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SUBDIRECT PRODUCTS OF
A BAND AND A SEMIGROUP*

Miroslav Ćirić and Stojan Bogdanović

Abstract: Subdirect products of a band and a semigroup have been studied in var-

ious special cases by a number of authors. In the present paper, using the constructions

and the methods from our earlier papers, we give characterizations of all subdirect prod-

ucts of a band and a semigroup.

Introduction and preliminaries

Subdirect products of a band and a semigroup have been studied in various

special cases by a number of authors. A characterization of all subdirect products

of a rectangular band and a semigroup was given by J.L. Chrislock and T. Tamura

[3]. Subdirect products connected with sturdy bands of semigroups were inves-

tigated by the authors in [4], and in the semilattice case by M. Petrich [9, 10].

Spined products of a band and a semigroup, predominantly with respect to the

greatest semilattice homomorphic image of this band, were also considered many

times. More information about these can be found in [6]. A characterization of

all subdirect products of a band and a semilattice of semigroups contained in

their spined product were given by the authors in [6]. A band composition used

in this paper, which is an extension of Petrich’s construction from [9], has been

also explored by the authors in [4–7].

In the present paper we consider such compositions in which all members of

the related system of homomorphisms are one-to-one, and using this, by Theo-

rem 1 we describe all subdirect products of a band and a semigroup. In Theorem 2

we give an alternative construction of such products, similar to the ones of J.L.
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Chrislock and T. Tamura [3] and H. Mitsch [8]. Theorem 3 shows that all subdi-

rect products of a given semigroup and a band can be obtained from the subdirect

product of this semigroup and of the greatest semilattice homomorphic image of

this band, using spined products. In Theorem 4 we give a characterization of

subdirect products of a band and a semilattice of semigroups. Finally, Section 3

is devoted to the study of subdirect products of a band and a group. The results

obtained there are generalizations of some results of M. Petrich [9, 10], H. Mitsch

[6] and of the authors [4].

Let B be a band. By ≤ we will denote the natural partial order on B, i.e.

a relation on B defined by: j ≤ i ⇔ ij = ji = j (i, j ∈ B), and ¹ will denote

a quasi-order on B defined by: j ¹ i ⇔ j = jij (i, j ∈ B). Clearly, ≤ and ¹

coincide if and only if B is a semilattice. Further, for i ∈ B, [i] will denote the

class of i with respect to the smallest semilattice congruence on B. It is easy to

verify that j ¹ i ⇔ [j] ≤ [i], for all i, j ∈ B.

Let B be a band. To each i ∈ B we associate a semigroup Si and an over-

semigroup Di of Si such that Di ∩Dj = ∅, if i 6= j. For i, j ∈ B, i º j, let φi,j be

a mapping of Si into Dj and suppose that the family of φi,j satisfies the following

conditions:

(1) φi,i is the identity mapping on Si, for each i ∈ B;

(2) (Si φi,ij) (Sj φj,ij) ⊆ Sij , for all i, j ∈ B;

(3) [(aφi,ij) (b φj,ij)]φij,k = (aφi,k (b φj,k)), for a∈Si, b∈Sj , ijºk, i, j, k∈B.

Define a multiplication ∗ on S =
⋃

i∈B Si by: a ∗ b = (aφi,ij) (b φj,ij), for

a ∈ Si, b ∈ Sj . Then S is a band B of semigroups Si, i ∈ B, in notation

S = (B;Si, φi,j , Di) [6]. If we assume i = j in (3), then we obtain that φi,k is a

homomorphism, for all i, k ∈ B, i º k. If all φi,j are one-to-one, then we write

S = 〈B;Si, φi,j , Di〉.

Further, if Di = Si, for each i ∈ B, then we write S = (B;Si, φi,j). Here the

condition (2) can be omitted. If S = (B;Si, φi,j) and if {φi,j | i, j ∈ B, i º j}

is a transitive system of homomorphisms, i.e. if φi,j φj,k = φi,k, for i º j º k,

then we will write S = [B;Si, φi,j ], and we will say that S is a strong band B of

semigroups Si. If S = [B;Si, φi,j ] and all φi,j are one-to-one, then we will write

S = 〈B;Si, φi,j〉 and we will say that S is a sturdy band B of semigroups Si.

In the case when B is a semilattice, we obtain a strong (sturdy) semilattice of

semigroups.

