A NOTE ON OCTAHEDRAL SPHERICAL FOLDINGS

A.M. D'Azevedo Breda

Abstract

We show that the set of octahedral folding classes is a differentiable manifold of dimension six.

1 - Introduction

An isometric folding of S^{2} is a map $f: S^{2} \rightarrow S^{2}$ which sends piecewise geodesic segments on S^{2} to piecewise geodesic segments on S^{2} of the same length.

The points $x \in S^{2}$ where f fails to be differentiable are the singularities of f. We shall denote by $\sum f$ the set of singularities of f.

It is known [2] that for each $x \in \sum f$ the singularities of f near x form the image of an even number of geodesic rays emanating from x making alternate angles $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$, where

$$
\sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{i}=\pi
$$

This condition on the angles will be called the angle folding relation. Thus the set of singularities of an isometric folding of S^{2} can be regarded as a graph on M satisfying the angle-folding relation.

2 - Octahedral foldings

A non-trivial isometric folding f of S^{2} is an octahedral spherical folding or simply an octahedral folding if the underlying graph of its singularity set is an

[^0]octahedral graph, that is, $\sum f$ partitions S^{2} into 8 triangles. One of the simplest octahedral foldings is given by the map $\mathcal{S}: S^{2} \rightarrow S^{2}$ with $\mathcal{S}(x, y, z)=(|x|,|y|,|z|)$ referred to as the standard folding.

Let \mathcal{O} denote the set of all octahedral foldings and \mathcal{G} be the quotient space \mathcal{O} / \sim obtained from \mathcal{O} by introducing the equivalence relation $f \sim g$ iff there exist an isometry $\Theta: S^{2} \rightarrow S^{2}$ such that $\Theta\left(\sum f\right)=\sum g$.

The equivalence relation \sim may be extended in a natural way to an equivalence relation on the set \mathcal{T} of tilings of S^{2} whose underlying graph is an octahedral graph obeying the angle folding relation.

Proposition 2.1. The map $\Psi: \mathcal{G} \rightarrow \mathcal{T} / \sim$ given by $\Psi([f])=[T]$, where T is the spherical tiling whose underlying graph is $\sum f$, is bijective.

Proof: We first show that Ψ is surjective.
Let $[T] \in \mathcal{T} / \sim$. Denote by $\Delta_{i}, i=1,2, \ldots, 8, e_{j}, j=1,2, \ldots, 12$ and v_{k}, $k=1,2, \ldots, 6$, the faces, edges and vertices of T respectively and label them as indicated in fig. 1.

For each $j=1,2, \ldots, 12$, let ϱ_{j} be the reflection in the great circle containing e_{j}. Consider the map $f: S^{2} \rightarrow S^{2}$ given by

$$
\begin{aligned}
& \left.f\right|_{\Delta_{1}}=\left.i d\right|_{\Delta_{1}} \quad\left(\text { id denotes the identity map on } S^{2}\right), \\
& \left.f\right|_{\Delta_{2}}=\left.\varrho_{1}\right|_{\Delta_{2}},\left.\quad f\right|_{\Delta_{3}}=\left.\left(\varrho_{1} \circ \varrho_{2}\right)\right|_{\Delta_{3}},\left.\quad 4\right|_{\Delta_{4}}=\left.\varrho_{4}\right|_{\Delta_{4}},\left.\quad f\right|_{\Delta_{5}}=\left.\varrho_{5}\right|_{\Delta_{5}}, \\
& \left.f\right|_{\Delta_{6}}=\left.\left(\varrho_{5} \circ \varrho_{9}\right)\right|_{6},\left.\quad f\right|_{\Delta_{7}}=\left.\left(\varrho_{5} \circ \varrho_{9} \circ \varrho_{10}\right)\right|_{\Delta_{7}},\left.\quad f\right|_{\Delta_{8}}=\left.\left(\varrho_{5} \circ \varrho_{12}\right)\right|_{\Delta_{8}} .
\end{aligned}
$$

Fig. 1

Since, every vertex of T satisfies the angle folding relation and every $\varrho_{j}\left(e_{j}\right)=$ e_{j}, for $j=1,2, \ldots, 12$ we conclude that f is a well defined map. Moreover $\left.f\right|_{\Delta_{j}}$ is an isometry for each $j=1,2, \ldots, 12$, and so f is an isometric folding. Clearly $\Psi([f])=[T]$.

