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DEGENERATE ELLIPTIC EQUATION
INVOLVING A SUBCRITICAL SOBOLEV EXPONENT

J. Chabrowski

Abstract: We prove the existence of a solution of degenerate elliptic equation (1)

involving a subcritical Sobolev exponent. To solve (1) we establish the existence of

a solution of the constrained minimization problem (3). A relative compactness of a

minimizing sequence is obtained by examining a possible loss of a mass at infinity of a

minimizing sequence.

1 – Introduction

The purpose of this article is to investigate the existence of a nontrivial solu-

tion of the degenerate equation

(1) −Di

(

a(x)Diu
)

+ λu = K(x) |u|p−2 u in IRN

in a weighted Sobolev space which will be defined in Section 2, where λ > 0 is

a parameter, 2 < p < 2N
N−2 and N ≥ 3. We assume that a(x) and K(x) are

continuous and bounded in IRN and moreover a(x) ≥ 0 and a(x) 6≡ 0 on IRN and

α ≤ K(x) ≤ β on IRN , for some constants α > 0 and β > 0. We establish the

existence of a nontrivial solution under assumptions on a and K, which control

the location of zeros of a(x) and the behaviour of a(x) and K(x) at infinity.

The latter assumption can be replaced by the periodicity assumption on K(x).

However, we only need a periodicity assumption either on K or a. The case of a

periodic function a is only treated for a uniformly elliptic equation.

Unlike the case of unbounded domains, degenerate equations in bounded do-

mains, in particular the Dirichlet problem, have a quite extensive literature [MS],

[SA], where further bibliographical references can be found.
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A variational problem (3) (Section 2) associated with (1) is characterized by a

lack of compactness. In Section 3 we give a description of a possible loss of mass

at infinity of a mimmizing sequence in quantitative terms. This will be used to

show that a minimizing sequence is relatively compact.

2 – Preliminaries

The appropriate Sobolev space for equation (1) is H1
a(IR

N ), defined as a com-

pletion of C∞
0 with respect to the norm

‖u‖2a =

∫

IRN

(

a(x) |Du|2 + λu2
)

dx .

The dual space is denoted byH−1
a (IRN ), that isH1

a(IR
N )∗ = H−1

a (IRN ). Since

a is a bounded function, the Sobolev space H1(IRN ) is continuously embedded

in H1
a(IR

N ).

In this paper we always denote in a given Banach space X a weak convergence

by “⇀” and a strong convergence by “→”.

A function u ∈ H1
a(IR

N ) is a solution of (1) if

(2)

∫

IRN

(

a(x)DuDφ+ λuφ−K(x) |u|p−2 uφ
)

dx = 0

for each φ ∈ C∞
0 (IRN ).

To find a solution to equation (1), we consider the constrained minimization

problem

(3) Ma,K = inf

{
∫

IRN
a(x) |Du|2 dx; u ∈ H1

a(IR
N ),

∫

IRN
K(x) |u|p dx = 1

}

.

To ensure that Ma,K > 0 we impose the following condition on a

(A) There exists R0 > 0 such that

{x; a(x) = 0} ⊂ B(0, R0) and
1

a
∈ Lq(B(0, R0))

for some q >
Np

2N+2p−Np
.

Then we have the following result:

Proposition 1. Suppose that (A) holds and that inf IRN−B(0,R0) a(x) > 0.

Then there exists a constant C > 0 such that

(4)
(

∫

IRN
|u|p dx

)
1
p ≤ C

(

∫

IRN

(

a(x) |Du|2 + λu2
)

dx
)

1
2

for all u ∈ H1
a(IR

N ).
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Proof: We follow the argument from paper [PA] (Proposition 2.1). We may

assume, by taking R0 larger if necessary, that {x; a(x) = 0} ⊂ B(0, R0 − 2)

and infIRN−B(0,R0−2) a(x) > 0. Let r = 2q
1+q

. Then q > Np
2N+2p−Np

implies

p < Nr
N−r

(1 < r < 2 < N). Consequently by the Sobolev embedding theorem

H
1,r
0 (B(0, R0)) is continuously (compactly) embedded in Lp(B(0, R0)). This fact

will be used to establish (4). Toward this end we define for every R > 0 a function

