ON THE ARITHMETICAL FUNCTIONS $d_{k}(n)$ AND $d_{k}^{*}(n)$

J. SÁNDOR

1 - Introduction

1. Let $\varphi(n), \sigma(n), d(n), \omega(n), \Omega(n)$ denote as usual the Euler totient, the sum of divisors of n, the number of divisors of n, the number of distinct prime factors of n, and the total number of prime factors of n, respectively. We note that by convention $\varphi(1)=\sigma(1)=d(1)=1, \omega(1)=\Omega(1)=0$. Let $e(n)=1$, $I_{k}(n)=n^{k}, I(n)=I_{1}(n)(n=1,2, \ldots, k \geq 0)$, and μ denote the Möbius function. In terms of Dirichlet convolution, denoted by \cdot, we have ([1], [6], [7])

$$
\begin{equation*}
\varphi(n)=(I \cdot \mu)(n), \quad \sigma(n)=(I \cdot e)(n), \quad d(n)=(e \cdot e)(n) \tag{1}
\end{equation*}
$$

Similarly, for the Jordan's generalization $\varphi_{k}(n)$, of $\varphi(n)$; and for the sum $\sigma_{k}(n)$, of k-th powers of divisors of n, we have

$$
\begin{equation*}
\varphi_{k}(n)=\left(I_{k} \cdot \mu\right)(n), \quad \sigma_{k}(n)=\left(I_{k} \cdot e\right)(n) \tag{2}
\end{equation*}
$$

Clearly

$$
\varphi_{1} \equiv \varphi, \quad \sigma_{1} \equiv \sigma, \quad \sigma_{0} \equiv d
$$

Let $d_{k}(n)$ denote the Piltz divisor function counting the number of distinct solutions of the equation $x_{1} x_{2} \cdots x_{k}=n$ (where $x_{1}, x_{2}, \ldots, x_{k}$ run independently through the set of positive integers). Then $d_{2} \equiv d$ and $d_{1} \equiv e$. It is easy to see that ([9], [11])

$$
\begin{equation*}
d_{k}(n)=\left(d_{k-1} \cdot e\right)(n), \quad k \geq 2 \tag{3}
\end{equation*}
$$

The arithmetical functions $\varphi, \sigma, d, \varphi_{k}, \sigma_{k}, d_{k}$ are all multiplicative, while ω and Ω are additive. For many properties of these classical functions, see e.g. [1], [2], [6], [9].

[^0]2. A divisor i of n is called unitary, if $\left(i, \frac{n}{i}\right)=1$. The unitary convolution of the arithmetical functions f and g is defined by ([3])
\[

$$
\begin{equation*}
(f \oplus g)(n)=\sum_{i \| n} f(i) g\left(\frac{n}{i}\right), \tag{4}
\end{equation*}
$$

\]

where $i \| n$ means that i runs through the unitary divisors of n.
The unitary analogue μ^{*}, of μ, is given by ([3], [4])

$$
\begin{equation*}
\mu^{*}(n)=(-1)^{\omega(n)} \tag{5}
\end{equation*}
$$

and the unitary analogue of φ_{k} is given by

$$
\begin{equation*}
\varphi_{k}^{*}(n)=\left(I_{k} \oplus \mu^{*}\right)(n) . \tag{6}
\end{equation*}
$$

The unitary analogues of d and σ_{k} are d^{*} and σ_{k}^{*}, counting the number, and the sum of powers, of unitary divisors of n, respectively. We have ([4], [8]):

$$
\begin{align*}
& d^{*}(n)=(e \oplus e)(n)=2^{\omega(n)}, \tag{7}\\
& \sigma_{k}^{*}(n)=\left(I_{k} \oplus e\right)(n) . \tag{8}
\end{align*}
$$

For more properties of σ_{k}^{*}, see [8]. It is known that the unitary convolution of multiplicative functions is also multiplicative, so the functions $\varphi_{k}^{*}, d^{*}, \sigma_{k}^{*}$ are all multiplicative, too.

Given a prime p and a positive integer $m \geq 1$, the following formulae are valid:

$$
\begin{equation*}
\varphi_{k}\left(p^{m}\right)=p^{k m}\left(1-\frac{1}{p}\right), \quad \sigma_{k}\left(p^{m}\right)=\frac{p^{k(m+1)}-1}{p^{k}-1} \quad(k \geq 1), \quad d\left(p^{m}\right)=m+1 \tag{9}
\end{equation*}
$$

and
(10) $\varphi_{k}^{*}\left(p^{m}\right)=p^{k m}-1, \quad \sigma_{k}^{*}\left(p^{m}\right)=p^{k m}+1 \quad(k \geq 1), \quad d^{*}\left(p^{m}\right)=2$.

