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SUBDIRECT PRODUCTS OF
A BAND AND A SEMIGROUP*

MIrosSLAV CIRIC and STOJAN BOGDANOVIC

Abstract: Subdirect products of a band and a semigroup have been studied in var-
ious special cases by a number of authors. In the present paper, using the constructions
and the methods from our earlier papers, we give characterizations of all subdirect prod-

ucts of a band and a semigroup.

Introduction and preliminaries

Subdirect products of a band and a semigroup have been studied in various
special cases by a number of authors. A characterization of all subdirect products
of a rectangular band and a semigroup was given by J.L. Chrislock and T. Tamura
[3]. Subdirect products connected with sturdy bands of semigroups were inves-
tigated by the authors in [4], and in the semilattice case by M. Petrich [9, 10].
Spined products of a band and a semigroup, predominantly with respect to the
greatest semilattice homomorphic image of this band, were also considered many
times. More information about these can be found in [6]. A characterization of
all subdirect products of a band and a semilattice of semigroups contained in
their spined product were given by the authors in [6]. A band composition used
in this paper, which is an extension of Petrich’s construction from [9], has been
also explored by the authors in [4-7].

In the present paper we consider such compositions in which all members of
the related system of homomorphisms are one-to-one, and using this, by Theo-
rem 1 we describe all subdirect products of a band and a semigroup. In Theorem 2
we give an alternative construction of such products, similar to the ones of J.L.
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Chrislock and T. Tamura [3] and H. Mitsch [8]. Theorem 3 shows that all subdi-
rect products of a given semigroup and a band can be obtained from the subdirect
product of this semigroup and of the greatest semilattice homomorphic image of
this band, using spined products. In Theorem 4 we give a characterization of
subdirect products of a band and a semilattice of semigroups. Finally, Section 3
is devoted to the study of subdirect products of a band and a group. The results
obtained there are generalizations of some results of M. Petrich [9, 10], H. Mitsch
[6] and of the authors [4].

Let B be a band. By < we will denote the natural partial order on B, i.e.
a relation on B defined by: j < i < ij = ji = j (i,j € B), and < will denote
a quasi-order on B defined by: j < i < j = jij (i,j € B). Clearly, < and =<
coincide if and only if B is a semilattice. Further, for ¢ € B, [i] will denote the
class of ¢ with respect to the smallest semilattice congruence on B. It is easy to
verify that j <i < [j] <[i], for all 4,5 € B.

Let B be a band. To each i € B we associate a semigroup S; and an over-
semigroup D; of S; such that D;ND; =0, if i # j. Fori,j € B, i = j, let ¢; j be
a mapping of S; into D; and suppose that the family of ¢; ; satisfies the following
conditions:

(1) ¢4, is the identity mapping on S;, for each i € B;
(2) (Si diij) (Sj $jij) C Sij, for all i, j € B;
(8) [(adiij) (bdji5)] dijk = (adik (DPjk)), for a€S;, bES;, ij=k, i,j,k€B.

Define a multiplication * on S = U;cpSi by: axb = (a¢;i;) (bojij), for
a € S;, b€ Sj. Then S is a band B of semigroups S;, ¢ € B, in notation
S = (B; S;, ¢ij,D;) [6]. If we assume ¢ = j in (3), then we obtain that ¢; is a
homomorphism, for all i,k € B, ¢ = k. If all ¢;; are one-to-one, then we write
S = <B, Si, ¢i,j7 D7,>

Further, if D; = S;, for each i € B, then we write S = (B;.S;, ¢; ;). Here the
condition (2) can be omitted. If S = (B;S;, ¢i;) and if {¢;;| ¢,j € B, i = j}
is a transitive system of homomorphisms, i.e. if ¢;; ¢ = ¢;, for i = j = k,
then we will write S = [B; S;, ¢ ;], and we will say that S is a strong band B of
semigroups S;. If S = [B;S;, ¢; ;] and all ¢; ; are one-to-one, then we will write
S = (B;S;, ¢ij) and we will say that S is a sturdy band B of semigroups ;.
In the case when B is a semilattice, we obtain a strong (sturdy) semilattice of
semigroups.

For undefined notions and notations we refer to [9] and [10].

It is easy to prove the following
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Lemma 1. Let S = (B;S;, ¢;j,D;) and let T be a subsemigroup of S. Then
B' ={ie€ B| S;NT # (0} is a subsemigroup of B and if T; =T N S;, i € B', and
fori,j € B',i > j, 1  is the restriction of ¢; j onto T;, then T = (B';T;, v ;, D;).

