in the indices µ, ν and are given by

F 1
11 = Ê31 + 2E1ζ1 , F 1

22 = Ê42 − Ê2 + E2ζ−1 ,

F 1
12 = Ê32 +

1

2
E2(1 + ζ−1) + E1ζ1 − Ê1 ,

F 2
11 = Ê11 − 1 + Ê1ζ−1 , F 2

22 = Ê22 − eÊ2(C32 + C33E2) ,

F 2
12 = Ê12 +

1

2
Ê2

(
3− 4(C31 + C33E1)

)
+
1

2
Ê1ζ−1 ,

â11 = −2E1 , â12 = −(Ê1 + E2) , â22 = −2Ê2 ,

ξε = C22 + εC32 + (C32 + εC33)E2 and

ζε = C21 + εC31 + (C23 + εC33)E1 , ε = ±1 .

In [6], a computational technique for the Gaussian curvatures K and K̂ of the

K-manifold Mk
3 and the immersion M̂k

2 is given. Thus, we have

(21)
K = Det(b2αβ)/∆

− ,

K̂ =
(
Det(F 1

µν) + Det(F 2
µν)
)
/ Det(âµν) , respectively .

5 – CK-curves

On the K-manifold Mk
3 , if there exist two independent relations between the

forms θα as the following

(22) θµ = φµ θ3 , ω3
2 = φ3 θ3 , φ3 = Bµ φ

µ +B3 .

The system (22) represent a K-curve (ruled surface in P 3) immersed in the

K-manifold Mk
3 or for brevity, a CK-curve.

Exterior differentiation of (22) and using Cartan’s lemma, we get

(23) dφα = Σ M̃αβ θβ + Fα θ3 ,

where M̃αβ are the elements of an attitude matrix attached to the CK-curve (22)

and are given by

3M̃11 = −3M̃32 = −M̃33 = 3φ3 , M̃12 = M̃13 = −2φ
1 ,

M̃21 = 1 , M̃22 = −M̃23 = −φ
2 , M̃31 = 0 .
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The functions φα, Fα are invariants in the 1st, 2nd order contact elements

Ũ1, Ũ2 (Ũ2 ⊂ Ũ1) of the K-point A12 on the CK-curve (22) respectively.

The δ-variations of the invariants φα (Fα(δ) = 0) are given by

(24) δ φα = Σ M̃αβ πβ .

For a general CK-curve, the matrix (M̃αβ) has rank three. The curves (22) are

singular of rank one and two if the following conditions

φ3 = 0, φ1 6= 0 , Bµ φ
µ = −B3 ,(I1)

φ3 = 0 φ1 = 0 , φ2 = −(B3/B2), B2 6= 0 ,(I2)

are satisfied respectively.

We denote the classes of CK-curves according to the conditions Iµ by Cµ

respectively.

In the following, we consider differential projective invariants of all orders on

the Cµ curves.

For this purpose, we derive the projective Frenet–Serret formulae and the

differential equations of the classes Cµ of CK-curves.

The class C1 is characterized by the differential equations

(25)
θ1 = 0 , ω3

2 = 0 , θ2 = φ2 θ3 ,

Dθ3 ≡ 0 (mod θ3) , B2 φ
2 + φ3 = 0 .

The motion along a CK-curve of the class C1 is given by

dA12 ≡ −θ
3(φ2A24 +A14) (modA12) ,

d2A12 ≡ F 2(θ3)2A24 (modA12, dA12) ,

d3A12 ≡ 0 (modA12, dA12, d
2A12) .

Thus, the CK-curves of the class C1 are plane curves in the K-plane

(A12, A14, A24) with projective curvature equal to the invariant F 2. Thus, we

have proved the following

Theorem 2. The CK-curves of the class C1 are plane CK-curves (developable

ruled surfaces of a line complex in P 3) with curvature equal to the invariant F 2.

The CK-curves of the class C2 are characterized by the system of differential

equations

(26) θµ = φµ θ3, ω3
2 = 0, Bµ φ

µ = −B3, Dθ3 ≡ 0 (mod θ3) .
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From (26) and (12) we get

(27) θα = (Cαµ φ
µ + Cα3) θ

3 .

Putting F̂µ = F µ/(2φ1), d/dθ3 ≡ D, hε = (C3µ+ εC2µ)φ
µ+C33+ εC23, ε = ±1.

From (3), (6), (7), (26) and (27) we get

(28) DrA12 ≡ ΩrQr (modA12, Q1, Q2, ..., Qr−1) (r = 1, 2, ..., 5) ,

where Q1 = φµNµ −A14, Q2 = A34 − F̂
µNµ,

Q3 = A24 + f A23 , Q4 = N1 ,

Q5 = Q2 + F̂µNµ and

f =
(
F 1(D log |F̂ 1|+ 2h1 − F̂ 1)

)
/Ω3 .

The invariants Ωr are given by the relations

(29)

Ω1 = −1 , Ω2 = −2φ1 ,

Ω3 = F 2
(
D log |F̂ 2| − F̂ 1 + h−1

)
,

Ω4 = Ω3

(
Df + f

(
(C31 + 3C21)φ

1 + (C32 + 3C22)φ
2

+ C33 + 3C23

)
+ (fF̂ 2 − F̂ 1)

)
,

Ω5 = −Ω4 .

The invariants Ωi (i 6= 1) are called the projective curvatures of CK-curves

(non developable ruled surfaces in P 3) of the class C2. Thus, we have proved the

following

Theorem 3. The infinitesimal displacements of the Frenet–Serret frame

{A12, Qr} are given by (28) and the projective curvatures are given by (29).
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