Assume now that $\Psi([f])=\Psi([g])=[T]$. It is straightforward to show the existence of a spherical isometry Θ such that $\sum f=\Theta\left(\sum g\right)$.

Consider the map $\Gamma: \mathcal{T} / \sim \rightarrow \mathbb{R}^{24}$ given by $\Gamma([T])=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{24}\right), \varphi_{1} \leq$ $\varphi_{2} \leq \ldots \leq \varphi_{24}$, where $\varphi_{i}, i=1,2, \ldots, 24$, are the 24 angles of the eight triangular faces of T and topologies \mathcal{T} / σ with the topology induced by Γ. Use now the map Ψ defined in Proposition 2.1 to topologies \mathcal{G}.

Let $[T] \in \mathcal{T} / \sigma$. The tiling T has 8 triangular faces $T_{j}, j=1,2, \ldots, 8$, corresponding to 24 angles. Since the angle folding relation has to be fulfilled only 12 angles need to be specified in principle. However we shall show that there is a particular set of 6 angles whose knowledge is enough to determine the other six.

Proposition 2.2. If the vertices $v_{1}, v_{2}, \ldots, v_{5}$ of the spherical pattern T indicated bellow obey the angle folding relation then $\theta+\theta^{*}=\pi$.

Fig. 2

Proof: Let $v_{1}, v_{2}, \ldots, v_{7}$ be the vertices of such a spherical tiling T. It is then possible to label T as indicated in figure 3 , where $\varphi_{i}, \bar{\varphi}_{i}=\pi-\varphi_{i}, i=1, \ldots, 6, \theta$ and θ^{*} stand for the angles and a, b, \ldots, h for the edges.

Fig. 3

Using spherical trigonometry, we may conclude, on the one hand,

$$
\cos h=\frac{\cos \theta+\cos \varphi_{2} \cos \varphi_{4}}{\sin \varphi_{2} \sin \varphi_{4}},
$$

and on the other hand
$\cos h=\cos b \cos d+\sin b \sin d \cos \bar{\varphi}_{6}$

$$
=\left(\frac{\cos \varphi_{1}+\cos \varphi_{2} \cos \varphi_{3}}{\sin \varphi_{2} \sin \varphi_{3}}\right)\left(\frac{\cos \varphi_{5}-\cos \varphi_{3} \cos \varphi_{4}}{\sin \varphi_{3} \sin \varphi_{4}}\right)-\sin b \sin d \cos \varphi_{6}
$$

and so

$$
\begin{align*}
\cos \theta= & \frac{\left(\cos \varphi_{1}+\cos \varphi_{2} \cos \varphi_{3}\right)\left(\cos \varphi_{5}-\cos \varphi_{3} \cos \varphi_{4}\right)}{\sin ^{2} \varphi_{3}} \tag{1}\\
& -\sin b \sin d \sin \varphi_{2} \sin \varphi_{4} \cos \varphi_{6}-\cos \varphi_{2} \cos \varphi_{4} .
\end{align*}
$$

Also

$$
\cos g=\frac{\cos \theta^{*}+\cos \varphi_{1} \cos \varphi_{5}}{\sin \varphi_{1} \sin \varphi_{5}}
$$

and

$$
\begin{aligned}
\cos g & =\cos c \cos e+\sin c \sin e \cos \varphi_{6} \\
& =\frac{\left(\cos \varphi_{2}+\cos \varphi_{1} \cos \varphi_{3}\right)}{\sin \varphi_{1} \sin \varphi_{3}} \frac{\left(\cos \varphi_{4}-\cos \varphi_{3} \cos \varphi_{5}\right)}{\sin \varphi_{3} \sin \varphi_{5}}+\sin c \sin e \cos \varphi_{6}
\end{aligned}
$$