2 — The main results

In this section we will give various characterizations of subdirect products of
a band and a semigroup, in the general case. The following is the main theorem
of this paper:

Theorem 1. Let S = (B;S;, ¢, D;) and let £ be a relation on S defined
by:
(4) a&b if and only if a € S;, b € Sj, i,j € B, and there exists k € B such
that k 21,7, and a¢;; = boj, for every l € B, [ X k.

Then & is a congruence on S. Furthermore, if S = (B;S;, ¢; j, D;), then S is a
subdirect product of B and S/¢.

Conversely, if a semigroup S is a subdirect product of a band B and a semi-
group T', then S = (B; S;, ¢i;, D;), where for each i € B, S; is isomorphic to
some subsemigroup of T'.

Proof: Clearly, ¢ is reflexive and symmetric. Assume a,b,c € S such that
alb and b§c. Let a € S;, b € S, ¢c € S, i,j,k € B. Then there exists
my,mg € Bsuchthat my < 7,jandmg = j,k,and a¢;;, =bdj;,,bPj1, = chpy,,
for all l1,lo € B, 1 = m1 and Iy <X mg. Clearly, there exists m € B such that
m = mi,me, and for every [ € B, [ < m, we obtain that [ < mi,ms, whence
ag;;=bo;; = cor;. Therefore, a§c, so { is transitive.

Let a,b,c € S, a&b. Assume that a € S;, b € Sj, c € Sk, 4,j,k € B. Then
there exists mg € B, mg = 1,7, such that a¢;; = b¢;, for every I € B, [ < my.
Assume that m € B is such that m < mg, ik, jk, and that [ € B, [ < m. Then
[ = mg, whence

(ax*c)piks = (agiy) (chrr) = (bdj1) (chry) = (b*c)Pjky -

Thus, a % c£b * c. Similarly we prove that ¢ * a&cx*b. Hence, £ is a congruence
on S.

Let S = (B;Si, ¢ij,D;). Assume that (a,b) € £ N7, where n is a band
congruence on S such that S/n = B. Then a,b € S;, for some i € B, and there
exists k € B, k = 4, such that a¢; ; = b¢; 1, whence a = b, since ¢; j, is one-to-
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one. Therefore, £ N1 = ¢, where € is the equality relation. Thus, S is a subdirect
product of B and S/¢.

Conversely, let S C T x B be a subdirect product of a semigroup 7" and a
band B. Fori € B, let S; = (T'x {i})NS. Clearly, S; # () and it is isomorphic to
a subsemigroup of T, for each ¢ € B, and S is a band B of semigroups S;, i € B.
Let D; =T x {i}, i € B, and for i,j € B, i = j, let ¢; ;: S; — D; be a mapping
defined by:

(a’i) Qbi,j = (aaj) ((CL, 7’) € Sl) :
Now it is easy to verify that S = (B; S, ¢ij, D;). n

Remark. Note that if S = [B;S;, ¢; ;] and £ is a congruence on S defined
as in (4), then S/¢ is the well-known direct limit of the family S;, i € B, carried
by B.

Considering the mappings of a band B into the set G(T") of all subsemigroups
of a semigroup T, satisfying some suitable conditions, we give another character-
ization of subdirect products of B and T, similar to the ones of J.L. Chrislock
and T. Tamura [3] and H. Mitsch [8].

Theorem 2. Let B be a band, let T' be a semigroup and let pu: B — G(T')
be a mapping satisfying the following conditions:

i) Uiepin=T;

ii) (ip) - (jp) € (i) p, for all i, j € B.
Then S = {(i,a) € BxT | a € iu} is a subdirect product of B and T, in notation
S=(Byu,T).

Conversely, any subdirect product of B and I' can be obtained in this way.

Proof: The proof is similar to the proofs of Theorem 1 [3] and Theorem 7
(8]. m

Let B be a band, let T be a semigroup, let u: B — G(T') be a mapping
satisfying i) of the previous theorem and let u be antitone, i.e. let for all i, j € B,
i > j implies iu C ju. Then clearly p satisfies ii). A semigroup S constructed by
such a mapping as in the previous theorem will be denoted by S = [B; u; 1.