For undefined notions and notations we refer to [9] and [10].

It is easy to prove the following
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Lemma 1. Let S = (B;Si, φi,j , Di) and let T be a subsemigroup of S. Then

B′ = {i ∈ B | Si ∩ T 6= ∅} is a subsemigroup of B and if Ti = T ∩ Si, i ∈ B
′, and

for i, j ∈ B′, i º j, ψi,j is the restriction of φi,j onto Ti, then T = (B
′;Ti, ψi,j , Di).

2 – The main results

In this section we will give various characterizations of subdirect products of

a band and a semigroup, in the general case. The following is the main theorem

of this paper:

Theorem 1. Let S = (B;Si, φi,j , Di) and let ξ be a relation on S defined

by:

(4) a ξ b if and only if a ∈ Si, b ∈ Sj , i, j ∈ B, and there exists k ∈ B such

that k ¹ i, j, and aφi,l = b φj,l, for every l ∈ B, l ¹ k.

Then ξ is a congruence on S. Furthermore, if S = 〈B;Si, φi,j , Di〉, then S is a

subdirect product of B and S/ξ.

Conversely, if a semigroup S is a subdirect product of a band B and a semi-

group T , then S = 〈B;Si, φi,j , Di〉, where for each i ∈ B, Si is isomorphic to

some subsemigroup of T .

Proof: Clearly, ξ is reflexive and symmetric. Assume a, b, c ∈ S such that

a ξ b and b ξ c. Let a ∈ Si, b ∈ Sj , c ∈ Sk, i, j, k ∈ B. Then there exists

m1,m2 ∈ B such thatm1 ¹ i, j andm2 ¹ j, k, and aφi,l1 = b φj,l1 , b φj,l2 = c φk,l2 ,

for all l1, l2 ∈ B, l1 ¹ m1 and l2 ¹ m2. Clearly, there exists m ∈ B such that

m ¹ m1,m2, and for every l ∈ B, l ¹ m, we obtain that l ¹ m1,m2, whence

aφi,l = b φj,l = c φk,l. Therefore, a ξ c, so ξ is transitive.

Let a, b, c ∈ S, a ξ b. Assume that a ∈ Si, b ∈ Sj , c ∈ Sk, i, j, k ∈ B. Then

there exists m0 ∈ B, m0 ¹ i, j, such that aφi,l = b φj,l, for every l ∈ B, l ¹ m0.

Assume that m ∈ B is such that m ¹ m0, ik, jk, and that l ∈ B, l ¹ m. Then

l ¹ m0, whence

(a ∗ c)φik,l = (aφi,l) (c φk,l) = (b φj,l) (c φk,l) = (b ∗ c)φjk,l .

Thus, a ∗ c ξ b ∗ c. Similarly we prove that c ∗ a ξ c ∗ b. Hence, ξ is a congruence

on S.

Let S = 〈B;Si, φi,j , Di〉. Assume that (a, b) ∈ ξ ∩ η, where η is a band

congruence on S such that S/η ∼= B. Then a, b ∈ Si, for some i ∈ B, and there

exists k ∈ B, k ¹ i, such that aφi,k = b φi,k, whence a = b, since φi,k is one-to-
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one. Therefore, ξ ∩ η = ε, where ε is the equality relation. Thus, S is a subdirect

product of B and S/ξ.

Conversely, let S ⊆ T × B be a subdirect product of a semigroup T and a

band B. For i ∈ B, let Si = (T ×{i})∩S. Clearly, Si 6= ∅ and it is isomorphic to

a subsemigroup of T , for each i ∈ B, and S is a band B of semigroups Si, i ∈ B.

Let Di = T × {i}, i ∈ B, and for i, j ∈ B, i º j, let φi,j : Si → Dj be a mapping

defined by:

(a, i)φi,j = (a, j) ((a, i) ∈ Si) .

Now it is easy to verify that S = 〈B;Si, φi,j , Di〉.

Remark. Note that if S = [B;Si, φi,j ] and ξ is a congruence on S defined

as in (4), then S/ξ is the well-known direct limit of the family Si, i ∈ B, carried

by B.

Considering the mappings of a band B into the set G(T ) of all subsemigroups

of a semigroup T , satisfying some suitable conditions, we give another character-

ization of subdirect products of B and T , similar to the ones of J.L. Chrislock

and T. Tamura [3] and H. Mitsch [8].