φR ∈ C
1(IRN ) such that φR(x) = 1 on B(0, R), φR(x) = 0 on IRN −B(0, R+ 1)

and 0 ≤ φR(x) ≤ 1 on IRN . Applying the Hölder inequality we get

∫

B(0,R0)
|Du|r dx ≤

∫

B(0,R0+1)
|D(uφR0)|

r dx

=

∫

B(0,R0+1)
a

q
1+q |D(uφR0)|

2q
q+1

1

a
q

q+1

dx(5)

≤ C
(

∫

B(0,R0+1)

1

aq
dx
)

1
q+1

(

∫

B(0,R0+1)

(

a |Du|2 + λu2
)

dx
)

q
q+1

for some constant C > 0. Inequality (5) combined with the Sobolev inequality

implies

(6)

(

∫

B(0,R0−1)
|u|p dx

)
1
p ≤ C

(

∫

B(0,R0)
|uφR0−1|

p dx
)

1
p

≤ C
(

∫

B(0,R0)
|D(uφR0−1)|

r dx
)

1
r

≤ C
(

∫

B(0,R0)

(

|Du|r + λ |u|r
)

dx
)

1
r

≤ C
(

∫

B(0,R0+1)

(

a |Du|2 + λu2
)

dx
)

q
r(q+1)

= C
(

∫

B(0,R0+1)

(

a |Du|2 + λu2
)

dx
)

1
2
.

Letting ψR = 1− φR, we see that ψR(x) = 1 on IRN −B(0, R+ 1). Then the

Sobolev inequality implies

(7)

(

∫

IRN−B(0,R0−1)
|u|p dx

)
1
p ≤

(

∫

IRN−B(0,R0−2)
|uψR0−2|

p dx
)

1
p

≤ C
(

∫

IRN

(

a |Du|2 + λu2
)

dx
)

1
2
.

Here we have used the assumption inf IRN−B(0,R0−2) a(x) > 0. Estimates (6)

and (7) then imply the assertion of Proposition 1.
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Since we always assume that α ≤ K(x) ≤ β on IRN , for some constants

0 < α < β (see Introduction), estimate (4) can be rewritten as

(8)
(

∫

IRN
K(x) |u|p dx

)
1
p ≤ C

(

∫

IRN

(

a(x) |Du|2 + λu2
)

dx
)

1
2

for some constant C > 0. As an immediate consequence of Proposition 1, we

have Ma,K > 0.

It may happen that Ma,K = 0 if condition (A) is not satisfied. For instance

this occurs if

(9) a(x) ≤ C |x|b for |x| ≤ δ

for some constants δ > 0 and b > 2N+2p−Np
p

and a(x) > 0 for x 6= 0.

Indeed, let w ∈ C1
0 (IR

N ) with
∫

IRN K(x) |w|p dx = 1 and set

φ(x) =
w(xσ)σ

N
p

(
∫

IRN
K
(x

σ

)

|w(x)|p dx

)
1
p

for σ > 0 .

Then

Ma,K

(
∫

IRN
K
(x

σ

)

|w(x)|p dx

)
2
p

≤

≤
∫

IRN

(

a
(x

σ

)

|Dw(x)|2 σ
2N+2p−Np

p + λw(x)2 σ
2N
p
−N
)

dx

≤ C

∫

IRN
|x|b |Dw(x)|2 σ

2N+2p−Np
p

−b
dx+ λ

∫

IRN
w(x)2 σ

2N
p
−N

dx → 0

as σ →∞, where C is a positive constant independent of σ.

It is clear that if a satisfies (9) then
∫

B(0,R0)
1
aq dx =∞.

To proceed further we introduce a functional F : H1
a(IR

N )→ IR defined by

F (u) =
1

2

∫

IRN

(

a(x) |Du|2 + λu2
)

dx−
1

p

∫

IRN
K(x) |u|p dx ,

which is of class C1. It is routine calculation to show that (see Theorem 2.1

[LTW]):

Proposition 2. Suppose that (A) holds and that inf IRN−B(0,R0) a(x) > 0

and let {um} ⊂ H1
a(IR

N ) be a minimizing sequence for problem (3). Then
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vm =M
1

p−2

a,K um satisfies

(i) F (vm)→
(1

2
−

1

p

)

M
p

p−2

a,K as m→∞ ,

(ii) F ′(vm)→ 0 in H−1
a (IRN ) as m→∞ .