By Theorem 2 we obtain the following two corollaries. The first of them is in
fact Proposition 1 [4], and the first part of the second corollary is the result of
M. Petrich [10, p. 87-88], [9, p. 98].
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Corollary 1. If S is a sturdy band B of semigroups, then S = [B; u; S/¢],
where ¢ is a relation defined as in (4).

Conversely, if S = [B; u; T], then S is a sturdy band B of semigroups S; = i,
1€ B.

Corollary 2. If S is a sturdy semilattice Y of semigroups, then S =
[Y; u; S/, where  is a relation defined as in (4).

Conversely, if S = [Y; u; T], where Y is a semilattice, then S is a sturdy band
B of semigroups S; = iu, © € B.

If P and @Q are two semigroups with a common homomorphic image Y, then
the spined product of P and ) with respect to Y is S = {(a,b) € P x Q|
ap = by}, where ¢: P — Y and ¢: @ — Y are homomorphisms onto Y. If
Py=a¢p™ Qo =0ay™l, a eV, then S = Upey(Pa X Qo). Clearly, spined
products are easier for construction than other subdirect products, so it is of
interest the following result that reduces the problem of construction of subdirect
products of a given semigroup and a band to the problem of construction of
subdirect products of this semigroup and of the greatest semilattice homomorphic
image of this band.

Theorem 3. Let B be a band, let Y be its greatest semilattice homomorphic
image and let T be a semigroup. Then a semigroup S is a subdirect product of
B and T if and only if it is a spined product, with respect to Y, of B and of a
subdirect product of Y and T.

Proof: Let B be a semilattice Y of rectangular bands B,, o € Y.
Let S C B x T be a subdirect product of B and T. Define a mapping ¢ of S
into Y x T by:

(i,a)p = ([il,a) ((i,a) € 5).

By a routine verification we obtain that ¢ is a homomorphism. Let us prove
that P = S ¢ is a subdirect product of Y and T Indeed, for a € Y, a = [i] for
some i € B, and (¢,a) € S for some a € T'; hence (a,a) = ([i],a) = (i,a) p € P.
Similarly we prove that for a € T there exists a € Y such that (a,a) € P.
Therefore, P is a subdirect product of Y and T

Fora €Y, let P, = ({a} xT)NP. Clearly, P is a semilattice Y of semigroups
P,, a € Y. Define a mapping ¢ of S into B x P by:

(i,a)¢ = (i, ([il,a))  ((,a) €5) .
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It is not hard to verify that ¢ is an embedding of S into B xT'. Assume (i,a) € S.
Then i € B,, for some a € Y, whence

(iva)¢ = (i’ (Mva)) = (i’ (aaa)) € By X Py .

Thus, SY C Upey (Ba X Pa). On the other hand, if « € Y and (4, (o, a)) €
B, x P,, then ¢ € B, so

(i, (a,a)) = (i,a)p € S .

Therefore, S¢ = Uyey (Ba X Pa), so S is a spined product of B and P with
respect to Y.

Conversely, let S C B x P be a spined product of B and P, with respect to Y,
where P is a subdirect product of Y and T', i.e. let S = U ey (Ba X Pa), where
P,=({a} xT)N P, a €Y. Define a mapping ¢ of S into B x T by:

(iv (ava’)) ¢ = (iva) ((Z7 (a7a)) S S) .

Then ¢ is an embedding of S into B x T. It remains to prove that Q = S ¢ is a
subdirect product of B and T'. Indeed, for i € B, i € B, for some a € Y, and
there exists a € T such that (a,a) € P, since P is a subdirect product of Y and
T, whence (i, (a,a)) € S and (i,a) = (i, (o,a)) ¢ € Q. Similarly we prove that
for any a € T there exists i € B such that (i,a) € Q. Therefore, @ is a subdirect
product of B and T'. n

An element of a semigroup is w-regular if some of its power is regular, and a
semigroup is w-regular if each of its element is w-regular.
Corollary 3. The following conditions on a semigroup S are equivalent:

i) S is m-regular and a subdirect product of a band and a semilattice of
groups;
ii) S is regular and a subdirect product of a band and a semilattice of groups;

iii) S is a spined product of a band and a semilattice of groups.