Theorem 2. Let B be a band, let T be a semigroup and let µ : B → G(T )

be a mapping satisfying the following conditions:

i)
⋃

i∈B iµ = T ;

ii) (iµ) · (jµ) ⊆ (ij)µ, for all i, j ∈ B.

Then S = {(i, a) ∈ B×T | a ∈ iµ} is a subdirect product of B and T , in notation

S = (B;µ, T ).

Conversely, any subdirect product of B and T can be obtained in this way.

Proof: The proof is similar to the proofs of Theorem 1 [3] and Theorem 7

[8].

Let B be a band, let T be a semigroup, let µ : B → G(T ) be a mapping

satisfying i) of the previous theorem and let µ be antitone, i.e. let for all i, j ∈ B,

i º j implies iµ ⊆ jµ. Then clearly µ satisfies ii). A semigroup S constructed by

such a mapping as in the previous theorem will be denoted by S = [B;µ;T ].

By Theorem 2 we obtain the following two corollaries. The first of them is in

fact Proposition 1 [4], and the first part of the second corollary is the result of

M. Petrich [10, p. 87–88], [9, p. 98].
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Corollary 1. If S is a sturdy band B of semigroups, then S = [B;µ;S/ξ],

where ξ is a relation defined as in (4).

Conversely, if S = [B;µ;T ], then S is a sturdy band B of semigroups Si = iµ,

i ∈ B.

Corollary 2. If S is a sturdy semilattice Y of semigroups, then S =

[Y ;µ;S/ξ], where ξ is a relation defined as in (4).

Conversely, if S = [Y ;µ;T ], where Y is a semilattice, then S is a sturdy band

B of semigroups Si = iµ, i ∈ B.

If P and Q are two semigroups with a common homomorphic image Y , then

the spined product of P and Q with respect to Y is S = {(a, b) ∈ P × Q |

aϕ = b ψ}, where ϕ : P → Y and ψ : Q → Y are homomorphisms onto Y . If

Pα = αϕ−1, Qα = αψ−1, α ∈ Y , then S =
⋃

α∈Y (Pα × Qα). Clearly, spined

products are easier for construction than other subdirect products, so it is of

interest the following result that reduces the problem of construction of subdirect

products of a given semigroup and a band to the problem of construction of

subdirect products of this semigroup and of the greatest semilattice homomorphic

image of this band.

Theorem 3. Let B be a band, let Y be its greatest semilattice homomorphic

image and let T be a semigroup. Then a semigroup S is a subdirect product of

B and T if and only if it is a spined product, with respect to Y , of B and of a

subdirect product of Y and T .

Proof: Let B be a semilattice Y of rectangular bands Bα, α ∈ Y .

Let S ⊆ B × T be a subdirect product of B and T . Define a mapping ϕ of S

into Y × T by:

(i, a)ϕ = ([i], a) ((i, a) ∈ S) .

By a routine verification we obtain that ϕ is a homomorphism. Let us prove

that P = S ϕ is a subdirect product of Y and T . Indeed, for α ∈ Y , α = [i] for

some i ∈ B, and (i, a) ∈ S for some a ∈ T ; hence (α, a) = ([i], a) = (i, a)ϕ ∈ P .

Similarly we prove that for a ∈ T there exists α ∈ Y such that (α, a) ∈ P .

Therefore, P is a subdirect product of Y and T .

For α ∈ Y , let Pα = ({α}×T )∩P . Clearly, P is a semilattice Y of semigroups

Pα, α ∈ Y . Define a mapping ψ of S into B × P by:

(i, a)ψ = (i, ([i], a)) ((i, a) ∈ S) .
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It is not hard to verify that ψ is an embedding of S into B×T . Assume (i, a) ∈ S.

Then i ∈ Bα, for some α ∈ Y , whence

(i, a)ψ = (i, ([i], a)) = (i, (α, a)) ∈ Bα × Pα .

Thus, S ψ ⊆
⋃

α∈Y (Bα × Pα). On the other hand, if α ∈ Y and (i, (α, a)) ∈

Bα × Pα, then i ∈ Bα, so

(i, (α, a)) = (i, a)ψ ∈ S ψ .

Therefore, S ψ =
⋃

α∈Y (Bα × Pα), so S is a spined product of B and P with

respect to Y .

