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ON THE ARITHMETICAL FUNCTIONS dk(n) AND d∗k(n)

J. Sándor

1 – Introduction

1. Let ϕ(n), σ(n), d(n), ω(n), Ω(n) denote as usual the Euler totient, the

sum of divisors of n, the number of divisors of n, the number of distinct prime

factors of n, and the total number of prime factors of n, respectively. We note

that by convention ϕ(1) = σ(1) = d(1) = 1, ω(1) = Ω(1) = 0. Let e(n) = 1,

Ik(n) = nk, I(n) = I1(n) (n = 1, 2, ..., k ≥ 0), and µ denote the Möbius function.

In terms of Dirichlet convolution, denoted by ·, we have ([1], [6], [7])

(1) ϕ(n) = (I · µ)(n) , σ(n) = (I · e)(n) , d(n) = (e · e)(n) ,

Similarly, for the Jordan’s generalization ϕk(n), of ϕ(n); and for the sum

σk(n), of k-th powers of divisors of n, we have

(2) ϕk(n) = (Ik · µ)(n) , σk(n) = (Ik · e)(n) .

Clearly

ϕ1 ≡ ϕ , σ1 ≡ σ , σ0 ≡ d .

Let dk(n) denote the Piltz divisor function counting the number of distinct

solutions of the equation x1 x2 · · ·xk = n (where x1, x2, ..., xk run independently

through the set of positive integers). Then d2 ≡ d and d1 ≡ e. It is easy to see

that ([9], [11])

(3) dk(n) = (dk−1 · e)(n) , k ≥ 2 .

The arithmetical functions ϕ, σ, d, ϕk, σk, dk are all multiplicative, while ω

and Ω are additive. For many properties of these classical functions, see e.g. [1],

[2], [6], [9].
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2. A divisor i of n is called unitary, if (i, ni ) = 1. The unitary convolution of

the arithmetical functions f and g is defined by ([3])

(4) (f ⊕ g)(n) =
∑

i‖n

f(i) g

(

n

i

)

,

where i ‖ n means that i runs through the unitary divisors of n.

The unitary analogue µ∗, of µ, is given by ([3], [4])

(5) µ∗(n) = (−1)ω(n)

and the unitary analogue of ϕk is given by

(6) ϕ∗k(n) = (Ik ⊕ µ∗)(n) .

The unitary analogues of d and σk are d∗ and σ∗k, counting the number, and

the sum of powers, of unitary divisors of n, respectively. We have ([4], [8]):

d∗(n) = (e⊕ e)(n) = 2ω(n) ,(7)

σ∗k(n) = (Ik ⊕ e)(n) .(8)

For more properties of σ∗k, see [8]. It is known that the unitary convolution of

multiplicative functions is also multiplicative, so the functions ϕ∗k, d
∗, σ∗k are all

multiplicative, too.

Given a prime p and a positive integer m ≥ 1, the following formulae are

valid:

ϕk(p
m) = pkm

(

1−
1

p

)

, σk(p
m) =

pk(m+1)−1

pk − 1
(k≥1), d(pm) = m+1 ,(9)

and

ϕ∗k(p
m) = pkm−1, σ∗k(p

m) = pkm+1 (k≥1), d∗(pm) = 2 .(10)

The arithmetical function dk (k ≥ 2) is also multiplicative, and

(11) dk(p
m) =

(k +m− 1

m

)

,

where (ab ) = Cb
a denotes a binomial coefficient. For a review of properties of dk,

see e.g. [11]. For more theorems, see [6].

The aim of this note is to introduce and study certain properties of an unitary

analogue of the function dk, as well as to prove new relations for the above

mentioned arithmetical functions.
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II – The function d∗k and normal, maximal and average orders

1. The unitary analogue d∗k, of dk, will be defined recurrently by

(12) d∗2(n) = d∗(n) , d∗k(n) = (d∗k−1 ⊕ e)(n), k ≥ 2 .

Then, by induction on k, it follows that d∗k is multiplicative for all k ≥ 2 and, for

a prime power, one has

(13) d∗k(p
m) = k .

This is a consequence of (10) and (12). Then a similar formula, as in (7), holds

for d∗k(n):

(14) d∗k(n) = kω(n) .

2. The formula above, attending to a well known theorem of Hardy and

Ramanujan on the normal order of magnitude of the function ω(n) (see [1], [6],

[2], [7], [9]), immediately gives:

The normal order of magnitude of log d∗k(n) is

(15) log k · log logn .