The arithmetical function $d_{k}(k \geq 2)$ is also multiplicative, and

$$
\begin{equation*}
d_{k}\left(p^{m}\right)=\binom{k+m-1}{m}, \tag{11}
\end{equation*}
$$

where $\binom{a}{b}=C_{a}^{b}$ denotes a binomial coefficient. For a review of properties of d_{k}, see e.g. [11]. For more theorems, see [6].

The aim of this note is to introduce and study certain properties of an unitary analogue of the function d_{k}, as well as to prove new relations for the above mentioned arithmetical functions.

II - The function d_{k}^{*} and normal, maximal and average orders

1. The unitary analogue d_{k}^{*}, of d_{k}, will be defined recurrently by

$$
\begin{equation*}
d_{2}^{*}(n)=d^{*}(n), \quad d_{k}^{*}(n)=\left(d_{k-1}^{*} \oplus e\right)(n), \quad k \geq 2 . \tag{12}
\end{equation*}
$$

Then, by induction on k, it follows that d_{k}^{*} is multiplicative for all $k \geq 2$ and, for a prime power, one has

$$
\begin{equation*}
d_{k}^{*}\left(p^{m}\right)=k . \tag{13}
\end{equation*}
$$

This is a consequence of (10) and (12). Then a similar formula, as in (7), holds for $d_{k}^{*}(n)$:

$$
\begin{equation*}
d_{k}^{*}(n)=k^{\omega(n)} . \tag{14}
\end{equation*}
$$

2. The formula above, attending to a well known theorem of Hardy and Ramanujan on the normal order of magnitude of the function $\omega(n)$ (see [1], [6], [2], [7], [9]), immediately gives:

The normal order of magnitude of $\log d_{k}^{*}(n)$ is

$$
\begin{equation*}
\log k \cdot \log \log n \tag{15}
\end{equation*}
$$

Indeed, let $\varepsilon>0$. Then for almost all n one has $(1-\varepsilon) \log \log n<\omega(n)<$ $(1+\varepsilon) \log \log n$, giving, by (14), $(1-\varepsilon) \log k \cdot \log \log n<\log d_{k}^{*}(n)<(1+\varepsilon) \log k$. $\log \log n$, yielding (15).
3. For the maximal order of magnitude of $\log d_{k}^{*}(n)$, one can write:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log d_{k}^{*}(n) \cdot \log \log n}{\log n}=\log k . \tag{16}
\end{equation*}
$$

This is a simple consequence of (14) and the known result

$$
\limsup _{n \rightarrow \infty} \frac{\omega(n) \log \log n}{\log n}=1 \quad \text { (see e.g. [6]). }
$$

4. We note that $d^{*}(n)$ counts also the number of squarefree divisors of n, so for the average order of $d^{*}(n)$ the first result was obtained by Mertens in 1874 (see [7]):

$$
\begin{equation*}
\sum_{n \leq x} d^{*}(n)=A x \log x+B x+O\left(x^{1 / 2} \log x\right), \tag{17}
\end{equation*}
$$

where A, B are certain explicit constants. This has been rediscovered in [4]. The O-term in (17) can be much improved, for example to $O\left(x^{1 / 2}\right)$ (see [5]).

In order to obtain the average order of $d_{k}^{*}(n)$, we can apply a result of Selberg ([16]):

$$
\begin{equation*}
\sum_{n \leq x} z^{\omega(n)}=z F(z) x(\log x)^{z-1}+O\left(x(\log x)^{\operatorname{Re}(z-2)}\right) \tag{18}
\end{equation*}
$$

where $z \in \mathbb{C}$, and the O-constant is uniform for $|z| \leq R$ (>0, given), and

$$
F(z)=\frac{1}{\Gamma(z+1)} \cdot \prod_{p}\left(1+\frac{z}{p-1}\right) \cdot\left(1-\frac{1}{p}\right)^{z}
$$

For $z=k$, a fixed positive integer, one obtains

$$
\begin{equation*}
\sum_{n \leq x} d_{k}^{*}(n)=A x(\log x)^{k-1}+O\left(x(\log x)^{k-2}\right) \tag{19}
\end{equation*}
$$

where A is a positive constant (depending only on k, but the O-constant is not uniform for all k).