Conversely, let S ⊆ B×P be a spined product of B and P , with respect to Y ,

where P is a subdirect product of Y and T , i.e. let S =
⋃

α∈Y (Bα × Pα), where

Pα = ({α} × T ) ∩ P , α ∈ Y . Define a mapping φ of S into B × T by:

(i, (α, a))φ = (i, a) ((i, (α, a)) ∈ S) .

Then φ is an embedding of S into B × T . It remains to prove that Q = S φ is a

subdirect product of B and T . Indeed, for i ∈ B, i ∈ Bα, for some α ∈ Y , and

there exists a ∈ T such that (α, a) ∈ P , since P is a subdirect product of Y and

T , whence (i, (α, a)) ∈ S and (i, a) = (i, (α, a))φ ∈ Q. Similarly we prove that

for any a ∈ T there exists i ∈ B such that (i, a) ∈ Q. Therefore, Q is a subdirect

product of B and T .

An element of a semigroup is π-regular if some of its power is regular, and a

semigroup is π-regular if each of its element is π-regular.

Corollary 3. The following conditions on a semigroup S are equivalent:

i) S is π-regular and a subdirect product of a band and a semilattice of

groups;

ii) S is regular and a subdirect product of a band and a semilattice of groups;

iii) S is a spined product of a band and a semilattice of groups.

Proof: The authors in [1] proved that if a semigroup is a subdirect product

of semilattices of groups, then it is a semilattice of groups if and only if it is

π-regular. By this and by Theorem 3 we obtain i)⇔iii). The equivalence ii)⇔iii)

was proved by M. Petrich [11].

By the well-known Tamura’s result [12], any semigroup can be represented

as a semilattice of semilattice indecomposable semigroups. Also, M. Petrich in
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Theorem III 7.2 [9] proved that every semilattice of semigroups can be composed

as (Y ;Sα, φα,β , Dα). Therefore, every semigroup S can be represented as S =

(Y ;Sα, φα,β , Dα), where Y is a semilattice, so it is of interest to consider subdirect

products of a band and a semilattice of semigroups. This we will do in the next

theorem.

Let B be a band and let Y be a semilattice. Assume that P is a subdirect

product of B and Y an let π and $ be projection homomorphisms of P onto B

and Y , respectively. It is easy to verify that for i, j ∈ P , i ¹ j in P if and only if

iπ ¹ jπ in B and i$ ≤ j$ in Y . Define a quasi-order /– on P by:

i /– j ⇐⇒ i π ¹ j π and i$ = j $ (i, j ∈ P ) .

If S = (P ;Si, φi,j , Di) and if φi,j is one-to-one for all i, j ∈ P such that i .– j,

then we will write S = (B, Y, P ;Si, φi,j , Di).

Theorem 4. Let B be a band and let Y be a semilattice.

Let P be a subdirect product of B and Y , let S = (B, Y, P ;Si, φi,j , Di) and

define relations η and ξ on S by:

(5) a η b if and only if a ∈ Si, b ∈ Sj , i, j ∈ P , and iπ = jπ;

(6) a ξ b if and only if a ∈ Si, b ∈ Sj , i, j ∈ P , i$ = j$, and there exists

k ∈ P , k /– i, j, such that aφi,l = b φj,l, for each l ∈ P , l ¹ k.

Then η and ξ are congruences on S, S/η is isomorphic to B, S/ξ is a semilattice

Y of semigroups, and S is a subdirect product of S/η and S/ξ.

Conversely, every subdirect product of B and a semigroup that is a semilattice

Y of semigroups can be obtained in this way.

Proof: Clearly, η is a congruence on S, S/η is isomorphic to B and ξ is

reflexive and symmetric.

Assume that a, b, c ∈ S are such that a ξ b and b ξ c. Let a ∈ Si, b ∈ Sj , c ∈ Sk,

i, j, k ∈ P , i$ = j$ = k$. By the hypothesis, there exist m1,m2 ∈ P such that

m1 /– i, j and m2 /– j, k, and aφi,l1 = b φj,l1 , b φj,l2 = c φk,l2 , for all l1, l2 ∈ P

such that l1 ¹ m1, l2 ¹ m2. Now for m = m1m2, m /– m1,m2, so for any l ∈ P ,

l ¹ m, we obtain that aφi,l = c φk,l. Therefore, a ξ c, so ξ is transitive.