Indeed, let ε > 0. Then for almost all n one has (1 − ε) log logn < ω(n) <

(1+ ε) log log n, giving, by (14), (1− ε) log k · log log n < log d∗k(n) < (1+ ε) log k ·

log logn, yielding (15).

3. For the maximal order of magnitude of log d∗k(n), one can write:

(16) lim sup
n→∞

log d∗k(n) · log log n

log n
= log k .

This is a simple consequence of (14) and the known result

lim sup
n→∞

ω(n) log logn

logn
= 1 (see e.g. [6]) .

4. We note that d∗(n) counts also the number of squarefree divisors of n, so

for the average order of d∗(n) the first result was obtained by Mertens in 1874

(see [7]):

(17)
∑

n≤x

d∗(n) = Ax log x+Bx+O(x1/2 log x) ,



110 J. SÁNDOR

where A, B are certain explicit constants. This has been rediscovered in [4]. The

O-term in (17) can be much improved, for example to O(x1/2) (see [5]).

In order to obtain the average order of d∗k(n), we can apply a result of Selberg

([16]):

(18)
∑

n≤x

zω(n) = zF (z)x(log x)z−1 +O
(

x(log x)Re(z−2)
)

,

where z ∈ C, and the O-constant is uniform for |z| ≤ R (> 0, given), and

F (z) =
1

Γ(z + 1)
·
∏

p

(

1 +
z

p− 1

)

·

(

1−
1

p

)z

.

For z = k, a fixed positive integer, one obtains

(19)
∑

n≤x

d∗k(n) = Ax(log x)k−1 +O
(

x(log x)k−2
)

,

where A is a positive constant (depending only on k, but the O-constant is not

uniform for all k).

III – Inequalities

1. In the paper [11], the following inequalities are proved:

(20) kω(n) ≤
r
∏

i=1

(

1 +
k − 1

ai

)ai

≤ dk(n) ≤ kΩ(n) ,

where k ≥ 2 and n =
∏r
i=1 p

ai
i (pi primes) is the canonical representation of

n ≥ 2. In view of (14), this means that

(21) d∗k(n) ≤
r
∏

i=1

(

1 +
k − 1

ai

)ai

≤ dk(n) ≤ (d∗k(n))
Ω(n)/ω(n) ,

with equality only for squarefree n (i.e. ai = 1 for all i).

In a recent note [14], as an application of an inequality of Klamkin, the fol-

lowing has been proved:

(22)
ϕ∗k+1(n)

ϕ∗(n)
≤

(

k + 1

2

)ω(n)

· σ∗k(n) .
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By using the function d∗k, this can be rewritten as

(23)
ϕ∗k+1(n)

ϕ∗(n)
≤

d∗k+1(n)

d∗(n)
· σ∗k(n) .

2. Since it is known that

(24)
σk(n)

σ∗k(n)
≤

d(n)

d∗(n)
=

d2(n)

d∗2(n)

([12], [14]), and that

(25)
σk(n)

σ∗k(n)
>

σk+1(n)

σ∗k+1(n)
(k ≥ 1, n ≥ 2) ,

it is natural (see [15]) the problem of monotony of the sequence (dk/d
∗
k). One

has:

(26)
dk(n)

d∗k(n)
≤

dk+1(n)

d∗k+1(n)
(k ≥ 2, n ≥ 2) ,

with equality only for squarefree n.

Since the involved functions are multiplicative, it is sufficient to prove (26) for

prime powers n = pm. Using (11) and (13), (26) becomes

(27)

(

k+m−1
m

)

k
≤

(

k+m
m

)

k + 1
.

By the known relation ( nm) = n
n−m · (

n−1
m ), a simple calculus transforms (27) into

k +m ≥ k + 1, which is true, with equality only for m = 1.

As a corollary of (24) and (26), we note that

(28)
σk(n)

σ∗k(n)
≤

dr(n)

d∗r(n)
for all k, r ≥ 2 .

3. Since for m|n (m divides n) we have ω(n) ≤ ω(n), clearly

(29) m |n ⇒ d∗k(m) ≤ d∗k(n) .
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On the other hand, by (12) and (29),

d∗k(n) =
∑

i‖n

d∗k−1(i) ≤ d∗k−1(n) ·
∑

i‖n

1 ,

so

(30) d∗k(n) ≤ d∗k−1(n) d
∗(n) (k ≥ 2) .

