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SEPARABLE GROUP-RING EXTENSIONS

SURJEET SINGH and L.A.-M. HANNA

Introduction

Let G be a finite group and R be any ring with identity 1z # 0. The separa-
bility of the group-ring RG over certain subrings of RG has been studied by many
authors (see [1], [2], [8], [9]). It is well known that RG is a separable extension
of R if and only if |G| 1g is invertible in R. If RG is a separable extension of R,
then RG has unique separating idempotent over R if and only if G is abelian. Let
G be an arbitrary group (not necessarily finite) and H be a subgroup of G. On
similar lines as for the above mentioned results, we prove the following results

i) RG is a separable extension of RH if and only if [G : H] is finite and
[G : H] 1R is invertible in R.

ii) Let RG be a separable extension of RH; then RG has only one separating
idempotent over RH if and only if every finite conjugate class in G is an
H-orbit, in the sense that if two elements a,b € G are in the same finite
conjugate class, then b = x~! a x for some z € H.

This leads to the following condition on a subgroup H of a finite group.
(S) Any conjugate class in G is an H-orbit .

There exist large number of pairs (G, H), such that H satisfies (S), but G #
HK, for any normal subgroup K of G, with H N K = 1. Such pairs of 2-groups
were found by using GAP-computer package [6]. For all such pairs (G, H), with
G a 2-group, |G| < 32, we observed that G = HZ(G). But we found three groups
G, of order 64, having subgroups H, satisfying (S), |H| = 32, but G # HZ(G);
in fact Z(H) = Z(G). In section 2, we endeavor to prove that for any group
G of order less than 64, if a subgroup H of G satisfies (S) then G = HZ(G).

Received: May 19, 1995; Revised: September 1, 1995.



158 S. SINGH and L.A.-M. HANNA

Answer is given in the affirmative except for |G| = 48. However, in the results
(3.2) through (3.5), some general, sufficient conditions on the orders of G and H
are given under which G = HZ(G), whenever H satisfies (S).

1 — Preliminaries

Let R be any ring with identity 1 # 0 and S be any subring of R containing
1. Let ¢: R®s R — R be the (R, R)-homomorphism such that ¢(}°, a; ® b;) =
> a;b;. As defined by Hirata and Sugano [3], R is called a separable extension
of S, if there exists z = > ,a;, ® b; € R ®g R such that ¢p(z) =1 and rz = zr
for every r € R; such an element z is called a separating idempotent of R over
S. The center of R will be denoted by Z(R). Let G be any group and H be a
subgroup of G. Any a,b € G are said to be in the same H-orbit if b = z ' ax
for some x € H. A set {go: a € A} of right coset representatives of H in G is
called a right transversal of H in G ([4, p. 5]). Z(G) and A(G) denote the center
and the F.C subgroup of G, respectively [4]. Let K be a non empty subset of
G, then the subgroup of G generated by K and the centralizer of K are denoted
by (K) and Centl(K), respectively. For a,b € G, [a,b], N(a) and o(a) denote
the commutator a=! b~1 a b, the centralizer of a and the order of a, respectively.
Consider a non zero x = Y ay g € RG, then the support of z, denoted by supt(x),
is the set {g € G: a4 # 0}. For any set X, |X| denotes the cardinality of X. For
some general concepts on rings and modules, one may refer to Stenstrom [7], and
for group-rings to Passman [4].

2 — Group rings

Throughout H is a subgroup of a group G, T' = {go: o € A} is a right
transversal of H in G, with gy =1 € T, and R is any ring with identity 1 # 0.
Any element of RG @y RG is uniquely expressible as Y, aq ® ga, aa € RG,
and a, # 0 for finitely many o € A. An x € RG ®ry RG is called a commutant
element if axz = x a for every a € RG. We write P for RG @ py RG. The proof
of the following is on familiar lines, as for the special case of H =1 (see proof of
[8, Lemma 1]).