This result implies that if a minimizing sequence {um} ⊂ H1
a(IR

N ) has a limit

point u, then M
1

p−2

a,K u satisfies equation (1).

3 – Existence result

In order to show that a minimizing sequence of (3) is relatively compact in

H1
a(IR

N ) we introduce quantities which control a possible loss of mass of this

sequence at infinity.

Let a(x) satisfy (A) and suppose that inf IRN−B(0,R0)
a(x) > 0. If {um} ⊂

H1
a(IR

N ) is a minimizing sequence for (3), then {um} is bounded in H1
a(IR

N ) and

restricted to IRN−B(0, R0) is bounded inH1(IRN−B(0, R0)). It also follows from

Proposition 1 that {um} restricted to B(0, R0), is bounded in H1,r(B(0, R0)),

p < Nr
N−r

. Therefore we may assume that um ⇀ u in H1
0 (IR

N ) and um → u in

L
p
loc(IR

N ). It is clear that the following quantities are well defined:

α∞ = lim
R→∞

lim sup
m→∞

∫

IRN−B(0,R)
|um|

p dx ,

β∞ = lim
R→∞

lim sup
m→∞

∫

IRN−B(0,R)

(

|Dum|
2 + λu2

m

)

dx ,

αK,∞ = lim
R→∞

lim sup
m→∞

∫

IRN−B(0,R)
K(x) |um|

p dx

and

βa,∞ = lim
R→∞

lim sup
m→∞

∫

IRN−B(0,R)

(

a(x) |Dum|
2 + λu2

m

)

dx .

It is easy to check that if lim|x|→∞K(x) = K(∞) and lim|x|→∞ a(x) = a(∞),

then αK,∞ = K(∞)α∞ and βa,∞ = a(∞)β∞.

Writing for each R > 0

1 =

∫

IRN
K(x) |um|

p dx =

∫

B(0,R)
K(x) |um|

p dx+

∫

IRN−B(0,R)
K(x) |um|

p dx
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and letting m→∞ and then R→∞ we get

(10) 1 =

∫

IRN
K(x) |u|p dx+ αK,∞ .

Therefore to show that u is a solution of the minimization problem (3), it is

enough to show that αK,∞ = 0.

Since the norm is weakly lower semicontinuous with respect to weak conver-

gence we derive in a similar manner the inequality

(11) Ma,K = lim
m→∞

∫

IRN

(

a |Dum|
2+λu2

m

)

dx ≥
∫

IRN

(

a |Du|2+λu2
)

dx+βa,∞ .

Finally, by writing for each R > 0,

Ma,K

(

∫

IRN
K(x) |um ψR|

p dx
)

2
p ≤

∫

IRN

(

a |D(um ψR)|
2 + λ(um ψR)

2
)

dx ,

where ψR is a function introduced in the proof of Proposition 1, we easily derive

(12) Ma,K(αK,∞)
2
p ≤ βa,∞ .

We commence with the following technical lemma.

Lemma 1. Suppose that (A) holds and that inf IRN−B(0,R0) a(x) > 0. Let

{um} ⊂ H1
a(IR

N ) be a minimizing sequence for problem (3). If um ⇀ u 6≡ 0 in

H1
a(IR

N ), then u is a solution of problem (3).

Proof: According to the above discussion we need to show that αK,∞ = 0.

Arguing indirectly, let us assume that αK,∞ > 0. Then by (10) we have

(13) 0 <

∫

IRN
K(x) |u|p dx < 1 .

Since limm→∞〈F
′(umM

1
p−2

a,K ), umM
1

p−2

a,K ψR〉 = 0 uniformly in R ≥ 1, we see that

(14) βa,∞ = αK,∞Ma,K .

Combining (14), (10) and (11), we have
∫

IRN

(

a |Du|2 + λu2
)

dx ≤Ma,K

∫

IRN
K |u|p dx .

Since we always have

Ma,K

(

∫

IRN
K|u|p dx

)
2
p ≤

∫

IRN

(

a|Du|2 + λu2
)

dx ,
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we see that the last two inequalities imply
∫

IRN
K|u|p dx ≥ 1 ,

which contradicts (13).

We are now in a position to establish the following existence result.