Assume that a, b, c ∈ S are such that a ξ b. Let a ∈ Si, b ∈ Sj , c ∈ Sk,

i, j, k ∈ P . By the hypothesis, i$ = j$, whence (ik)$ = (jk)$, since $ is a

homomorphism. Also, there exists m0 ∈ P such that m0 /– i, j and aφi,l = b φj,l,

for each l ∈ P , l ¹ m0. Let m = m0 k. Then m /– ik, jk and for any l ∈ P ,

l ¹ m we have

(a ∗ c)φik,l = (aφi,l) (c φk,l) = (b φj,l) (c φk,l) = (b ∗ c)φjk,l ,
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since l ¹ m0. Therefore, a ∗ c ξ b ∗ c, and similarly c ∗a ξ c ∗ b, so ξ is a congruence

on S.

Assume that (a, b) ∈ η ∩ ξ. Then a ∈ Si, b ∈ Sj , i, j ∈ P , and i$ = j$,

whence i = j. Also, there exists k ∈ P , k /– i, such that aφi,k = b φi,k, whence

a = b, since φi,k is one-to-one. Therefore, η ∩ ξ = ε, so S is a subdirect product

of S/η and S/ξ. Clearly, S/ξ is a semilattice Y of semigroups Tα = Sα ξ
\, α ∈ Y ,

where Sα =
⋃

i∈Pα Si and Pα = {i ∈ P | iπ = α}, α ∈ Y .

Conversely, let S ⊆ B × T be a subdirect product of B and a semigroup T

that is a semilattice Y of semigroups Tα, α ∈ Y . Let P = {(i, α) ∈ B × Y |

({i} × Tα) ∩ S 6= ∅}. It is easy to check that P is a subdirect product of B

and Y . Let π and $ denote the projection homomorphisms of P onto B and Y ,

respectively, and for i ∈ P , let Si = ({iπ} × Ti$) ∩ S. Clearly, S is a band P of

semigroups Si, i ∈ P . By Theorem III 7.2 [9], T = (Y ;Tα, φα,β , Dα). Now, for

i ∈ P , let Di = {iπ} ×Di$ and for i, j ∈ P , i º j, define a mapping φi,j of Si
into Sj by:

(iπ, a)φi,j = (jπ, a φi$,j$) (a ∈ Ti$) .

Now it is easy to show that S = (B, Y, P ;Si, φi,j , Di).

3 – Subdirect products of a band and a group

Subdirect products of a band and a group were considered in various special

cases by M. Petrich [9-11], H. Mitsch [8] and the authors [4]. In this section we

will characterize such products in the general case.

Let E(S) denote the set of all idempotents of a semigroup S. An element

a of a semigroup S is E-inversive if there exists x ∈ S such that a x ∈ E(S),

or equivalently, if there exists x ∈ S such that x = x ax [2]. A semigroup S is

E-inversive if each of its elements is E-inversive. For more informations about

such semigroups we refer to [2] and [8].

Lemma 2. Let S be a subdirect product of a band B and an E-inversive

semigroup T . Then S is also E-inversive.

Proof: Let S ⊆ B × T , (i, a) ∈ S. For a ∈ T there exists x ∈ T such that

ax ∈ E(T ) and there exists j ∈ B such that (j, x) ∈ S. Therefore, (i, a)(j, x) =

(ij, ax) ∈ E(S), so S is E-inversive.

Note that if S = (B;Si, φi,j , Di), then D =
⋃

i∈B Di need not be a semigroup.

One very interesting case when the multiplication on S can be extended to a
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multiplication on D will be considered in the following

Theorem 5. Let S = (B;Si, φi,j , Di), where Di, i ∈ B, are cancellative

semigroups and Dk = {aφi,k | a ∈ Si, i º k}, for each k ∈ B. Then

i) For all i, j ∈ B, i º j, φi,j can be extended up to a homomorphism ϕi,j
of Di into Dj such that there exists a composition D = [B;Di, ϕi,j ];

ii) If S = 〈B;Si, φi,j , Di〉, then D = 〈B;Di, ϕi,j〉;

iii) If S is E-inversive, then D is also E-inversive.