Lemma 2.1. Anx =) a4 ® go # 0 in P, is a commutant element if and
only if, [G : H] < 00, ag = ggl ay, for every f € A anday =3 1,9 € Z(R) A(G)
such that for g € supt(a1), ry = ry whenever ¢’ is in the H-orbit of g.
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For any finite non empty subset X of G, y, denotes the sum in RG, of elements
of X. Clearly, y1; = 1. Consider a non zero commutant element x € P, then
T=7345 ggl a1 ® gg. The above lemma gives

k

ay =171+ Z?”Ai YA;
i=2

where A; are finitely many finite H-orbits in G none equal to {1}, and ri,74, €

Z(R).

Lemma 2.2. Let C be a conjugate class in G, b,/ € C, and A be any
H-orbit in C. Then

B = {aEA: ga_luga:b forsomeueA}
and

B' = {oz €A: g tugy =V for someu e A}
have the same cardinality.

Proof: Now, b’ = 21 bz for some x € G. Let o € B, then for some u € A,
9o uga =b. Now, goz = hi(a) 9t(a) for some hy,y € H and t(a) € A,

u = ht_(i) Uht(a) € A,

and

v = gicly) U Gi(a) -
This gives t(«) € B’. The mapping ¢t — t(«) is a one-to-one mapping of B
into B’. So that, |B| < |B’|. Similarly, |B’| < |B|. Hence, |B| = |B’|. n

Henceforth, let |A] < co. Let C be a finite conjugate class in G. Consider
an H-orbit A in C. The above lemma gives a positive integer A4 which for any
b € C, equals

’{a €A: g ugs =b for some u € A}’ .

Let us call A4, the weight of C relative to A. If C = {by,ba,...,b:}, and
C = A1 U Ay U ... U Ag is the decomposition of C into H-orbits, then for any
ri € R,

t

> D gat riya ga = D (DoAami) by = (3 Aari) we -

j=1 i
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The following theorem generalizes [8, Theorem 2] and some other results in [9].

Theorem 2.3. Let H be any subgroup of a group G, and R be any ring.
The following hold.

i) RG is a separable extension of RH if and only if [G : H| < oo and
[G : H] 1R is invertible in R.

ii) If RG is separable over RH, then RG has a unique separating idempotent
over RH if and only if each finite conjugate class in G is an H-orbit.

Proof: i) Let RG be a separable extension of RH. So, there exists
z € RG ®rg RG such that under the RG-bimodule homomorphism
¢ : RG ®ry RG — RG, such that ¢(a ® b) = ab, we have ¢(z) = 1 and
az=za for any a,b € RG. By (2.1), [G: Hl|=n<ocand z =3, 95 a1 ® ga
with @y = 1 + >_; 7 ya,, where A; are some finite H-orbits other than {1};
r1,7; € Z(R). Then

l=o9(z) =nri+Y ga' Tiya, ga
7,00
yields nry = 1. Thus, n 1g is invertible in R. Conversely, if s = n1p is invertible

in R, then
1 _
20 = gzga1®ga

«

is a separating idempotent of RG over RH.

ii) Let RG be separable over RH. Let RG have only one separating idem-
potent over RH. This one is 2’ = %Za 95! ® go. Suppose there exists a finite
conjugate class C' in G, such that C = A1 U Ay U ... U Ay, where A; are disjoint
H-orbits, and k > 2. If one of A4, and A4, is non zero in R, then

Z = ch:l()‘AQ Yya, — )\A1 yAz) ®ga 7é 0 )

and
p(2) = (A, Aay = Aay Aay)ye = 0.
This gives a separating idempotent zg + z different from zg. If Ay, =0 = A4,
in R, then
20+ Y gaya, +ya,) ® ga
o

is a separating idempotent other than zy. This is a contradiction. Hence every
finite conjugate class in GG is an H-orbit. Conversely, let every finite conjugate
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class in G be an H-orbit, then any non zero commutant element in RG ® pg RG
is of the form

Z:Zg;1a1®ga
o

where a; = >, r; yc,, for some finitely many distinct finite conjugate classes C;
in Gand r; #0in Z(R), p(z) =nd ;riyc,, n =[G : H|, gives ¢(z) # 0. Hence,
R has only one separating idempotent over RH. u

3 — Finite groups

Throughout G is a finite group, and H is a subgroup of G. We consider the
condition

(S) Any conjugate class in G is an H-orbit .