III - Inequalities

1. In the paper [11], the following inequalities are proved:

$$
\begin{equation*}
k^{\omega(n)} \leq \prod_{i=1}^{r}\left(1+\frac{k-1}{a_{i}}\right)^{a_{i}} \leq d_{k}(n) \leq k^{\Omega(n)} \tag{20}
\end{equation*}
$$

where $k \geq 2$ and $n=\prod_{i=1}^{r} p_{i}^{a_{i}}\left(p_{i}\right.$ primes) is the canonical representation of $n \geq 2$. In view of (14), this means that

$$
\begin{equation*}
d_{k}^{*}(n) \leq \prod_{i=1}^{r}\left(1+\frac{k-1}{a_{i}}\right)^{a_{i}} \leq d_{k}(n) \leq\left(d_{k}^{*}(n)\right)^{\Omega(n) / \omega(n)} \tag{21}
\end{equation*}
$$

with equality only for squarefree n (i.e. $a_{i}=1$ for all i).
In a recent note [14], as an application of an inequality of Klamkin, the following has been proved:

$$
\begin{equation*}
\frac{\varphi_{k+1}^{*}(n)}{\varphi^{*}(n)} \leq\left(\frac{k+1}{2}\right)^{\omega(n)} \cdot \sigma_{k}^{*}(n) \tag{22}
\end{equation*}
$$

By using the function d_{k}^{*}, this can be rewritten as

$$
\begin{equation*}
\frac{\varphi_{k+1}^{*}(n)}{\varphi^{*}(n)} \leq \frac{d_{k+1}^{*}(n)}{d^{*}(n)} \cdot \sigma_{k}^{*}(n) \tag{23}
\end{equation*}
$$

2. Since it is known that

$$
\begin{equation*}
\frac{\sigma_{k}(n)}{\sigma_{k}^{*}(n)} \leq \frac{d(n)}{d^{*}(n)}=\frac{d_{2}(n)}{d_{2}^{*}(n)} \tag{24}
\end{equation*}
$$

([12], [14]), and that

$$
\begin{equation*}
\frac{\sigma_{k}(n)}{\sigma_{k}^{*}(n)}>\frac{\sigma_{k+1}(n)}{\sigma_{k+1}^{*}(n)} \quad(k \geq 1, \quad n \geq 2) \tag{25}
\end{equation*}
$$

it is natural (see [15]) the problem of monotony of the sequence $\left(d_{k} / d_{k}^{*}\right)$. One has:

$$
\begin{equation*}
\frac{d_{k}(n)}{d_{k}^{*}(n)} \leq \frac{d_{k+1}(n)}{d_{k+1}^{*}(n)} \quad(k \geq 2, \quad n \geq 2) \tag{26}
\end{equation*}
$$

with equality only for squarefree n.
Since the involved functions are multiplicative, it is sufficient to prove (26) for prime powers $n=p^{m}$. Using (11) and (13), (26) becomes

$$
\begin{equation*}
\frac{\binom{k+m-1}{m}}{k} \leq \frac{\binom{k+m}{m}}{k+1} \tag{27}
\end{equation*}
$$

By the known relation $\binom{n}{m}=\frac{n}{n-m} \cdot\binom{n-1}{m}$, a simple calculus transforms (27) into $k+m \geq k+1$, which is true, with equality only for $m=1$.

As a corollary of (24) and (26), we note that

$$
\begin{equation*}
\frac{\sigma_{k}(n)}{\sigma_{k}^{*}(n)} \leq \frac{d_{r}(n)}{d_{r}^{*}(n)} \quad \text { for all } k, r \geq 2 \tag{28}
\end{equation*}
$$

3. Since for $m \mid n$ (m divides n) we have $\omega(n) \leq \omega(n)$, clearly

$$
\begin{equation*}
m \mid n \Rightarrow d_{k}^{*}(m) \leq d_{k}^{*}(n) . \tag{29}
\end{equation*}
$$

On the other hand, by (12) and (29),

$$
d_{k}^{*}(n)=\sum_{i \| n} d_{k-1}^{*}(i) \leq d_{k-1}^{*}(n) \cdot \sum_{i \| n} 1,
$$

so

$$
\begin{equation*}
d_{k}^{*}(n) \leq d_{k-1}^{*}(n) d^{*}(n) \quad(k \geq 2) \tag{30}
\end{equation*}
$$

By successive applications of (30), one can deduce

$$
\begin{equation*}
d_{k}^{*}(n) \leq\left(d^{*}(n)\right)^{k-1} . \tag{31}
\end{equation*}
$$