hence

$$
\begin{align*}
\cos \theta^{*}= & \frac{\left(\cos \varphi_{2}+\cos \varphi_{1} \cos \varphi_{3}\right)\left(\cos \varphi_{4}-\cos \varphi_{3} \cos \varphi_{5}\right)}{\sin ^{2} \varphi_{3}} \tag{2}\\
& +\sin c \sin e \sin \varphi_{1} \sin \varphi_{5} \cos \varphi_{6}-\cos \varphi_{1} \cos \varphi_{5}
\end{align*}
$$

taking into account that

$$
\frac{\sin b}{\sin c}=\frac{\sin \varphi_{1}}{\sin \varphi_{2}} \quad \text { and } \quad \frac{\sin d}{\sin e}=\frac{\sin \varphi_{5}}{\sin \varphi_{4}}
$$

we can rewrite (1) as follows

$$
\begin{align*}
\cos \theta= & \frac{\left(\cos \varphi_{1}+\cos \varphi_{2} \cos \varphi_{3}\right)\left(\cos \varphi_{5}-\cos \varphi_{3} \cos \varphi_{4}\right)}{\sin ^{2} \varphi_{3}} \tag{3}\\
& -\sin c \sin e \sin \varphi_{1} \sin \varphi_{5} \cos \varphi_{6}-\cos \varphi_{2} \cos \varphi_{4}
\end{align*}
$$

From (2) and (3) we have $\cos \theta^{*}=-\cos \theta$, that is, $\theta^{*}=\pi-\theta$.

Corollary 2.1. If five of the six vertices of an octahedral tiling T obey the angle folding relation then $T \in \mathcal{T}$.

Observe that in Proposition 2.2 the spherical tiling does not need to be an octahedral tiling.

Proposition 2.3. The space \mathcal{T} / \sim is a differentiable manifold of dimension 6.

Proof: Given the angles $\varphi_{j}, j=1,2, \ldots, 6$, we may construct an octahedral tiling T obeying the angle folding relation as follows. Denote by $v_{1}, v_{2}, \ldots, v_{6}$ the vertices of T. Up to an isometry, we may assume that $v_{3}=(0,0,1), v_{1}$ is in the great circle determined by the plane $y=0$ and v_{2} is in the hemisphere corresponding to $y>0$.

The vertices v_{1} and v_{2} are uniquely determined if we require that, with v_{3}, they are the vertices of a spherical triangle T_{1} with angles $\varphi_{1}=\angle\left(\widehat{v_{1} v_{2}}, \widehat{v_{1} v_{3}}\right)$, $\varphi_{2}=\angle\left(\widehat{v_{1} v_{2}}, \widehat{v_{2} v_{3}}\right)$ and $\varphi_{3}=\angle\left(\widehat{v_{1} v_{3}}, \widehat{v_{2} v_{3}}\right)$, where L means angle and $\widehat{v w}$ means the geodesic segment joining v to w.

The angles $\varphi_{j}, j=4,5,6$, determine, in a unique way, points v_{4} and v_{5} on S^{2} such that
i) v_{2}, v_{3}, v_{4} are the vertices of a triangle T_{2} adjacent to T_{1} at $\widehat{v_{2} v_{3}}$, with $\bar{v}_{6}=\pi-\varphi_{j}=\angle\left(\widehat{v_{2} v_{3}}, \widehat{v_{3} v_{4}}\right)$;
ii) v_{3}, v_{4}, v_{5} are the vertices of a triangle T_{3} adjacent to T_{2} at $\widehat{v_{3} v_{4}}$, with angles $\bar{\varphi}_{3}=\pi-\varphi_{3}=\angle\left(v_{3} v_{4}, \widehat{v_{3} v_{5}}\right), \varphi_{4}=\angle\left(\widehat{v_{3} v_{4}}, \widehat{v_{3} v_{5}}\right)$ and $\varphi_{5}=\angle\left(\widehat{v_{3} v_{4}}, \widehat{v_{3} v_{5}}\right)$.