If R is any ring such that |G| is invertible in R, by (2.3) RG has only one
separating idempotent over RH if and only if H satisfies (S). This observation
motivates us to study the above condition. If G = HZ(G), obviously, H satisfies
(S). There exist groups G having subgroups H satisfying (S), but G # HZ(G).
Some such groups of order 64 were found by using GAP [6]. One such a group is
described at the end of this paper. We endeavor to prove that for any group G
of order less than 64, if a subgroup H satisfies (S), then G = HZ(G). We shall
give a number of sufficient conditions on |H| and |G| under which G = HZ(G),
whenever H satisfies (S). We start with the following obvious results.

Lemma 3.1. Let H be a subgroup of a finite group G. Then:
i) H satisfies (S) if and only if G = HN(a) for every a € G.
ii) If H satisfies (S), then Centl(H) < Z(G), and Z(G)NH = Z(H).
iii) If H satisfies (S), then G/H is an abelian group, G' = [H,G] = H'; further
if H is abelian, then G is abelian.

iv) If H satisfies (S), then any normal subgroup of H is a normal subgroup

of G.

Proposition 3.2. If |G| = pgs, where p and q are two distinct primes, and
H is a non abelian subgroup of G of order p q, satistying (S), then G = HZ(G).

Proof: Z(H) = 1. Let a,b € H, such that o(a) = p, o(b) = q. To be definite,
let p < q. AsG = HN(a), by (3.1), |[N(a)| = ps. Similarly, |N(b)| = ¢gs. As (b) is
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a normal subgroup of H, by (3.1) iv), (b) is a normal subgroup of G. So, N(b) is a
normal subgroup of G. Then pq\ |N(a) N(b)| yields s||N(a) N N(b)|. Obviously,
N(a) N N(b) = Centl(H). N(a) N N(b) < Z(G), by (3.1) ii). However,
N(a)NN(b)NH = 1. This ylelds Z(G)=N(a)NN(b),and G =HZ(G). n

Theorem 3.3. Let |G| = p? q s, where p and q are primes, such that p < g,
and H he a subgroup of G of order p? q, satisfying (S), then G = HZ(G).

Proof: Let K = (c), be a Sylow g-subgroup of H. Consider ¢ > 3. Then, K
is a normal subgroup of H, hence by (3.1) iv) it is normal in G. Now |Z(H)| is
1 or p. Let P be a Sylow p-subgroup of H.

Case (I): Z(H) = 1. Then P is cyclic. Let P = (d). As G = HN(d)
IN(d)| = p?s. Also, |[N(c)| = qgs. H = {(c,d), yields N(¢) N N(d) = Centl(H) <
Z(G), HN(N(c)N N(d)) = 1. Also H < N(c) N(d), yields G = N(c) N(d). So
that p?qs = |N(d) N(c)|, |N(d) N N(c)| = s. Hence, G = HZ(G).

Case (II): |Z(H)| = p. Then, |[N(c)| = pgs. Let P be cyclic. Then
IN(c) " N(d)| = ps, and once again G = HZ(G). Suppose P is not cyclic, then
H = Z(H) x L, where |L| = pq. Then for any x € G, G = HN(z) = LN(x). So
by (3.2), G = LZ(G) = HZ(G).