Proof: i) Assume that k, l ∈ B are such that k º l. For a ∈ Dk, by the

hypothesis, a = xφi,k, for x ∈ Si, i ∈ B, i º k, and we define a mapping ϕi,j of

Dk into Dl by

aϕk,l = xφi,l .

To prove that ϕ is well-defined, it is necessary and sufficient to prove that for

x ∈ Si, y ∈ Sj , i, j º k º l, xφi,k = y φj,k implies xφi,l = y φj,l. Indeed, by

xφi,k = y φj,k, for arbitrary u, v ∈ Sk,

(uφk,l) (xφi,l) (v φk,l) = (u ∗ x ∗ v)φk,l =
[

u(xφi,k) v
]

φk,l =
[

u(y φj,k) v
]

φk,l

= (u ∗ y ∗ v)φk,l = (uφk,l) (y φj,l) (v φk,l) ,

so by the cancellativity in Dl, xφi,l = y φk,l. Hence, ϕk,l is well-defined and

clearly, it is an extension of φk,l.

Assume that a ∈ Dk, b ∈ Dl, a = xφi,k, b = y φj,l, x ∈ Si, y ∈ Sj , i, j, k, l ∈ B,

i º k, j º l, and assume that m ∈ B, m ¹ k, l. Then by (3) and by the definition

of mappings ϕi,j we obtain

[

(aϕk,kl) (b ϕl,kl)
]

ϕkl,m =
[

(xφi,kl) (y φj,kl)
]

ϕkl,m =

=
[(

(xφi,ij) (y φj,ij)
)

φij,kl
]

ϕkl,m =
[

(x ∗ y)φij,kl
]

ϕkl,m = (x ∗ y)φij,m

=
[

(xφi,ij) (y φj,ij)
]

φij,m = (xφi,m) (y φj,m) = (aϕk,m) (b ϕl,m) .

Therefore, there exists a composition D = (B;Di, ϕi,j). Since Di, i ∈ B, are

cancellative, then D = [B;Di, ϕi,j ].

ii) Let all φi,j be one-to-one. Assume that aϕk,l = b ϕk,l, for a, b ∈ Dk,

k, l ∈ B, k º l. Then a = xφi,k, b = y φj,k, x ∈ Si, y ∈ Sj , i, j ∈ B, i, j º k. Let

u, v ∈ Sk be arbitrary. By aϕk,l = b ϕk,l, it follows that xφi,l = y φj,l, whence

(u ∗ x ∗ v)φk,l = (uφk,l) (xφi,l) (v φk,l) = (uφk,l) (y φj,l) (v φk,l) = (u ∗ y ∗ v)φk,l .
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Since φk,l is one-to-one, then u ∗ x ∗ v = u ∗ y ∗ v, whence

u(xφi,k) v = u ∗ x ∗ v = u ∗ y ∗ v = u(y φj,k) v .

Now, by the cancellativity in Dk, xφi,k = y φj,k, i.e. a = b. Therefore, ϕk,l is

one-to-one.

iii) Assume that a ∈ D. Then a ∈ Dk, k ∈ B, and a = xφi,k, x ∈ Si, i ∈ B,

i º k. Now, x ∗ y ∈ E(S), for some y ∈ Sj , j ∈ B, so

a ∗ y = (aϕk,kj) (uϕj,kj) = (xφi,kj) (y φj,kj)

=
[

(xφi,ij) (y φju,ij)
]

φij,kj = (x ∗ y)φij,kj ∈ E(D) .

Thus, D is also E-inversive.

A semigroup containing exactly one idempotent will be called a unipotent

semigroup, and a semigroup without idempotents will be called an idempotent-

free semigroup. Now we go to the main theorem of this section.

Theorem 6. The following conditions on a semigroup S are equivalent:

i) S is a subdirect product of a band and a group;

ii) S is E-inversive, S = 〈B;Si, φi,j , Di〉, and for every i ∈ B, Di is cancella-

tive;

iii) S is E-inversive, S = 〈B;Si, φi,j , Di〉, and for every i ∈ B, Di is either a

unipotent monoid or an idempotent-free semigroup;

iv) S is E-inversive and it can be embedded into a sturdy band of cancellative

semigroups;

v) S is E-inversive and it can be embedded into a sturdy band of unipotent

monoids and idempotent-free semigroups;

vi) S is E-inversive and it can be embedded into a spined product of a band

and a sturdy semilattice of cancellative semigroups;

vii) S is E-inversive and it can be embedded into a spined product of a band

and a sturdy semilattice of unipotent monoids and idempotent-free semi-

groups.