Proof: The authors in [1] proved that if a semigroup is a subdirect product
of semilattices of groups, then it is a semilattice of groups if and only if it is
m-regular. By this and by Theorem 3 we obtain i)<iii). The equivalence ii)<ii)
was proved by M. Petrich [11]. m

By the well-known Tamura’s result [12], any semigroup can be represented
as a semilattice of semilattice indecomposable semigroups. Also, M. Petrich in
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Theorem III 7.2 [9] proved that every semilattice of semigroups can be composed
as (Y384, ¢a,8, Da). Therefore, every semigroup S can be represented as S =
(Y; Sas a8, Do), where Y is a semilattice, so it is of interest to consider subdirect
products of a band and a semilattice of semigroups. This we will do in the next
theorem.

Let B be a band and let Y be a semilattice. Assume that P is a subdirect
product of B and Y an let m and w be projection homomorphisms of P onto B
and Y, respectively. It is easy to verify that for 7,5 € P, ¢ < j in P if and only if
im 2 jmwin B and iw < jw in Y. Define a quasi-order < on P by:

idj < in=jm and iw=jw (i,j € P).

If S = (P;Si,¢ij;,D;) and if ¢; ; is one-to-one for all 4,j € P such that i > j,
then we will write S = (B,Y, P; S;, ¢ij, D).

Theorem 4. Let B be a band and let Y be a semilattice.
Let P be a subdirect product of B and Y, let S = (B,Y, P;S;, ¢; j, D;) and
define relations n and € on S by:

(5) anb if and only ifa € S;, b€ S, 4,j € P, and im = jm;

(6) alb if and only if a € S;, b € S}, i,j € P, iw = jw, and there exists
ke P,k <4,j7, such that a¢;; = b¢;,, for eachl € P, | X k.

Then n and £ are congruences on S, S/n is isomorphic to B, S/¢ is a semilattice
Y of semigroups, and S is a subdirect product of S/n and S/§.

Conversely, every subdirect product of B and a semigroup that is a semilattice
Y of semigroups can be obtained in this way.

Proof: Clearly, n is a congruence on S, S/n is isomorphic to B and £ is
reflexive and symmetric.

Assume that a, b, c € S are such that a{band b&c. Let a € S;,b € Sj, c € S,
1,7,k € P, 1w = jw = kw. By the hypothesis, there exist m;, ms € P such that
m1 < 4,7 and mg < gk, and ag;;, = b, boj, = cory,, for all Iyl € P
such that [y < mq, lo < mo. Now for m = mims, m < mq,mo, so for any [ € P,
[ = m, we obtain that a ¢;; = c¢y;. Therefore, a§c, so { is transitive.

Assume that a,b,c € S are such that a&b. Let a € S;, b € S;, ¢ € S,
i,j,k € P. By the hypothesis, iw = jw, whence (ik)w = (jk)w, since w is a
homomorphism. Also, there exists mg € P such that mg < 4,5 and a¢;; = bo;,
for each [ € P, l < mg. Let m = mgk. Then m < ik, jk and for any [ € P,
| < m we have

(ax*c)pirs = (agiy) (chrr) = (boji) (chr) = (b*c)Pjky
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since [ < mg. Therefore, a*c& bx*c, and similarly cxa & cx b, so £ is a congruence
on S.

Assume that (a,b) € nNE Thena € S;, b € 5;, i,j € P, and iw = jw,
whence ¢ = j. Also, there exists k € P, k < 4, such that a ¢;; = b@; 1, whence
a = b, since ¢; 1, is one-to-one. Therefore, nN§ = €, so S is a subdirect product
of S/n and S/¢. Clearly, S/¢ is a semilattice Y of semigroups T, = Sy &%, a € Y,
where Sy = U;ep, Siand Py ={i € P|ir=a},a €Y.

Conversely, let S C B x T be a subdirect product of B and a semigroup T’
that is a semilattice Y of semigroups Ty, a € Y. Let P = {(i,a) € B x Y|
({i} x T,) NS # 0}. Tt is easy to check that P is a subdirect product of B
and Y. Let m and w denote the projection homomorphisms of P onto B and Y,
respectively, and for i € P, let S; = ({ir} x Tjw) N S. Clearly, S is a band P of
semigroups S;, ¢ € P. By Theorem III 7.2 9], T' = (Y; Ty, ¢a,8, Da). Now, for
i € P,let D; = {in} X D; and for i,j € P, i = j, define a mapping ¢; ; of S;
into S; by:

(i7T, a) (bi’j = (jﬂ', aqﬁiw,jw) (a S Tiw) .

Now it is easy to show that S = (B,Y, P; Si, ¢ij, D;). n

3 — Subdirect products of a band and a group

Subdirect products of a band and a group were considered in various special
cases by M. Petrich [9-11], H. Mitsch [8] and the authors [4]. In this section we
will characterize such products in the general case.