We now consider ¢ = 3. Then p = 2, |H| = 12. If a Sylow 2-subgroup of
H is cyclic, on similar lines as when ¢ > 3, we get G = HZ(G). Let Sylow
2-subgroup of H be not cyclic. Suppose Sylow 3-subgroup of H is not normal.
We get another Sylow 3-subgroup K’ = () of H. Then |N(c)| = |N()| = 3s,
N(c)NN()NH = 1. Then, [N(c) N(')| <12, yields [N(c) N N(c')| > 2 s and
hence, |H(N(¢) NN (c))| > 2|G|. Consequently, G = H(N(c)NN(c')). However,
H = (¢,d). Thus, N(c) N N(d') < Z(G). If Sylow 3-subgroup of H is normal,
then H =L x Ly, |L| =6, |L1| = 2. Once again by (3.2), G = HZ(G). n

Theorem 3.4. Let |G| = p?qs, where p, ¢ and s are prime numbers and
p > q, then for any nonabelian subgroup H of G of order p?q, satisfying (S),
G=HZ(G).

Proof: Let P be a Sylow p-subgroup of H, and K = (c) be a Sylow
q-subgroup of H. Now P is a normal subgroup of G.

Case (I): P, a cyclic group So for some a € P, P = (a); then Z(H) = 1. By
using (3.1), we get |N(a)| = p*s, [N(c)| = ¢s, and |N(a) N N(c)| > s. However,
HNN(a)NN(c)=1and N(a) N N(c) < Z(G). This yields G = H x Z(G).
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Case (II): P is not cyclic. If Z(H) # 1, then H = Z(H) x Ly with |L1| = pq.
By (3.2), G = L1Z(G) = HZ(G). Let Z(H) = 1. If for some a € H with
o(a) = p, H = (a,c), as in Case (I), we get G = HZ(G). Suppose H # (a,c),
for any a € H with o(a) = p, then H = (a,b,c) for some a,b € H satisfying
o(a) =p=o(b), clac=a*, ¢ 'bc=0b" for some A, satisfying 2 < A\ < p — 1,
ctxe = 2* for any x € P. If N(a) = N(b), then N(a) N N(c) < Z(G) and
IN(a) N N(c)| > s. So, G = HZ(Q).

Let N(z) # N(y) for any =,y € H for which P = (z,y). As [G : N(a)] = ¢,
G = N(a) N(b), and [N(a) N N(b)| = p*(2). So, s = q, |G| = p* ¢, [N(0)| = ¢*,
|IN(a)] = p?q, P = N(a)NN(b), and |[N(a) N N(c)| = ¢ = |[N(b)N N(c)|. Suppose
N(c) is cyclic, then N(a) N N(c) being the unique subgroup of N(c) of order
q, give N(a) N N(c¢) = (¢) = N(b) N N(c). This gives H is abelian. This is a
contradiction. Hence N(c) is not cyclic. If N(a) N N(c) = N(b) N N(c), then
for some d € N(c), such that d ¢ (c), d € N(a) N N(b). This gives N(a) =
P(d) = N(b). This is a contradiction. So, N(a) N N(c) # N(b) N N(c). We get
g € (N(a) N N(c)\(N(b) N N(c)). Then N(c) = {c,g), g tbg = b/ for some
J, with 2 < j < p—1. Then N(ab) N N(c) = 1. On the other hand, as for a,
|N(ab) N N(c)| = g. This is a contradiction. Hence the result follows. u

Proposition 3.5. If |G| = p3s, for some prime number p, and H is a
nonabelian subgroup of G of order p?, satisfying (S), then G = HZ(G).

Proof: Now, H = (a,b), for some a, b not in Z(H), and |Z(H)| = p.
By using (3.1) we get |[N(a)| = p?s = |[N(b)|, |H N N(a) N N(b)| = p and
N(a)NN(b) < Z(G). As [N(a)NN(b)| > ps, it is immediate that G = HZ(G). n