By successive applications of (30), one can deduce

(31) d∗k(n) ≤ (d∗(n))k−1 .

For k = 2, one has equality for all n.

In fact, it is true that

(32) (d∗k+1(n))
1/k < (d∗k(n))

1/(k−1) (k ≥ 2) .

This follows from (14) and from the inequality (k + 1)k−1 < kk, or written

equivalently, (1 + 1
k )

k < k + 1. Since (1 + 1
k )

k < e < k + 1 for k ≥ 2, this

holds true, proving (32).

In the same manner, by applying the inequality (1 + 1
k )

k+2/5 < e < k + 1 for

k ≥ 2 (see e.g. [10]), one obtains:

(33) (d∗k+1(n))
k−3/5 < (d∗k(n))

k+2/5 (k ≥ 2) .

For example, for k = 2 this means that

(34) (d∗3(n))
7 < (d∗2(n))

12 = (d∗(n))12 .

4. A connection among d∗m, ϕ
∗
k, σ

∗
k is given by

(35) (d∗m(n))
2 ϕ∗k(n) > σ∗k(n) (m,n ≥ 2; k ≥ 1) .

Indeed, for prime powers n = pa, we have m2(pka − 1) ≥ 4(pka − 1) > pka + 1

since 3pka ≥ 6 > 5. Inequality (35) follows by the multiplicativity of the involved

functions.

By (pka− 1)m ≥ 2(pka− 1) ≥ pka, with equality for p = 2, k = a = 1, we get:

(36) ϕ∗k(n) d
∗
m(n) ≥ nk (m ≥ 2, k ≥ 1) ,

with equality for k = 1, m = 2, n = 2.
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Now we prove that

(37) ϕ∗k(n) (d
∗
m(n))

λ ≤ n2k (m ≥ 2, k ≥ 1) ,

where 0 < λ ≤ logm 4.

Let n = pa. Then (37) becomes

(38) x2 −mλ · x+mλ ≥ 0 ,

where x = pka. The discriminant of this trinomial is ∆ = mλ · (mλ − 4) ≤ 0 for

mλ ≤ 4, i.e. λ ≤ log4m.

Certain particular cases are of interest to be noted: For m = 4, λ = 1 we have

(39) ϕ∗k(n) d
∗
4(n) ≤ n2k .

For m = 2, λ = 2, we get

(40) ϕ∗k(n)(d
∗(n))2 ≤ n2k ,

which has been considered also in [13].

For m = 5, λ = log5 4 we have

(41) ϕ∗k(n)(d
∗
5(n))

log5 4 ≤ n2k .

Finally, we prove:

(42) dk(n)ϕm(n) ≥
d∗k(n)

d∗(n)
· nm (m ≥ 1; k, n ≥ 2) .

By (20), it is sufficient to show that

(43) pma
(

1−
1

p

)

≥
pma

2

(where n = pa). For n ≥ 2, one has 1 − 1
p ≥

1
2 , so relation (43) is trivial. This

finishes the proof of (42), since the considered functions are multiplicative.

5. Finally, we study the submultiplicative property of dk and d∗k. By ω(ab) ≤

ω(a) + ω(b) for a, b ≥ 1, we have

(44) d∗k(ab) ≤ d∗k(a) d
∗
k(b) (k ≥ 2; a, b ≥ 1) ,

where equality occurs only for (a, b) = 1.
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The submultiplicativity of dk is more difficult to prove. Let a =
∏

pr ·
∏

qs,

b =
∏

pm ·
∏

th be the prime factorizations of a and b, where (p, q) = (p, t) =

(q, t) = 1 (we do not use indices for simplicity). Using (11), the inequality

(45) dk(ab) ≤ dk(a) dk(b)

becomes (after certain elementary computations)

(46) r!m! (k − 1)! (k + r +m− 1)! ≤ (r +m)! (k + r − 1)! (k +m− 1)!

Let k − 1 = u. Then, using the definition of a factorial, (46) is transformed into

(47) (1·2 · · ·u)·(r+m+1) · · · (r+m+u) ≤ (r+1) · · · (r+u)·(m+1) · · · (m+u) .

remarking that k (r + m + k) ≤ (r + k) (m + k) and writing k = 1, 2, ..., u,

after term-by-term multiplication we get (47). Equality occurs in (45), when all

r = m = 0, i.e., when a and b are coprime.
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