Let E(S) denote the set of all idempotents of a semigroup S. An element
a of a semigroup S is E-inversive if there exists x € S such that az € E(S),
or equivalently, if there exists € S such that x = zax [2]. A semigroup S is
E-inversive if each of its elements is E-inversive. For more informations about
such semigroups we refer to [2] and [§].

Lemma 2. Let S be a subdirect product of a band B and an E-inversive
semigroup T'. Then S is also E-inversive.

Proof: Let S C B x T, (i,a) € S. For a € T there exists x € T such that
ax € E(T) and there exists j € B such that (j,z) € S. Therefore, (i,a)(j,z) =
(ij,ax) € E(S), so S is E-inversive. u

Note that if S = (B;S;, ¢ ;, D;), then D = | J;,cg D; need not be a semigroup.
One very interesting case when the multiplication on S can be extended to a
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multiplication on D will be considered in the following
Theorem 5. Let S = (B;S;,¢i;,D;), where D;, i € B, are cancellative
semigroups and Dy, = {a ¢, | a € S;, i = k}, for each k € B. Then

i) For all i,j € B, i = j, ¢;j can be extended up to a homomorphism ¢; ;
of D; into D; such that there exists a composition D = [B; D;, ¢; ;];

11) IfS = <B, Si7¢i,jaDi>7 then D = <B, Dia@i,j);'

iii) If S is E-inversive, then D is also E-inversive.

Proof: i) Assume that k,l € B are such that k > [. For a € Dy, by the
hypothesis, a = x ¢; 1, for x € S;, @ € B, i = k, and we define a mapping ; ; of
Dy into D; by

APl =T iy -

To prove that ¢ is well-defined, it is necessary and sufficient to prove that for
r€S,yesS;,ij=k=l xdip =y implies x¢;; = y¢;;. Indeed, by
T ¢i ) = Y ¢jk, for arbitrary u,v € Sy,

(wory) (x diy) (Vony) = (uxx*xv) dpy = [U(x Gik) U} bi) = [U(y bk U} Pl
= (uxy*v) o = (udry) (v Dj1) (VoK)

so by the cancellativity in D;, v ¢;; = y¢r;. Hence, p;; is well-defined and
clearly, it is an extension of ¢y, .

Assume thata € Dy, b€ Dj,a=x¢; 1, b=y ¢,z € S;,y € Sj,1,5,k,1 € B,
i = k, j = [, and assume that m € B, m = k,l. Then by (3) and by the definition
of mappings ¢; ; we obtain

[(a i) (b SOZ,M)] Okim = [(l’ bikt) (y ¢j,kl)] Okim =
= [(@ Pii) (Y ¢j,ij)) d%’j,kl] Pklym = [($ * 1) Qbij,kl} Orim = (T *Y) ijm
= [(55 biij) (y ¢j,ij)} Gijom = (T Gim) (Y Pjom) = (arm) (brm) -

Therefore, there exists a composition D = (B; D;, ;). Since D;, i € B, are
cancellative, then D = [B; D;, ¢; ;.

ii) Let all ¢;; be one-to-one. Assume that ayr; = byyy, for a,b € Dy,
k,le B,k=1. Thena=2z¢;p, b=yojr, x €S;,y € Sj,1,j € B,i,j = k. Let
u,v € Sy be arbitrary. By a ¢ ; = by, it follows that x ¢;; = y ¢;;, whence

(uxz*v) drr = (ugr) (T gig) (vort) = (udr) (Ydj) (vVdry) = (ury*v) dry -
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Since ¢y is one-to-one, then u * x * v = u * y * v, whence
u($¢l,k)v = U*XT*xV :u*y*v :U(yﬂﬁ],k)v .
Now, by the cancellativity in Dy, x ¢;x = y ¢k, i.e. a = b. Therefore, ¢y is

one-to-one.

iii) Assume that a € D. Thena € Dy, k€ B,and a = x ¢;, v € S;, i € B,
i = k. Now, zxy € E(S), for some y € S}, j € B, so

a*xy = (aprk) (wpjr;) = (T diks) (Y Pjkj)
= [(I‘ biij) (y iju,ij)} Giji = (T *y) Pijrj € E(D) .

Thus, D is also F-inversive. n

A semigroup containing exactly one idempotent will be called a unipotent
semigroup, and a semigroup without idempotents will be called an idempotent-
free semigroup. Now we go to the main theorem of this section.