Let a, b, c be the edges of T_{1} opposite the angles φ_{3}, φ_{1} and φ_{2} respectively and d, e, f be the edges of T_{3} opposite the angles φ_{5}, φ_{4} and $\bar{\varphi}_{3}$ respectively. Then the edges of T_{2} are b, d and h, where h is opposite $\bar{\varphi}_{6}$, and the edges of T_{4}, the triangle adjacent to T_{1} and T_{3}, are e, c and g where g is the edge opposite to φ_{6}.

In this construction the vertex v_{3} obeys automatically the angle folding relation. Since the vertices v_{2} and v_{4}, also obey that relation we are led to the construction of a unique triangle T_{5} adjacent to T_{2} at $\widehat{v_{2} v_{4}}$, with angles $\bar{\varphi}_{2}, \bar{\varphi}_{4}$ and θ, where $\theta=\arccos \left(\cos h \sin \varphi_{2} \sin \varphi_{4}-\cos \varphi_{2} \cos \varphi_{4}\right)$, and vertices v_{2}, v_{4} and v_{6}. Similarly, working with v_{1} and v_{5} we obtain a unique triangle T_{6} adjacent to T_{4} at $\widehat{v_{1} v_{5}}$. The angles of T_{6} are $\bar{\varphi}_{4}, \bar{\varphi}_{5}$ and θ^{*} where $\theta^{*}=\arccos \left(\cos g \sin \varphi_{1} \sin \varphi_{5}-\cos \varphi_{1} \cos \varphi_{5}\right)$ and its vertices are v_{1}, v_{3} and v_{7}. By Proposition 2.2 one has $\theta^{*}=\pi-\theta$.

We shall have an octahedral spherical f-tiling if (and only if) $v_{6}=v_{7}$. We show this next.

Observe that T_{5} has h, i and j as edges where i and j are the edges opposite to $\bar{\varphi}_{4}$ and $\bar{\varphi}_{2}$ respectively and T_{6} has g, l and m as edges where l and m are respectively the edges opposite to $\bar{\varphi}_{1}$ and $\bar{\varphi}_{5}$.

Let ψ_{1} be the angle $\angle(a, i)$ and ψ_{2} be the angle $\angle(a, m)$. up to an isometry there exists a unique spherical triangle A such that a and i are edges of A and $\psi_{1}=\angle(a, i)$ is one of its angles. Let m^{*} be the edge of A opposite to ψ_{1} and δ be the angle of A opposed to i. Using spherical trigonometry we have

$$
\begin{aligned}
\cos m^{*} & =\cos a \cos i+\sin a \sin i \cos \psi_{1} \\
& =\left(\frac{\cos \varphi_{3}+\cos \varphi_{1} \cos \varphi_{2}}{\sin \varphi_{1} \sin \varphi_{2}}\right)\left(\frac{-\cos \varphi_{4}+\cos \varphi_{1} \cos \theta}{\sin \varphi_{2} \sin \theta}\right)+\sin a \sin i \cos \psi_{1} .
\end{aligned}
$$

Since

$$
\cos \bar{\psi}_{1}=\frac{\cos d-\cos b \cos h}{\sin b \sin h}
$$

and

$$
\frac{\sin a \sin i}{\sin b \sin h}=\frac{\sin \varphi_{3} \sin \varphi_{4}}{\sin \varphi_{1} \sin \theta},
$$

we have

$$
\begin{aligned}
\cos m^{*}= & \left(\frac{\cos \varphi_{3}+\cos \varphi_{1} \cos \varphi_{2}}{\sin \varphi_{1} \sin \varphi_{2}}\right)\left(\frac{-\cos \varphi_{4}+\cos \varphi_{1} \cos \theta}{\sin \varphi_{2} \sin \theta}\right) \\
& +\frac{\sin \varphi_{3} \sin \varphi_{4}}{\sin \varphi_{1} \sin \theta}(-\cos d+\cos b \cos h) .
\end{aligned}
$$