Let n be any positive integer less than 64, other than 32, 48 and 60. Let G be
a group of order n, then any proper subgroup of G is either abelian or of order
of the form given in (3.2) to (3.5), so G = HZ(G). Let |G| = 60, in view of (3.2)
to (3.5), we consider a nonabelian subgroup H of G of order 30, satisfying (S).
H has a normal cyclic subgroup L = (a) of order 15. Let b € H be of order 2.
Then |N(a)| =30, 4| |N(b)|. So that 2||Z(G)|. If Z(G) £ H, then G = HZ(G).
If Z(G) < H, then H = LZ(G), and L satisfies (S). By (3.2), G = LZ(G). This
is a contradiction. Hence, Z(G) £ H, and G = HZ(G). We get:

Lemma 3.6. Let |G| = 60, then for any subgroup H of G satisfying (S),
G=HZG).
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Lemma 3.7. Let |G| = 32, then for any nonabelian subgroup H of G,
satistying (S), G = HZ(G).

Proof: In view of (3.5) we only consider the case H=16. Suppose Z(G)<H.
Then by (3.1), Z(H) = Z(G). By Scott, [6.5.1, p. 146], H has an abelian subgroup
L of order 8. Suppose H has another abelian subgroup L; of order 8. Then
|[LNLi| =4, Z(H)=LNL; and L/Z(H) = (z) for some x € L\Z(H). Then
for any a,b in L\Z(H), N(a) = N(b), and by (3.1) |[N(a)| = 16. Thus, T =
Centl(L) = N(a) for any a € L\Z(H). Similarly, Ty = Centl(L;) is of order
16. Further T and T} are abelian, TNT) < Z(G) and |T'NTy| > 8. This is a
contradiction. Hence H has a unique abelian subgroup L of order 8. This in turn
yields, |Z(H)| = 2. Suppose H = H/Z(H) has an element @ of order 4. Then
|IN(a)| =16, (Z(H),a) < Z(N(a)), gives N(a) is abelian. Choose a,b € H such
that ab # ba. Then |N(b)| > 8. As (Z(H), ) Z(N (b)), we get a subgroup

T of N(b) of order 8 such that (Z(H),b) < As N(a) is an abelian normal
subgroup of order 16, G = N(a)T, |N(a )ﬁ T\ 4 and N(a) NT < Z(G).
This is a contradiction, as |Z(G)| = 2. Hence, H is elementary abelian. Let

Z(H) = {e,d}. We can find @, b,¢ € H such that H = (a,b,¢), L = (a,b,d). Then
ab # ba, ac # ca, otherwise we get an abelian subgroup of H of order 8, other
than L. Now N(a) N L = {e,d}, |N(a)| > 8, gives G = LN(a). As ab = ba, we
get ba = abd. Similarly, ca = acd. Then, cba =cabd =acdbd = acb. Thus,
c¢b e N(a)N L. This is a contradiction. Hence, Z(G) £ H and G = H Z(G). n

Thus, we get the following

Theorem 3.8. Let G be any group of order less than 64, and different from
48. If a subgroup H of G satisfies (S), then G = HZ(G).

For |G| = 48, we require to discuss only the case when |H| = 24. However,
there are large number of possibilities for this case. This case is left untackled
for the time being.

There exist large number of pairs (G, H), where H satisfies (S), but G #
HZ(G). Such pairs of 2-groups have been found by using G AP-computer package
[6]. Here we describe a pair (G, H) with |G| = 64, |H| = 32, Z(G) = Z(H); so
that G # HZ(G). We could discover three different groups G, of order 64,
numbered as 257, 258, and 259, in the 2-group library of the package. In each
of them we could find six subgroups H of order 32, satisfying (S) and containing
Z(@). One such is the following. This is numbered 257.
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Example: C = (a,b,c,d) with relations a® = v> = ¢ = d*> = 1, ac = ca,
ad = da, bc = cb, bd = db, [d,c] = [b,a]®> = [[b,al, a], [d,c]c = ¢[d, ], [d,c]d =
d[d7 C]a [dv 6]2 = 1. Here, Z(G) = {I’ [da C]}a |G| = 64, = <ba d, [b7 CL], [dv C],CLC>,
|H| = 32.
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