Proof: i)⇒ii) Let S ⊆ B × G be a subdirect product of a band B and a

group G. For i ∈ B, let Di = {i} × G, Si = S ∩ Di. Clearly, Si 6= ∅ and Di

is a cancellative semigroup, for each i ∈ B. If for i, j ∈ B, i º j, we define
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a mapping φi,j : Si → Dj by (i, a)φi,j = (j, a), then it is easy to verify that

S = 〈B;Si, φij , Di〉 and by Lemma 2, S is E-inversive.

ii)⇒v) Let ii) hold. Without loss of generality we can assume that Dk =

{aφi,k | i ∈ B, i º k, a ∈ Si}, for each k ∈ B. By Theorem 5, S can be embedded

into D = 〈B;Di, ϕi,j〉 and D is E-inversive.

Let i ∈ B be such that E(Di) 6= ∅. Assume that a ∈ Di, e ∈ E(Di). Since D

is E-inversive, then x = x∗e∗a∗x, for some x ∈ D. If x ∈ Dj , j ∈ B, then clearly

i º j and (e ∗ a ∗ x)ϕij,j , eϕi,j ∈ E(Dj), since e ∗ a ∗ x ∈ E(Dij), e ∈ E(Di).

By the cancellativity in Dj , |E(Dj)| = 1, whence eϕi,j = (e ∗ a ∗ x)ϕij,j =

(eϕi,j) (aϕi,j)x. Now, by the cancellativity in Dj , eϕi,j = (aϕi,j)x, whence
[

(e ∗ a)ϕi,j
]

x = (e ∗ a ∗ x)ϕij,j = eϕi,j = (aϕi,j)x ,

and again by the cancellativity in Dj , (e ∗ a)ϕi,j = aϕi,j . Therefore, e ∗ a = a,

since ϕi,j is one-to-one. Similarly we prove that a∗e = a. Hence, Dj is a monoid.

Since Dj is cancellative, then it is unipotent.

v)⇒iii) This follows immediately.

iii)⇒i) Let iii) hold. By Theorem 1, S is a subdirect product of B and a

semigroup S/ξ, where ξ is a congruence defined as in (4). Clearly, e ξ f , for all

e, f ∈ E(S). Let u = e ξ\, e ∈ E(S). Assume v ∈ S/ξ. Then v = a ξ\, for some

a∈S. Since S is E-inversive, then x = x ∗ a ∗ x, for some x∈S. If a∈Si, x∈Sj ,

i, j ∈ B, then i º j, x ∗a = e ∈ E(Sji) and a ∗ e ∈ Siji. Assume k ∈ B, k ¹ i, iji.

Then

(a ∗ e)φiji,k = (aφi,k) (e φji,k) = (aφi,k) ,

since e φji,k is the identity of Dk. Thus, a ∗ e ξ a, whence v = a ξ\ = (a ∗ e) ξ\ =

(a ξ\) (e ξ\) = v u, and similarly v = u v. On the other hand, u = e ξ\ = (x∗a) ξ\ =

(x ξ\) (a ξ\) = (x ξ\) v, and similarly u = v(x ξ\). Hence, S/ξ is a group.

ii)⇔iv) This follows by Theorem 5 and Lemma 1.

iv)⇔vi) and v)⇔vii) This follows by Theorem 3 [6].

Similarly we can prove the following

Corollary 4. The following conditions on a semigroup S are equivalent:

i) S = [B,µ,G], where B is a band and G is a group;

ii) S is E-inversive and a sturdy band of cancellative semigroups;

iii) S is E-inversive and a sturdy band of unipotent monoids and idempotent-

free semigroups;
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iv) S is E-inversive and a spined product of a band and a sturdy semilattice

of cancellative semigroups;

v) S is E-inversive and a spined product of a band and a sturdy semilattice

of unipotent monoids and idempotent-free semigroups.

Corollary 5. [4] A semigroup S is a sturdy band of groups if and only if it

is regular and a subdirect product of a band and a group.

Corollary 5. [9, 10] A semigroup S is a sturdy semilattice of groups if and

only if it is regular and a subdirect product of a semilattice and a group.
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