Using the fact that

$$
\cos d=\frac{\cos \varphi_{5}-\cos \varphi_{3} \cos \varphi_{4}}{\sin \varphi_{3} \sin \varphi_{4}}, \quad \cos b=\frac{\cos \varphi_{1}+\cos \varphi_{2} \cos \varphi_{3}}{\sin \varphi_{2} \sin \varphi_{3}}
$$

and

$$
\cos h=\frac{\cos \theta+\cos \varphi_{2} \cos \varphi_{4}}{\sin \varphi_{2} \sin \varphi_{4}}
$$

one has

$$
\begin{aligned}
\cos m^{*}= & \frac{\left(\cos \varphi_{3}+\cos \varphi_{1} \cos \varphi_{2}\right)\left(-\cos \varphi_{4}-\cos \varphi_{2} \cos \theta\right)}{\sin \varphi_{1} \sin ^{2} \varphi_{2} \sin \theta} \\
& +\frac{1}{\sin \varphi_{1} \sin \theta}\left(-\cos \varphi_{5}+\cos \varphi_{3} \cos \varphi_{4}\right. \\
& \left.+\frac{\left(\cos \varphi_{1}+\cos \varphi_{2} \cos \varphi_{3}\right)\left(\cos \theta+\cos \varphi_{2} \cos \varphi_{4}\right)}{\sin ^{2} \varphi_{2}}\right) \\
= & \frac{1}{\sin \varphi_{1} \sin \theta}\left(\frac{-\cos \varphi_{3} \cos \varphi_{4}-\cos \varphi_{1} \cos ^{2} \varphi_{2} \cos \theta}{\sin ^{2} \varphi_{2}}\right. \\
& -\cos \varphi_{5}+\cos \varphi_{3} \cos \varphi_{4}+\frac{\cos \varphi_{1} \cos \theta}{\sin ^{2} \varphi_{2}} \\
& \left.+\cos \varphi_{2} \cos \varphi_{3} \cos \theta+\cos ^{2} \varphi_{2} \cos \varphi_{3} \cos \varphi_{4}\right) \\
= & \frac{1}{\sin \varphi_{1} \sin ^{2}}\left(\frac{\left(\cos \varphi_{2}^{2}-1\right) \cos \varphi_{3} \cos \varphi_{4}}{\sin ^{2} \varphi_{2}}+\cos \varphi_{3} \cos \varphi_{4}\right. \\
& \left.+\frac{\left(1-\cos ^{2} \varphi_{2}\right) \cos \varphi_{1} \cos \theta}{\sin ^{2} \varphi_{2}}-\cos \varphi_{5}\right) \\
= & \frac{-\cos \varphi_{5}+\cos \varphi_{1} \cos \theta}{\sin ^{2} \varphi_{2}}=\cos m
\end{aligned}
$$

On the other hand

$$
\begin{align*}
\cos \delta= & \frac{\cos i-\cos a \cos m}{\sin a \sin m} \\
= & \frac{1}{\sin a \sin m}\left(\frac{-\cos \varphi_{4}-\cos \varphi_{2} \cos \theta}{\sin \varphi_{2} \sin \theta}\right. \\
& \left.-\left(\frac{\cos \varphi_{3}+\cos \varphi_{1} \cos \varphi_{2}}{\sin \varphi_{1} \sin \varphi_{2}}\right)\left(\frac{-\cos \varphi_{5}+\cos \varphi_{1} \cos \theta}{\sin \varphi_{1} \sin \theta}\right)\right) \tag{2}\\
= & \frac{1}{\sin ^{2} \varphi_{1} \sin a \sin m}\left(-\cos \varphi_{4} \sin ^{2} \varphi_{1}-\cos \varphi_{2} \cos \theta+\cos \varphi_{3} \cos _{5}\right. \\
& \left.-\cos \varphi_{1} \cos \varphi_{3} \cos \theta+\cos \varphi_{1} \cos \varphi_{2} \cos \varphi_{5}\right)
\end{align*}
$$