Theorem 1. Suppose that (A) holds. If a(x) ≤ a(∞) on IRN , where

a(∞) = lim|x|→∞ a(x) with the strict inequality on a set of positive measure in

IRN and K(x) ≥ K(∞) on IRN , where K(∞) = lim|x|→∞K(x). Then problem

(3) has a solution u ∈ H1
a(IR

N ). Moreover, u ∈ H1(IRN − B(0, R0)) and u ∈

H1,r(B(0, R0)) with r =
2q

1+q
.

Proof: Let {um} ⊂ H1
a(IR

N ) be a minimizing sequence for problem (3).

According to the comments made at the beginning of this section we may assume

that um ⇀ u in H1
a(IR

N ) and u → u in Lp
loc(IR

N ). By virtue of Lemma 1, it is

sufficient to show that u 6≡ 0 on IRN . Assuming that u ≡ 0 on IRN , we see that

αK,∞ = 1. As in the proof of Lemma 1, we check that Ma,K = βa,∞. We now

compare Ma,K with M∞ defined by

M∞ = inf

{
∫

IRN

(

a(∞) |Du|2 + λu2
)

dx; u∈H1(IRN ),

∫

IRN
K(∞) |u|p dx = 1

}

.

It is well known that this problem has a positive radially symmetric solution u

with an exponential decay at infinity which is unique up to a translation (see

[KW]). It follows from the definition of M∞ that

M∞

(

K(∞)

∫

IRN
|um ψR|

p dx
)

2
p ≤

∫

IRN

(

a(∞) |D(um ψR)|
2 + λ(um ψR)

2
)

dx .

Letting m→∞ and then R→∞ gives

M∞ =M∞(K(∞)α∞)
2
p ≤ a(∞)β∞ = βa,∞ ,

which is equivalent to

M∞ ≤Ma,K .

On the other hand we have

Ma,K =Ma,K

(

K(∞)

∫

IRN
|u|p dx

)
2
p ≤Ma,K

(

∫

IRN
K(x) |u|p dx

)
2
p ≤

≤
∫

IRN

(

a(x) |Du|2 + λu2
)

dx <

∫

IRN

(

a(∞) |Du|2 + λu2
)

dx =M∞
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and we arrived at a contradiction. We also show that um → u in H1
a(IR

N ). For

u is a solution of problem (3) we have αK,∞ = 0. Then um → u in Lp(IRN )

due to the uniform convexity of the space Lp(IRN ). The convergence um → u in

H1
a(IR

N ) follows then from the following identity

∫

IRN

(

a(x) |Dwm − wn|
2 + λ(wm − wn)

2
)

dx =

=
〈

F ′(wm)−F ′(wn), wm−wn

〉

+

∫

IRN
K
(

|wm|
p−2wm−|wn|

p−2wn

)

(wm−wn) dx ,

where wm =M
1

p−2

a,K um.

Since F (u) = F (|u|), by the maximum principle the solution u can be chosen

to be positive on IRN .

Obviously the assumption “a(x) ≤ a(∞) on IRN with strict inequality on a

set of positive measure in IRN” can be replaced by “K(x) ≥ K(∞) on IRN with

strict inequality on a set of positive measure”.

4 – Case of K periodic

It is known ([EL], Corollary II.2 or [L1], Corollary II.3) that for a uniformly

elliptic equation on IRN , with a and K periodic on IRN with the same period,

problem (3) has a solution. At the end of this section we give a simple proof of

this result based on an analysis of quantities αK,∞ and βa,∞. In Theorem 2 below

we show, using the above mentioned results, that if a satisfies the assumptions of

Theorem 1 andK is periodic on IRN , then problem (3) has a solution. This means

that if {x : a(x) = 0} = ∅, that is equation (1) is uniformly elliptic, we only need

the periodicity of K. However, we must retain the assumption on behaviour of a

at infinity. In the final result of this paper, Theorem 3, we prove the existence of

solution of problem (3) in the case of a uniformly elliptic equation (1), assuming

that a is periodic on IRN and K satisfies assumptions of Theorem 1.

Theorem 2. Suppose that a satisfies assumptions of Theorem 1. If K is a

periodic function on IRN , then problem (3) has a solution in H1
a(IR

N ).

Proof: Let {um} ⊂ H1
a(IR

N ) be a minimizing sequence for problem (3). As

in the proof of Theorem 1 we may assume that um ⇀ u in H1
a(IR

N ), um → u in

L
p
loc(IR

N ). It is enough to show that u 6≡ 0 on IRN . Assuming that u ≡ 0 on IRN ,

we have αK,∞ = 1. It follows from the proof of Theorem 1 that Ma,K = βa,∞.
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To proceed further we consider the minimization problem

MP = inf

{
∫

IRN

(

a(∞) |Du|2 + λu2
)

dx; u∈H1
a(IR

N ),

∫

IRN
K(x) |u|p dx = 1

}

.