Theorem 6. The following conditions on a semigroup S are equivalent:
i) S is a subdirect product of a band and a group;
ii) S is E-inversive, S = (B; S;, ¢i j, D;), and for every i € B, D; is cancella-
tive;
iii) S is E-inversive, S = (B; S;, ¢i;, D;), and for every i € B, Dj is either a
unipotent monoid or an idempotent-free semigroup;
iv) S is E-inversive and it can be embedded into a sturdy band of cancellative
semigroups;
v) S is E-inversive and it can be embedded into a sturdy band of unipotent

monoids and idempotent-free semigroups;

vi) S is E-inversive and it can be embedded into a spined product of a band
and a sturdy semilattice of cancellative semigroups;

vii) S is E-inversive and it can be embedded into a spined product of a band
and a sturdy semilattice of unipotent monoids and idempotent-free semi-
groups.

Proof: i)=ii) Let S C B x G be a subdirect product of a band B and a
group G. For i € B, let D; = {i} x G, S; = SN D,;. Clearly, S; # 0 and D;
is a cancellative semigroup, for each i € B. If for 7,7 € B, i = j, we define
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a mapping ¢;;: S; — Dj by (i,a)¢;j = (j,a), then it is easy to verify that
S = (B; S;, ¢ij, D;) and by Lemma 2, S is E-inversive.

ii)=v) Let ii) hold. Without loss of generality we can assume that Dj =
{agir|i e B,i>k,aec S}, foreach k € B. By Theorem 5, S can be embedded
into D = (B; D;, ; j) and D is E-inversive.

Let ¢ € B be such that E(D;) # 0. Assume that a € D;, e € E(D;). Since D
is E-inversive, then x = x*xexaxx, for some x € D. If x € Dj, j € B, then clearly
i = jand (exax*x)pijjepi; € E(Dj), since exaxx € E(Dy;), e € E(D;).
By the cancellativity in Dj, |E(D;)| = 1, whence ep;; = (e x a * x) pij; =
(ewi;) (awij;)x. Now, by the cancellativity in Dj, e ; j = (a i ;) x, whence

[(e * Q) goi,j] r=(exaxx)p;;=ep;j=I(apij) T,

and again by the cancellativity in Dj, (e * a) ¢; j = ap; ;. Therefore, e x a = a,
since ¢; j is one-to-one. Similarly we prove that a*e = a. Hence, D; is a monoid.
Since Dj is cancellative, then it is unipotent.

v)=-iii) This follows immediately.

iii)=i) Let iii) hold. By Theorem 1, S is a subdirect product of B and a
semigroup S/&, where ¢ is a congruence defined as in (4). Clearly, e¢ f, for all
e,f € E(S). Let u=ef, e € B(S). Assume v € S/¢. Then v = a¢f, for some
acS. Since S is E-inversive, then x = x * a * x, for some z€S. If a€ S5;, x€ 5},
i,j € B,theni > j,zxa=e¢€ E(Sj;) and axe € S;j;. Assume k € B, k < 1,iji.
Then

(axe)diir = (adir) (edjix) = (adik) ,
since e ¢j; . is the identity of Dy. Thus, a *x e{ a, whence v = a? = (axe) £ =
(a &%) (e€%) = vu, and similarly v = uwv. On the other hand, u = e£" = (zxa) £ =
(2 €% (a€?) = (&%) v, and similarly v = v(z &%), Hence, S/€ is a group.

ii)<iv) This follows by Theorem 5 and Lemma 1.

iv)evi) and v)<vii) This follows by Theorem 3 [6]. u
Similarly we can prove the following

Corollary 4. The following conditions on a semigroup S are equivalent:
i) S = [B, u, G], where B is a band and G is a group;
ii) S is E-inversive and a sturdy band of cancellative semigroups;

iii) S is E-inversive and a sturdy band of unipotent monoids and idempotent-
free semigroups;
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iv) S is E-inversive and a spined product of a band and a sturdy semilattice
of cancellative semigroups;

v) S is E-inversive and a spined product of a band and a sturdy semilattice
of unipotent monoids and idempotent-free semigroups.

Corollary 5. [4] A semigroup S is a sturdy band of groups if and only if it
is regular and a subdirect product of a band and a group.

Corollary 5. [9, 10] A semigroup S is a sturdy semilattice of groups if and
only if it is regular and a subdirect product of a semilattice and a group.
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