For $k=2$, one has equality for all n.
In fact, it is true that

$$
\begin{equation*}
\left(d_{k+1}^{*}(n)\right)^{1 / k}<\left(d_{k}^{*}(n)\right)^{1 /(k-1)} \quad(k \geq 2) . \tag{32}
\end{equation*}
$$

This follows from (14) and from the inequality $(k+1)^{k-1}<k^{k}$, or written equivalently, $\left(1+\frac{1}{k}\right)^{k}<k+1$. Since $\left(1+\frac{1}{k}\right)^{k}<e<k+1$ for $k \geq 2$, this holds true, proving (32).

In the same manner, by applying the inequality $\left(1+\frac{1}{k}\right)^{k+2 / 5}<e<k+1$ for $k \geq 2$ (see e.g. [10]), one obtains:

$$
\begin{equation*}
\left(d_{k+1}^{*}(n)\right)^{k-3 / 5}<\left(d_{k}^{*}(n)\right)^{k+2 / 5} \quad(k \geq 2) . \tag{33}
\end{equation*}
$$

For example, for $k=2$ this means that

$$
\begin{equation*}
\left(d_{3}^{*}(n)\right)^{7}<\left(d_{2}^{*}(n)\right)^{12}=\left(d^{*}(n)\right)^{12} . \tag{34}
\end{equation*}
$$

4. A connection among $d_{m}^{*}, \varphi_{k}^{*}, \sigma_{k}^{*}$ is given by

$$
\begin{equation*}
\left(d_{m}^{*}(n)\right)^{2} \varphi_{k}^{*}(n)>\sigma_{k}^{*}(n) \quad(m, n \geq 2 ; \quad k \geq 1) . \tag{35}
\end{equation*}
$$

Indeed, for prime powers $n=p^{a}$, we have $m^{2}\left(p^{k a}-1\right) \geq 4\left(p^{k a}-1\right)>p^{k a}+1$ since $3 p^{k a} \geq 6>5$. Inequality (35) follows by the multiplicativity of the involved functions.

By $\left(p^{k a}-1\right) m \geq 2\left(p^{k a}-1\right) \geq p^{k a}$, with equality for $p=2, k=a=1$, we get:

$$
\begin{equation*}
\varphi_{k}^{*}(n) d_{m}^{*}(n) \geq n^{k} \quad(m \geq 2, \quad k \geq 1) \tag{36}
\end{equation*}
$$

with equality for $k=1, m=2, n=2$.

Now we prove that

$$
\begin{equation*}
\varphi_{k}^{*}(n)\left(d_{m}^{*}(n)\right)^{\lambda} \leq n^{2 k} \quad(m \geq 2, \quad k \geq 1) \tag{37}
\end{equation*}
$$

where $0<\lambda \leq \log _{m} 4$.
Let $n=p^{a}$. Then (37) becomes

$$
\begin{equation*}
x^{2}-m^{\lambda} \cdot x+m^{\lambda} \geq 0, \tag{38}
\end{equation*}
$$

where $x=p^{k a}$. The discriminant of this trinomial is $\Delta=m^{\lambda} \cdot\left(m^{\lambda}-4\right) \leq 0$ for $m^{\lambda} \leq 4$, i.e. $\lambda \leq \log _{m}^{4}$.

Certain particular cases are of interest to be noted: For $m=4, \lambda=1$ we have

$$
\begin{equation*}
\varphi_{k}^{*}(n) d_{4}^{*}(n) \leq n^{2 k} . \tag{39}
\end{equation*}
$$

For $m=2, \lambda=2$, we get

$$
\begin{equation*}
\varphi_{k}^{*}(n)\left(d^{*}(n)\right)^{2} \leq n^{2 k} \tag{40}
\end{equation*}
$$

which has been considered also in [13].
For $m=5, \lambda=\log _{5} 4$ we have

$$
\begin{equation*}
\varphi_{k}^{*}(n)\left(d_{5}^{*}(n)\right)^{\log _{5} 4} \leq n^{2 k} . \tag{41}
\end{equation*}
$$

Finally, we prove:

$$
\begin{equation*}
d_{k}(n) \varphi_{m}(n) \geq \frac{d_{k}^{*}(n)}{d^{*}(n)} \cdot n^{m} \quad(m \geq 1 ; k, n \geq 2) \tag{42}
\end{equation*}
$$