Because the coefficients a(∞) and K(x) are periodic, this problem has a positive

solution u ∈ H1(IRN ). Considering the inequality

MP

(

∫

IRN
K(x) |(um ψR)|

p dx
)

2
p ≤

∫

IRN

(

a(∞) |D(um ψR)|
2 + λ(um ψR)

2
)

dx

we show that

(15) MP =MP (αK,∞)
2
p ≤ β∞ a(∞) = βa,∞ =Ma,K .

On the other hand we have

Ma,K =Ma,K

(

∫

IRN
K(x) |u|p dx

)
2
p ≤

∫

IRN

(

a(x) |Du|2 dx+ λu2
)

dx

<

∫

IRN

(

a(∞) |Du|2 + λu2
)

dx =MP

and this contradicts inequality (15).

In case of a uniformly elliptic equation, we can interchange assumptions on a

and K in the sense that a is periodic on IRN and K satisfies condition K(x) ≥

K(∞) on IRN .

We need the following result which is well known and can be obtained as a

by-product of the proof of Lemma 3.1 in [BC] or Theorem 4.1 in [LTW].

Lemma 2. Suppose that 0 < a1 ≤ a(x) ≤ a2 on IRN for some constants

a1 and a2. Then for each minimizing sequence {um} ⊂ H1(IRN ) of problem

(3), there exist a subsequence of {um}, denoted again by {um}, and a sequence

{ym} ⊂ ZN such that um(·+ ym)⇀ u 6≡ 0 in H1(IRN ).

Combining Lemmas 1 and 2 we obtain

Corollary 1. Suppose that a and K are both periodic with the same period

y ∈ ZN and that 0 < a1 ≤ a(x) ≤ a2 on IRN for some constants a1 and a2. Then

problem (3) has a solution.

Theorem 3. Let 0 < a1 ≤ a(x) ≤ a2 on IRN for some constants a1 and a2

and suppose that a is periodic on IRN , that is a(x + y) = a(x) for all x ∈ IRN



176 J. CHABROWSKI

and y ∈ ZN . If K(x) ≥ K(∞) = lim|x|→∞K(x) on IRN , then problem (3) has a

solution.

Proof: We have to consider the case where K(x) ≥ K(∞) with strict in-

equality on a set of positive measure on IRN , since otherwise the result follows

by Corollary 1. Since {um} is bounded in H1(IRN ) we may assume that um ⇀ u

in H1(IRN ) and um → u in Lp
loc(IR

N ). The assertion will follow from Lemma 1

if we can show that u 6≡ 0. Arguing indirectly, assume that u ≡ 0 on IRN . This

implies that αK,∞ = 1. As in the proof of Lemma 1 we check that βa,∞ =Ma,K .

We now consider the minimization problem

MP,∞ = inf

{
∫

IRN

(

a(x) |Du|2+λu2
)

dx; u∈H1(IRN ),

∫

IRN
K(∞) |u|p dx = 1

}

.

Since a and K(∞) are periodic on IRN there exists a positive function u ∈

H1(IRN ) such that

∫

IRN
K(∞) |u|p dx = 1 and MP,∞ =

∫

IRN

(

a(x) |Du|2 + λu2
)

dx .

Let ψR be a function from Proposition 1, then

MP,∞

(

∫

IRN
K(∞) |um ψR|

p dx
)

2
p ≤

∫

IRN

(

a(x) |D(um ψR)|
2 + λ(um ψ)2

)

dx .

Letting m→∞ and then R→∞ we obtain

(16) MP,∞ =MP,∞(αK,∞)
2
p ≤ βa,∞ =Ma,K .

Since MP,∞ is achieved by u ∈ H1(IRN ), we have

Ma,K

(

∫

IRN
K(x) |u|p dx

)
2
p ≤

∫

IRN

(

a(x) |Du|2 + λu2
)

dx =MP,∞ .

Since u > 0 on IRN , and K(x) > K(∞) on a set of positive measure in IRN , we

get that Ma,K < MP,∞ which contradicts (16).
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