and

$$
\begin{aligned}
\cos \psi_{2}= & -\left(\frac{\cos e-\cos g \cos c}{\sin g \sin c}\right) \\
= & -\frac{1}{\sin g \sin c}\left(\frac{\cos \varphi_{4}-\cos \varphi_{3} \cos \varphi_{5}}{\sin \varphi_{3} \sin \varphi_{5}}\right. \\
& \left.\frac{-\cos \theta+\cos \varphi_{1} \cos \varphi_{5}}{\sin \varphi_{1} \sin \varphi_{5}} \frac{\cos \varphi_{2}+\cos \varphi_{1} \cos \varphi_{3}}{\sin \varphi_{1} \sin \varphi_{3}}\right)
\end{aligned}
$$

Since,

$$
\frac{\sin g}{\sin m}=\frac{\sin \theta}{\sin \varphi_{5}} \quad \text { and } \quad \frac{\sin c}{\sin a}=\frac{\sin \varphi_{2}}{\sin \varphi_{3}}
$$

one have

$$
\begin{align*}
\cos \psi_{2}= & -\frac{1}{\sin a \sin m \sin ^{2} \varphi_{1}}\left(\cos \varphi_{4} \sin ^{2} \varphi_{1}+\cos \varphi_{2} \cos \theta-\cos \varphi_{3} \varphi_{5}\right. \tag{3}\\
& \left.+\cos \varphi_{1} \cos \varphi_{3} \cos \theta-\cos \varphi_{1} \cos \varphi_{2} \cos \varphi_{5}\right) .
\end{align*}
$$

Taking into account (1), (2) and (3) one has $m=m^{*}, \delta=\psi_{2}$ and so $v_{6}=v_{7}$.
We may now conclude that the map $\Phi: \mathcal{T} / \sim \rightarrow] 0, \pi[\times \ldots \times] 0, \pi[$, defined by $\Phi([T])=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{6}\right)$, is a homeomorphism and consequently \mathcal{T} / \sim is a differentiable manifold of dimension 6 .
S. Robertson [2] has conjectured that the set of all spherical foldings is connected. We do not have an answer to this question yet, but Proposition 2.3 enable us to prove

Corollary 2.2. The set \mathcal{G} of all octahedral foldings (up to an isometry) is connected (in fact, path-connected).

Proof: Using Propositions 2.3 and 2.1, we can give to \mathcal{G} a structure of a differentiable manifold with dimension 6. In fact, with notations as above, the map $\Upsilon=\Phi \circ \Psi: \mathcal{G} \rightarrow] 0, \pi[\times \ldots \times] 0, \pi\left[\right.$ given by $\Upsilon([f])=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{6}\right)$ gives rise to a differentiable structure for \mathcal{G}.

Let $[f] \in \mathcal{G}, \Upsilon([f])=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{6}\right)$ and $\left.\gamma:[0,1] \rightarrow\right] 0, \pi[\times \ldots \times] 0, \pi[$ the map given by $\gamma(t)=\left((1-t) \varphi_{1}+t \frac{\pi}{2},(1-t) \varphi_{2}+t \frac{\pi}{2}, \ldots,(1-t) \varphi_{6}+t \frac{\pi}{2}\right)$. Then $\bar{\gamma}=\Upsilon^{-1} \circ \gamma:[0,1] \rightarrow \mathcal{G}$ is a path joining $[f]$ to the standard folding S. Therefore \mathcal{G} is path-connected.

REFERENCES

[1] D'Azevedo Breda, A.M. - Isometric foldings, Ph.D. Thesis, Southampton University, U.K., 1989.
[2] Robertson, S.A. - Isometric foldings of Riemannian manifolds, Proc. Royal Soc. Edinburgh (1977), 275-284.
A.M. d'Azevedo Breda,

Departamento de Matemática,
Universidade de Aveiro, 3800 Aveiro - PORTUGAL

[^0]: Received: February 18, 1995; Revised: April 28, 1995.