By (20), it is sufficient to show that

$$
\begin{equation*}
p^{m a}\left(1-\frac{1}{p}\right) \geq \frac{p^{m a}}{2} \tag{43}
\end{equation*}
$$

(where $n=p^{a}$). For $n \geq 2$, one has $1-\frac{1}{p} \geq \frac{1}{2}$, so relation (43) is trivial. This finishes the proof of (42), since the considered functions are multiplicative.
5. Finally, we study the submultiplicative property of d_{k} and d_{k}^{*}. By $\omega(a b) \leq$ $\omega(a)+\omega(b)$ for $a, b \geq 1$, we have

$$
\begin{equation*}
d_{k}^{*}(a b) \leq d_{k}^{*}(a) d_{k}^{*}(b) \quad(k \geq 2 ; \quad a, b \geq 1), \tag{44}
\end{equation*}
$$

where equality occurs only for $(a, b)=1$.

The submultiplicativity of d_{k} is more difficult to prove. Let $a=\Pi p^{r} \cdot \Pi q^{s}$, $b=\Pi p^{m} \cdot \Pi t^{h}$ be the prime factorizations of a and b, where $(p, q)=(p, t)=$ $(q, t)=1$ (we do not use indices for simplicity). Using (11), the inequality

$$
\begin{equation*}
d_{k}(a b) \leq d_{k}(a) d_{k}(b) \tag{45}
\end{equation*}
$$

becomes (after certain elementary computations)

$$
\begin{equation*}
r!m!(k-1)!(k+r+m-1)!\leq(r+m)!(k+r-1)!(k+m-1)! \tag{46}
\end{equation*}
$$

Let $k-1=u$. Then, using the definition of a factorial, (46) is transformed into

$$
\begin{equation*}
(1 \cdot 2 \cdots u) \cdot(r+m+1) \cdots(r+m+u) \leq(r+1) \cdots(r+u) \cdot(m+1) \cdots(m+u) . \tag{47}
\end{equation*}
$$

remarking that $k(r+m+k) \leq(r+k)(m+k)$ and writing $k=1,2, \ldots, u$, after term-by-term multiplication we get (47). Equality occurs in (45), when all $r=m=0$, i.e., when a and b are coprime.

REFERENCES

[1] Apostol, T.M. - Introduction to analytic number theory, Springer, 1976.
[2] Chandrasekharan, K. - Introduction to analytic number theory, New York, Springer Verlag, 1968.
[3] Cohen, E. - Arithmetical functions associated with the unitary divisors of an integer, Math. Z., 74 (1960), 66-80.
[4] Cohen, E. - The number of unitary divisors of an integer, Amer. Math. Monthly, 67 (1960), 879-880.
[5] Gioia, A.A. and Vaidya, A.M. - The number of squarefree divisors of an integer, Duke Math. J., 33 (1966), 797-800.
[6] De Koninck, J.-M. and Ivic, A. - Topics in arithmetical functions, North Holland Math. Studies (72), 1980.
[7] Landau, E. - Handbuch der Lehre von der Vertilung der Primzahlen, Leipig, 1909 (Chelsea reprint 1953) (see p. 594).
[8] Morgado, J. - On the arithmetical function σ_{k}^{*}, Portugaliae Math., 23 (1964), 35-40.
[9] Prachar, K. - Primzahlverteilung, Springer Verlag, 1978.
[10] SÁndor, J. - Some integral inequalities, Elem. Math., 43 (1988), 177-180.
[11] SÁndor, J. - On the arithmetical function $d_{k}(n)$, L'Analyse Numér. Th. Approx., 18 (1989), 89-94.
[12] SÁNDOR, J. - An application of the Jensen-Hadamard inequality, Nieuw Arch. Wiskunde, 8(4) (1990), 63-66.
[13] SÁndor, J. and Tóth, L. - On certain number-theoretic inequalities, Fibonacci Quart., 28 (1990), 255-258.
[14] SÁndor, J. - On an inequality of Klamkin with arithmetical applications, Int. J. Math. Educ. Sci. Technol., 25 (1994), 157-158.
[15] SÁndor, J. - On certain inequalities for arithmetic functions, Notes on Numb. Theory and Discr. Math., 1 (1995), 27-32.
[16] Selberg, A. - Note on a paper by L.G. Sathe, J. Indian Math. Soc., 18 (1954), 83-87.

J. Sándor,

4160 Forteni Nr.79,
R-Jud. Harghita - ROMANIA

[^0]: Received: February 18, 1995; Revised: June 17, 1995.

